Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Molecules ; 26(6)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33801847

ABSTRACT

Therapeutics that target the virulence of pathogens rather than their viability offer a promising alternative for treating infectious diseases and circumventing antibiotic resistance. In this study, we searched for anti-virulence compounds against Pseudomonas aeruginosa from Chinese herbs and investigated baicalin from Scutellariae radix as such an active anti-virulence compound. The effect of baicalin on a range of important virulence factors in P. aeruginosa was assessed using luxCDABE-based reporters and by phenotypical assays. The molecular mechanism of the virulence inhibition by baicalin was investigated using genetic approaches. The impact of baicalin on P. aeruginosa pathogenicity was evaluated by both in vitro assays and in vivo animal models. The results show that baicalin diminished a plenty of important virulence factors in P. aeruginosa, including the Type III secretion system (T3SS). Baicalin treatment reduced the cellular toxicity of P. aeruginosa on the mammalian cells and attenuated in vivo pathogenicity in a Drosophila melanogaster infection model. In a rat pulmonary infection model, baicalin significantly reduced the severity of lung pathology and accelerated lung bacterial clearance. The PqsR of the Pseudomonas quinolone signal (PQS) system was found to be required for baicalin's impact on T3SS. These findings indicate that baicalin is a promising therapeutic candidate for treating P. aeruginosa infections.


Subject(s)
Flavonoids/pharmacology , Quinolones/metabolism , Type III Secretion Systems/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Biofilms/drug effects , China , Drosophila Proteins/drug effects , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Female , Flavonoids/metabolism , Models, Animal , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Quorum Sensing/drug effects , Rats , Rats, Sprague-Dawley , Transcription Factors/therapeutic use , Type III Secretion Systems/drug effects , Virulence/drug effects , Virulence Factors
2.
Burns ; 47(3): 538-544, 2021 05.
Article in English | MEDLINE | ID: mdl-32532479

ABSTRACT

PURPOSE: The pathogenesis of Pseudomonas aeruginosa is multifactorial and attributed to the production of several cell-associated and extracellular virulence factors including those implicated in adherence, iron uptake, exoenzymes (Exo) and exotoxins. The present study aimed to determine the prevalence of type III secretion systems (T3SS) effectors in Iranian burn patients with P. aeruginosa wound infection. METHODS: A systematic search was conducted to identify papers published by Iranian authors in the Web of Science, PubMed, Scopus, Embase, and Google Scholar electronic databases during the period of January, 2000 to December, 2018. Publications which met our inclusion criteria were selected for data extraction and analysis by Comprehensive Meta-Analysis Software. The inclusion criteria were articles that include burn patients with a wound infection caused by P. aeruginosa, and reported the prevalence of aimed exoenzymes. RESULTS: Ten publications were selected out of 15 full-text reviewed articles with the inclusion criteria. Of ten studies, the pooled prevalence of ExoS producing isolates was estimated at 57.1% (95% CI: 40.3-72.5%). Five studies reported the prevalence of ExoU and ExoT, from which, the pooled prevalence of ExoU and ExoT producing isolates was estimated at 51.4% (95% CI: 31.4-70.9%) and 86.4% (95% CI: 48.1-97.8%), respectively. Four studies reported the prevalence of ExoY, from which, the pooled prevalence of ExoY producing isolates was estimated at 79.0% (95% CI: 48.6-93.8%). CONCLUSION: Our results showed a remarkable prevalence of T3SS-positive genotype in patients with burn injuries. These findings provided attractive targets for new therapeutic strategies for burn patients who were infected with cytotoxin-producing P. aeruginosa.


Subject(s)
Burns/complications , Type III Secretion Systems/drug effects , Wound Infection/etiology , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacokinetics , Burns/physiopathology , Humans , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Wound Infection/microbiology
3.
Drug Discov Ther ; 14(5): 243-248, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33116038

ABSTRACT

The bark of Cinnamomum bejolghota (Buch.-Ham.) Sweet (C. bejolghota) is widely used as medicine to treat bacterial diarrhea in Myanmar. We previously reported that the bark extract of C. bejolghota significantly inhibited secretion effector proteins of the type three secretion system (T3SS) in Salmonella. This study is designed to investigate the anti-virulence potential of the C. bejolghota bark extract against Salmonella Typhimuriumin in in vivo and in vitro experiments. The results suggested that the polar fraction Fr.M1 inhibited the secretion of effector proteins SipA, SipB, SipC and SipD without affecting bacteria growth and the translocation of SipC into MDA-MB-231 cells. In addition, Fr.M1 alleviated inflammatory symptoms of mice in Salmonella-infected mouse model. Overall, the results provide evidence for medicinal usage of C. bejolghota bark to treat diarrhea in Myanmar.


Subject(s)
Cinnamomum/chemistry , Plants, Medicinal/chemistry , Salmonella typhimurium/drug effects , Type III Secretion Systems/drug effects , Animals , Anti-Infective Agents/pharmacology , Antiviral Agents/pharmacology , Cinnamomum/adverse effects , Cinnamomum/metabolism , Dysentery/drug therapy , Female , Humans , Male , Mice , Models, Animal , Myanmar/epidemiology , Plants, Medicinal/adverse effects , Plants, Medicinal/metabolism , Salmonella Infections/prevention & control , Salmonella typhimurium/metabolism
4.
Cell Mol Biol (Noisy-le-grand) ; 66(5): 9-14, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-33040805

ABSTRACT

Pseudomonas aeruginosa has been known as a common unscrupulous pathogen that reasons cause nosocomial infections in patients with immunocompromise. Infection with multi-drug resistant Pseudomonas aeruginosa infection in many patients is a public health problem. The bacterium causes urinary tract infections, respiratory tract infections, skin inflammation and inflammation, soft tissue infections, bacteremia, bone and joint infections, gastrointestinal infections and various systemic infections, especially in patients with severe burns, cancer and AIDS, whose immune systems are suppressed. Among diverse virulence factors, the type III secretion system is known as a significant agent in virulence and development of antimicrobial resistance in P. aeruginosa. A total of 50 isolates of P. aeruginosa were gathered from burn wound and milk specimens. Documentation and antimicrobial susceptibility evidence were performed using the VITEK 2 system. Multiplex PCR was done to detect the secretion toxins-encoding genes. Out of 50 samples: 45/225 (20%) burn wound and 6/120 (5%) raw milk samples were found positive for P. aeruginosa. The multiplex PCR analysis of ExoT and ExoY genes showed that all P. aeruginosa 50 (100%) were positive. The occurrence of the ExoS and ExoU genes was 97.7% and 86.6% among clinical isolates while none of the raw milk isolates harbored the ExoU gene and 60% of them carried the ExoS gene. The results found 20 (40%) of isolates were multidrug resistance and the most effective antibiotics against clinical isolates were Ciprofloxacin and Meropenem. The aim of this study was to prevalence the exotoxin genes encoded type III secretion system and pattern of antimicrobial susceptibility of P. aeruginosa isolated from clinical and raw milk specimens.


Subject(s)
Bacterial Proteins/genetics , Bacterial Toxins/genetics , Pseudomonas aeruginosa/genetics , Type III Secretion Systems/genetics , Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Exotoxins/genetics , Genes, Bacterial/genetics , Humans , Meropenem/pharmacology , Microbial Sensitivity Tests/methods , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Type III Secretion Systems/drug effects , Virulence/genetics , Virulence Factors/genetics
5.
Cell Host Microbe ; 27(4): 601-613.e7, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32272078

ABSTRACT

Plants deploy a variety of secondary metabolites to fend off pathogen attack. Although defense compounds are generally considered toxic to microbes, the exact mechanisms are often unknown. Here, we show that the Arabidopsis defense compound sulforaphane (SFN) functions primarily by inhibiting Pseudomonas syringae type III secretion system (TTSS) genes, which are essential for pathogenesis. Plants lacking the aliphatic glucosinolate pathway, which do not accumulate SFN, were unable to attenuate TTSS gene expression and exhibited increased susceptibility to P. syringae strains that cannot detoxify SFN. Chemoproteomics analyses showed that SFN covalently modified the cysteine at position 209 of HrpS, a key transcription factor controlling TTSS gene expression. Site-directed mutagenesis and functional analyses further confirmed that Cys209 was responsible for bacterial sensitivity to SFN in vitro and sensitivity to plant defenses conferred by the aliphatic glucosinolate pathway. Collectively, these results illustrate a previously unknown mechanism by which plants disarm a pathogenic bacterium.


Subject(s)
Arabidopsis/metabolism , Isothiocyanates/pharmacology , Pseudomonas syringae/drug effects , Type III Secretion Systems/drug effects , Bacterial Proteins/drug effects , Cysteine/drug effects , Cysteine/metabolism , Disease Resistance , Gene Expression Regulation, Bacterial , Isothiocyanates/metabolism , Plant Diseases/microbiology , Pseudomonas syringae/metabolism , Secondary Metabolism , Sulfoxides , Transcription Factors/drug effects , Type III Secretion Systems/genetics
6.
Am J Respir Cell Mol Biol ; 63(2): 234-243, 2020 08.
Article in English | MEDLINE | ID: mdl-32243761

ABSTRACT

Pseudomonas aeruginosa is a lethal pathogen that causes high mortality and morbidity in immunocompromised and critically ill patients. The type III secretion system (T3SS) of P. aeruginosa mediates many of the adverse effects of infection with this pathogen, including increased lung permeability in a Toll-like receptor 4/RhoA/PAI-1 (plasminogen activator inhibitor-1)-dependent manner. α-Tocopherol has antiinflammatory properties that may make it a useful adjunct in treatment of this moribund infection. We measured transendothelial and transepithelial resistance, RhoA and PAI-1 activation, stress fiber formation, P. aeruginosa T3SS exoenzyme (ExoY) intoxication into host cells, and survival in a murine model of pneumonia in the presence of P. aeruginosa and pretreatment with α-tocopherol. We found that α-tocopherol alleviated P. aeruginosa-mediated alveolar endothelial and epithelial paracellular permeability by inhibiting RhoA, in part, via PAI-1 activation, and increased survival in a mouse model of P. aeruginosa pneumonia. Furthermore, we found that α-tocopherol decreased the activation of RhoA and PAI-1 by blocking the injection of T3SS exoenzymes into alveolar epithelial cells. P. aeruginosa is becoming increasingly antibiotic resistant. We provide evidence that α-tocopherol could be a useful therapeutic agent for individuals who are susceptible to infection with P. aeruginosa, such as those who are immunocompromised or critically ill.


Subject(s)
Pneumonia/drug therapy , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , alpha-Tocopherol/pharmacology , Animals , Bacterial Proteins/metabolism , Cells, Cultured , Disease Models, Animal , Endothelium/drug effects , Endothelium/metabolism , Humans , Lung , Mice , Mice, Inbred C57BL , Plasminogen Activator Inhibitor 1/metabolism , Pseudomonas aeruginosa/metabolism , Rats , Type III Secretion Systems/drug effects , rhoA GTP-Binding Protein/metabolism
7.
Appl Microbiol Biotechnol ; 104(4): 1673-1682, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31897522

ABSTRACT

Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important zoonotic pathogen in public health and food safety. The type III secretion system (T3SS) encoded by Salmonella pathogenicity island (SPI) is a sophisticated molecular machine that facilitates active invasion, intracellular replication, and host inflammation. Due to increasing antibiotic resistance, new therapeutic strategies that target the Salmonella T3SS have received considerable attention. In this study, paeonol was identified as an inhibitor of the S. Typhimurium T3SS. Paeonol significantly blocked the translocation of SipA into host cells and suppressed the expression of effector proteins without affecting bacterial growth in the effective concentration range. Additionally, S. Typhimurium-mediated cell injury and invasion levels were significantly reduced after treatment with paeonol, without cytotoxicity. Most importantly, the comprehensive protective effect of paeonol was confirmed in an S. Typhimurium mouse infection model. Preliminary mechanistic studies suggest that paeonol inhibits the expression of effector proteins by reducing the transcription level of the SPI-1 regulatory pathway gene hilA. This work provides proof that paeonol could be used as a potential drug to treat infections caused by Salmonella.


Subject(s)
Acetophenones/pharmacology , Paeonia/chemistry , Salmonella Infections/drug therapy , Salmonella typhimurium/drug effects , Type III Secretion Systems/antagonists & inhibitors , Animals , Bacterial Load , Bacterial Proteins/antagonists & inhibitors , Bacterial Translocation/drug effects , Cytokines/immunology , Female , Mice , Mice, Inbred BALB C , Plant Extracts/pharmacology , Trans-Activators/antagonists & inhibitors , Type III Secretion Systems/drug effects
8.
Vet Microbiol ; 239: 108463, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31767076

ABSTRACT

The increasing understanding of bacterial pathogenesis has revealed many new targets for the development of non-traditional antibacterial drugs. Interference with bacterial virulence has become a new strategy to treat bacteria-mediated diseases. As an important food-borne pathogen, Salmonella enterica serovar Typhimurium uses type III secretion system (T3SS) to facilitate invasion of host cells. In this study, we identified cinnamaldehyde as a Salmonella pathogenicity island 1 (SPI-1) inhibitor which blocks the secretion of several SPI-1 associated effector proteins and consequently exhibits a strong inhibitory effect on SPI-1-mediated invasion of HeLa cells. Further study revealed that cinnamaldehyde significantly reduced the transcription of some SPI-1 genes, such as sipA and sipB, in S. Typhimurium by affecting multiple SPI-1 regulator genes. In an animal infection model, cinnamaldehyde effectively protected infected mice against S. Typhimurium-induced mortality and pathological damages. In summary, this study presented an effective SPI-1 inhibitor, cinnamaldehyde, which reduces the expression of SPI-1 effector proteins by regulating the transcription of main regulator genes.


Subject(s)
Acrolein/analogs & derivatives , Gene Expression Regulation, Bacterial/drug effects , Salmonella typhimurium/drug effects , Type III Secretion Systems/drug effects , Acrolein/pharmacology , Acrolein/therapeutic use , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Disease Models, Animal , HeLa Cells , Humans , Mice , Salmonella Infections/drug therapy , Salmonella Infections/mortality
9.
Drug Discov Ther ; 13(4): 222-227, 2019.
Article in English | MEDLINE | ID: mdl-31534074

ABSTRACT

Based on the anti-virulence activity on Salmonella, the ethyl acetate extract (EAE) of Mesua ferrea flower was investigated for its chemical constituents. Ten purified compounds were identified and assayed for their inhibitory activity against Type III secretion system (T3SS) by polyacrylamide gel electrophoresis (SDS-PAGE) and Western blots experiments. We found the biflavonoids, rhusflavanone and mesuaferrone B, exhibited inhibitory effects on the secretion of Salmonella pathogenicity island 1 (SPI-1) effector proteins (SipA, B, C and D) without effecting the bacterial growth. In addition, 5, 6, 6'-trihydroxy-[1,1'-biphenyl]-3,3'-dicarboxylic acid (6) is a new natural product from M. ferrea flower.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biflavonoids/pharmacology , Magnoliopsida/chemistry , Salmonella/drug effects , Anti-Bacterial Agents/chemistry , Biflavonoids/chemistry , Flowers/chemistry , Gene Expression Regulation, Bacterial/drug effects , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology , Salmonella/metabolism , Salmonella/pathogenicity , Type III Secretion Systems/drug effects , Virulence Factors/metabolism
10.
Nature ; 574(7776): 57-62, 2019 10.
Article in English | MEDLINE | ID: mdl-31534221

ABSTRACT

The causative agent of plague, Yersinia pestis, uses a type III secretion system to selectively destroy immune cells in humans, thus enabling Y. pestis to reproduce in the bloodstream and be transmitted to new hosts through fleabites. The host factors that are responsible for the selective destruction of immune cells by plague bacteria are unknown. Here we show that LcrV, the needle cap protein of the Y. pestis type III secretion system, binds to the N-formylpeptide receptor (FPR1) on human immune cells to promote the translocation of bacterial effectors. Plague infection in mice is characterized by high mortality; however, Fpr1-deficient mice have increased survival and antibody responses that are protective against plague. We identified FPR1R190W as a candidate resistance allele in humans that protects neutrophils from destruction by the Y. pestis type III secretion system. Thus, FPR1 is a plague receptor on immune cells in both humans and mice, and its absence or mutation provides protection against Y. pestis. Furthermore, plague selection of FPR1 alleles appears to have shaped human immune responses towards other infectious diseases and malignant neoplasms.


Subject(s)
Macrophages/metabolism , Neutrophils/metabolism , Plague/microbiology , Receptors, Formyl Peptide/metabolism , Yersinia pestis/metabolism , Alleles , Animals , Antigens, Bacterial/metabolism , Bacterial Adhesion , CRISPR-Cas Systems , Chemotaxis/immunology , Disease Models, Animal , Female , HEK293 Cells , Humans , Macrophages/cytology , Macrophages/immunology , Macrophages/microbiology , Male , Mice , Mice, Inbred C57BL , Neutrophils/cytology , Neutrophils/immunology , Neutrophils/microbiology , Plague/immunology , Plague/prevention & control , Polymorphism, Single Nucleotide/genetics , Pore Forming Cytotoxic Proteins/metabolism , Receptors, Formyl Peptide/antagonists & inhibitors , Receptors, Formyl Peptide/deficiency , Receptors, Formyl Peptide/genetics , Type III Secretion Systems/drug effects , U937 Cells , Yersinia pestis/chemistry , Yersinia pestis/immunology , Yersinia pestis/pathogenicity
11.
Pestic Biochem Physiol ; 160: 87-94, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31519261

ABSTRACT

Xanthomonas oryzae pv. oryzae (Xoo) infection directly leads to a severe disease known as leaf blight, which is a major cause of yield loss of rice. Use of traditional bactericides has resulted in severe resistance in pathogenic bacteria. A new approach screening compounds that target the virulence factors rather than killing bacterial pathogens is imperative. In gram-negative bacteria, the type III secretion system (T3SS) is a conserved and significant virulence factor considered as a target for drug development. Therefore, we designed and synthesized a new series of 5-phenyl-2-furan carboxylic acid derivatives stitched with 2-mercapto-1,3,4-thiadiazole. Bioassays revealed that the title candidates attenuated the hypersensitive response through suppressing the promoter activity of a harpin gene hpa1 without affecting bacterial growth. Quantitative real time polymerase chain reaction (qRT-PCR) analysis demonstrated reduced the expression of several genes associated with T3SS, when title compounds were applied. Additionally, hrp gene cluster members, including hrpG and hrpX, had reduced mRNA levels. In vivo greenhouse tests showed that candidate compounds could alleviate the effects of Xoo infection in rice (Oryza sativa) and possess better protective activity against rice bacterial leaf blight than bismerthiazol and thiodiazole copper. All tested compounds were safe to rice. This work suggests there are new safe options for Xoo control in rice from these 1,3,4-thiadiazole derivatives.


Subject(s)
Thiadiazoles/chemical synthesis , Thiadiazoles/pharmacology , Type III Secretion Systems/drug effects , Xanthomonas/drug effects , Anti-Bacterial Agents/pharmacology , Oryza/microbiology
12.
J Microbiol Immunol Infect ; 52(4): 638-647, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31239204

ABSTRACT

BACKGROUND: The emergence of multiple-antibiotic-resistant (MAR) Salmonella has been a serious threat worldwide. Salmonella can invade into host cells and evade the attacks of host humoral defenses and antibiotics. Thus, a new antibacterial agent capable of inhibiting intracellular Salmonella is highly needed. METHODS: The anti-intracellular activity and cytotoxicity of drugs on intracellular bacteria and macrophages were assayed using intracellular CFU assay and MTT cell viability assay, respectively. The uptake of gentamicin into macrophage and the effect of autophagy inhibitor on loxapine's anti-intracellular Salmonella activity were assessed by using image-based high-content system. The expression of bacterial genes was measured by real-time PCR. The efflux pump activity of bacteria was measured by Hoechst accumulation assays. RESULTS: With our efforts, an antipsychotic drug, loxapine, was identified to exhibit high potency in suppressing intracellular MAR S. Typhimurium, Staphylococcus aureus, Shigella flexneri or Yersinia enterocolitica. Subsequent investigations indicated that loxapine's anti-intracellular bacteria activity was not associated with increased penetration of gentamicin into bacteria and macrophages. Loxapine didn't inhibit bacterial growth in broth at concentration up to 500 µM and has no effect on Salmonella's type III secretion system genes' expression. Blockage of autophagy also didn't reverse loxapine's anti-intracellular activity. Lastly, loxapine suppressed bacterial efflux pump activity in all bacteria tested. CONCLUSION: Altogether, our data suggested that loxapine might suppress intracellular bacteria through inhibiting of bacterial efflux pumps. In light of its unique activity, loxapine represents a promising lead compound with translational potential for the development of a new antibacterial agent against intracellular bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antipsychotic Agents/pharmacology , Loxapine/pharmacology , Macrophages/microbiology , Salmonella typhimurium/drug effects , Animals , Autophagy/drug effects , Bacterial Proteins/genetics , Cell Survival/drug effects , Colony Count, Microbial , Drug Resistance, Multiple, Bacterial/drug effects , Fluoroquinolones/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Gentamicins/pharmacology , Membrane Transport Proteins/drug effects , Membrane Transport Proteins/genetics , Mice , Microbial Sensitivity Tests , Phenothiazines/pharmacology , RAW 264.7 Cells , Salmonella typhimurium/genetics , Salmonella typhimurium/growth & development , Serogroup , Shigella flexneri/drug effects , Staphylococcus aureus/drug effects , Type III Secretion Systems/drug effects , Type III Secretion Systems/genetics , Yersinia enterocolitica/drug effects
13.
Methods Mol Biol ; 1991: 115-126, 2019.
Article in English | MEDLINE | ID: mdl-31041769

ABSTRACT

Pseudomonas syringae is a bacterium that can cause disease on a wide range of plant species including important agricultural crops. A primary virulence mechanism used by P. syringae to infect host plants is the type III secretion system (T3SS), a syringe-like structure that delivers defense-suppressing proteins directly into plant cells. Genes encoding the T3SS are not transcribed in P. syringae prior to contact with a potential host plant and must be expressed during initial stages of infection. Specific organic and amino acids exuded by plants were recently identified as signals that can induce expression of T3SS-associated genes. Here we describe a technique to produce exudates from intact Arabidopsis seedlings and evaluate the exudates for the presence of these bioactive metabolites. We provide procedures for exudate production as well as downstream assays to assess T3SS gene expression using a GFP transcriptional reporter. We also describe methods for preparing high-quality protein and RNA from exudate-treated bacteria to directly assess changes in mRNA and protein abundance. These methods could be used to investigate mechanisms regulating P. syringae perception of plant metabolites as well as the release of these substances by the plant, and more generally to investigate host signals perceived by other phytopathogens.


Subject(s)
Amino Acids/pharmacology , Arabidopsis/metabolism , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Plant Diseases/microbiology , Pseudomonas syringae/physiology , Type III Secretion Systems/metabolism , Arabidopsis/growth & development , Arabidopsis/microbiology , Bacterial Proteins/drug effects , Type III Secretion Systems/drug effects
14.
Int J Mol Sci ; 20(5)2019 Mar 05.
Article in English | MEDLINE | ID: mdl-30841529

ABSTRACT

Topoisomerases are required for alleviating supercoiling of DNA during transcription and replication. Recent evidence suggests that supercoiling of bacterial DNA can affect bacterial pathogenicity. To understand the potential regulatory role of a topoisomerase I (TopA) in Pseudomonas aeruginosa, we investigated a previously isolated topA mutation using genetic approaches. We here report the effects of the altered topoisomerase in P. aeruginosa on type III secretion system, antibiotic susceptibility, biofilm initiation, and pyocyanin production. We found that topA was essential in P. aeruginosa, but a transposon mutant lacking the 13 amino acid residues at the C-terminal of the TopA and a mutant, named topA-RM, in which topA was split into three fragments were viable. The reduced T3SS expression in topA-RM seemed to be directly related to TopA functionality, but not to DNA supercoiling. The drastically increased pyocyanin production in the mutant was a result of up-regulation of the pyocyanin related genes, and the regulation was mediated through the transcriptional regulator PrtN, which is known to regulate bacteriocin. The well-established regulatory pathway, quorum sensing, was unexpectedly not involved in the increased pyocyanin synthesis. Our results demonstrated the unique roles of TopA in T3SS activity, antibiotic susceptibility, initial biofilm formation, and secondary metabolite production, and revealed previously unknown regulatory pathways.


Subject(s)
Bacterial Proteins/metabolism , DNA Topoisomerases, Type I/metabolism , Drug Resistance, Bacterial , Pseudomonas aeruginosa/metabolism , Pyocyanine/biosynthesis , Type III Secretion Systems/drug effects , Bacterial Proteins/genetics , DNA Topoisomerases, Type I/genetics , Pseudomonas aeruginosa/drug effects , Quorum Sensing
15.
J Pept Sci ; 25(3): e3149, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30746861

ABSTRACT

Human pathogenic gram-negative bacteria, such as enteropathogenic Escherichia coli (EPEC), rely on type III secretion systems (T3SS) to translocate virulence factors directly into host cells. The coiled-coil domains present in the structural proteins of T3SS are conformed by amphipathic alpha-helical structures that play an important role in the protein-protein interaction and are essential for the assembly of the translocation complex. To investigate the inhibitory capacity of these domains on the T3SS of EPEC, we synthesized peptides between 7 and 34 amino acids based on the coiled-coil domains of proteins that make up this secretion system. This analysis was performed through in vitro hemolysis assays by assessing the reduction of T3SS-dependent red blood cell lysis in the presence of the synthesized peptides. After confirming its inhibitory capacity, we performed molecular modeling assays using combined techniques, docking-molecular dynamic simulations, and quantum-mechanic calculations of the various peptide-protein complexes, to improve the affinity of the peptides to the target proteins selected from T3SS. These techniques allowed us to demonstrate that the peptides with greater inhibitory activity, directed against the coiled-coil domain of the C-terminal region of EspA, present favorable hydrophobic and hydrogen bond molecular interactions. Particularly, the hydrogen bond component is responsible for the stabilization of the peptide-protein complex. This study demonstrates that compounds targeting T3SS from pathogenic bacteria can indeed inhibit bacterial infection by presenting a higher specificity than broad-spectrum antibiotics. In turn, these peptides could be taken as initial structures to design and synthesize new compounds that mimic their inhibitory pharmacophoric pattern.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enteropathogenic Escherichia coli/drug effects , Enteropathogenic Escherichia coli/metabolism , Peptides/pharmacology , Type III Secretion Systems/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Circular Dichroism , Enteropathogenic Escherichia coli/growth & development , Humans , Microbial Sensitivity Tests , Models, Molecular , Peptides/chemical synthesis , Peptides/chemistry , Thermodynamics
16.
Appl Environ Microbiol ; 85(8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30770403

ABSTRACT

The type III secretion system (T3SS) is one of the most important virulence factors of the fish pathogen Edwardsiella piscicida It contains three translocon proteins, EseB, EseC, and EseD, required for translocation of effector proteins into host cells. We have previously shown that EseB forms filamentous appendages on the surface of E. piscicida, and these filamentous structures mediate bacterial cell-cell interactions promoting autoaggregation and biofilm formation. In the present study, we show that EseC, but not EseD, inhibits the autoaggregation and biofilm formation of E. piscicida At 18 h postsubculture, a ΔeseC strain developed strong autoaggregation and mature biofilm formation, accompanied by enhanced formation of EseB filamentous appendages. This is in contrast to the weak autoaggregation and immature biofilm formation seen in the E. piscicida wild-type strain. EseE, a protein that directly binds to EseC and also positively regulates the transcription of the escC-eseE operon, was liberated and showed increased levels in the absence of EseC. This led to augmented transcription of the escC-eseE operon, thereby increasing the steady-state protein levels of intracellular EseB, EseD, and EseE, as well as biofilm formation. Notably, the levels of intracellular EseB and EseD produced by the ΔeseE and ΔeseC ΔeseE strains were similar but remarkably lower than those produced by the wild-type strain at 18 h postsubculture. Taken together, we have shown that the translocon protein EseC inhibits biofilm formation through sequestering EseE, a positive regulator of the escC-eseE operon.IMPORTANCEEdwardsiella piscicida, previously known as Edwardsiella tarda, is a Gram-negative intracellular pathogen that mainly infects fish. The type III secretion system (T3SS) plays a pivotal role in its pathogenesis. The T3SS translocon protein EseB is required for the assembly of filamentous appendages on the surface of E. piscicida The interactions between the appendages facilitate autoaggregation and biofilm formation. In this study, we explored the role of the other two translocon proteins, EseC and EseD, in biofilm formation. We have demonstrated that EseC, but not EseD, inhibits the autoaggregation and biofilm formation of E. piscicida, providing new insights into the regulatory mechanism involved in E. piscicida biofilm formation.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Biofilms/drug effects , Edwardsiella/drug effects , Type III Secretion Systems/drug effects , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Calcium-Binding Proteins , Edwardsiella/genetics , Fish Diseases/microbiology , Gene Deletion , Gene Expression Regulation, Bacterial , Membrane Glycoproteins , Operon/genetics , Receptors, Cytoplasmic and Nuclear , Receptors, Peptide , Virulence Factors/metabolism
17.
Mol Plant Pathol ; 20(1): 20-32, 2019 01.
Article in English | MEDLINE | ID: mdl-30062690

ABSTRACT

The identification of chemical compounds that prevent and combat bacterial diseases is fundamental for crop production. Bacterial virulence inhibitors are a promising alternative to classical control treatments, because they have a low environmental impact and are less likely to generate bacterial resistance. The major virulence determinant of most animal and plant bacterial pathogens is the type III secretion system (T3SS). In this work, we screened nine plant extracts and 12 isolated compounds-including molecules effective against human pathogens-for their capacity to inhibit the T3SS of plant pathogens and for their applicability as virulence inhibitors for crop protection. The screen was performed using a luminescent reporter system developed in the model pathogenic bacterium Ralstonia solanacearum. Five synthetic molecules, one natural product and two plant extracts were found to down-regulate T3SS transcription, most through the inhibition of the regulator hrpB. In addition, for three of the molecules, corresponding to salicylidene acylhydrazide derivatives, the inhibitory effect caused a dramatic decrease in the secretion capacity, which was translated into impaired plant responses. These candidate virulence inhibitors were then tested for their ability to protect plants. We demonstrated that salicylidene acylhydrazides can limit R. solanacearum multiplication in planta and protect tomato plants from bacterial speck caused by Pseudomonas syringae pv. tomato. Our work validates the efficiency of transcription reporters to discover compounds or natural product extracts that can be potentially applied to prevent bacterial plant diseases.


Subject(s)
Plant Diseases/microbiology , Ralstonia solanacearum/physiology , Type III Secretion Systems , Anhydrides/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Solanum lycopersicum/drug effects , Solanum lycopersicum/microbiology , Ralstonia solanacearum/drug effects , Ralstonia solanacearum/genetics , Ralstonia solanacearum/growth & development , Transcription, Genetic/drug effects , Type III Secretion Systems/drug effects , Type III Secretion Systems/genetics
18.
Article in English | MEDLINE | ID: mdl-30524970

ABSTRACT

Dozens of Gram negative pathogens use one or more type III secretion systems (T3SS) to disarm host defenses or occupy a beneficial niche during infection of a host organism. While the T3SS represents an attractive drug target and dozens of compounds with T3SS inhibitory activity have been identified, few T3SS inhibitors have been validated and mode of action determined. One issue is the lack of standardized orthogonal assays following high throughput screening. Using a training set of commercially available compounds previously shown to possess T3SS inhibitory activity, we demonstrate the utility of an experiment pipeline comprised of six distinct assays to assess the stages of type III secretion impacted: T3SS gene copy number, T3SS gene expression, T3SS basal body and needle assembly, secretion of cargo through the T3SS, and translocation of T3SS effector proteins into host cells. We used enteropathogenic Yersinia as the workhorse T3SS-expressing model organisms for this experimental pipeline, as Yersinia is sensitive to all T3SS inhibitors we tested, including those active against other T3SS-expressing pathogens. We find that this experimental pipeline is capable of rapidly distinguishing between T3SS inhibitors that interrupt the process of type III secretion at different points in T3SS assembly and function. For example, our data suggests that Compound 3, a malic diamide, blocks either activity of the assembled T3SS or alters the structure of the T3SS in a way that blocks T3SS cargo secretion but not antibody recognition of the T3SS needle. In contrast, our data predicts that Compound 4, a haloid-containing sulfonamidobenzamide, disrupts T3SS needle subunit secretion or assembly. Furthermore, we suggest that misregulation of copy number control of the pYV virulence plasmid, which encodes the Yersinia T3SS, should be considered as a possible mode of action for compounds with T3SS inhibitory activity against Yersinia.


Subject(s)
Type III Secretion Systems/drug effects , Type III Secretion Systems/metabolism , Yersinia/drug effects , Yersinia/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Bacterial Secretion Systems/drug effects , Bacterial Secretion Systems/genetics , Bacterial Secretion Systems/metabolism , Diamide/pharmacology , Gene Dosage , Gene Expression Regulation, Bacterial , Genes, Bacterial , Malates/pharmacology , Plasmids/genetics , Protein Tyrosine Phosphatases/genetics , Type III Secretion Systems/genetics , Virulence/genetics , Yersinia/genetics , Yersinia pseudotuberculosis/metabolism
19.
Biomed Res Int ; 2018: 5810767, 2018.
Article in English | MEDLINE | ID: mdl-30276212

ABSTRACT

Pseudomonas aeruginosa is a cause of high mortality in burn, immunocompromised, and surgery patients. High incidence of antibiotic resistance in this pathogen makes the existent therapy inefficient. Type three secretion system (T3SS) is a leading virulence system of P. aeruginosa that actively suppresses host resistance and enhances the severity of infection. Innovative therapeutic strategies aiming at inhibition of type three secretion system of P. aeruginosa are highly attractive, as they may reduce the severity of clinical manifestations and improve antibacterial immune responses. They may also represent an attractive therapy for antibiotic-resistant bacteria. Recently our laboratory developed a new small molecule inhibitor belonging to a class 2,4-disubstituted-4H-[1,3, 4]-thiadiazine-5-ones, Fluorothiazinon (FT), that effectively suppressed T3SS in chlamydia and salmonella in vitro and in vivo. In this study, we evaluate the activity of FT towards antibiotic-resistant clinical isolates of P. aeruginosa expressing T3SS effectors ExoU and ExoS in an airway infection model. We found that FT reduced mortality and bacterial loads and decrease lung pathology and systemic inflammation. In addition, we show that FT inhibits the secretion of ExoT and ExoY, reduced bacteria cytotoxicity, and increased bacteria internalization in vitro. Overall, FT shows a strong potential as an antibacterial therapy of antibiotic-resistant P. aeruginosa infection.


Subject(s)
Bacterial Load/drug effects , Pseudomonas Infections/drug therapy , Thiadiazines/pharmacology , Type III Secretion Systems/drug effects , Animals , Bacterial Proteins , Bacterial Toxins , Humans , Mice , Pseudomonas Infections/physiopathology , Pseudomonas aeruginosa
20.
PLoS One ; 13(9): e0203698, 2018.
Article in English | MEDLINE | ID: mdl-30204776

ABSTRACT

Neutrophils are innate immune response cells designed to kill invading microorganisms. One of the mechanisms neutrophils use to kill bacteria is generation of damaging reactive oxygen species (ROS) via the respiratory burst. However, during enteric salmonellosis, neutrophil-derived ROS actually facilitates Salmonella expansion and survival in the gut. This seeming paradox led us to hypothesize that Salmonella may possess mechanisms to influence the neutrophil respiratory burst. In this work, we used an in vitro Salmonella-neutrophil co-culture model to examine the impact of enteric infection relevant virulence factors on the respiratory burst of human neutrophils. We report that neutrophils primed with granulocyte-macrophage colony stimulating factor and suspended in serum containing complement produce a robust respiratory burst when stimulated with viable STm. The magnitude of the respiratory burst increases when STm are grown under conditions to induce the expression of the type-3 secretion system-1. STm mutants lacking the type-3 secretion system-1 induce less neutrophil ROS than the virulent WT. In addition, we demonstrate that flagellar motility is a significant agonist of the neutrophil respiratory burst. Together our data demonstrate that both the type-3 secretion system-1 and flagellar motility, which are established virulence factors in enteric salmonellosis, also appear to directly influence the magnitude of the neutrophil respiratory burst in response to STm in vitro.


Subject(s)
Fimbriae, Bacterial/physiology , Neutrophils/microbiology , Respiratory Burst , Salmonella/metabolism , Type III Secretion Systems/metabolism , Genotype , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Humans , Interleukin-8/pharmacology , Neutrophils/cytology , Neutrophils/metabolism , Reactive Oxygen Species/metabolism , Respiratory Burst/drug effects , Salmonella/genetics , Type III Secretion Systems/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...