Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.410
Filter
1.
Fitoterapia ; 178: 106182, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39153554

ABSTRACT

Today, pharmaceutical drugs have been shown to have serious side effects, while the bioactive components of botanical plants are proven to be effective in the treatment of several diseases marked by enhanced oxidative stress and mild inflammation, often associated with minimal adverse events. Coumaroyltyramine, designated by various nomenclatures such as paprazine, N-p-trans-coumaroyltyramine, p-coumaroyltyramine and N-p-coumaroyltyramine, could be a promising bioactive ingredient to address health issues thanks to its powerful anti-inflammatory and antioxidant effects. This review represents the first in-depth analysis of coumaroyltyramine, an intriguing phenylpropanoid substance found in many species of plants. In fact, an in-depth examination of coumaroyltyramine's biological characteristics, chemical attributes, and synthesis process has been undertaken. All previous research relating to the discovery, extraction, biosynthesis, and characterization of the biologically and pharmacologically active properties of coumaroyltyramine has been reviewed and taken into consideration in this analysis. All articles published in a peer-reviewed English-language journal were examined between the initial compilations of the appropriate database until February 12, 2024. A variety of phytochemicals revealed that coumaroyltyramine is a neutral amide of hydroxycinnamic acid that tends to concentrate in plants as a reaction against infection caused by pathogens and is extracted from several medicinal herbs such as Cannabis sativa, Solanum melongena, Allium bakeri, Annona cherimola, Polygonatum zanlanscianense, and Lycopersicon esculentum. Thanks to its effectiveness in suppressing the effect of the enzyme α-glucosidase, coumaroltyramine has demonstrated antihyperglycemic activity and could have an impact on diabetes and metabolic disorders. It has considerable anti-inflammatory and antioxidant effects. These results were obtained through biological and pharmacological studies in silico, in vivo, and in vitro. In addition, coumaroyltyramine has demonstrated hypocholesterolemic and neuroprotective benefits, thereby diminishing heart and vascular disease incidence and helping to prevent neurological disorders. Other interesting properties of coumaroltyramine include anticancer, antibacterial, anti-urease, antifungal, antiviral, and antidysmenorrheal activities. Targeted pathways encompass activity at different molecular levels, notably through induction of endoplasmic reticulum stress-dependent apoptosis, arrest of the cell cycle, and inhibition of the growth of cancer cells, survival, and proliferation. Although the findings from in silico, in vivo, and in vitro experiments illustrate coumaroyltyramine's properties and modes of action, further research is needed to fully exploit its therapeutic potential. To improve our understanding of the compound's pharmacodynamic effects and pharmacokinetic routes, large-scale research should first be undertaken. To determine whether coumaroyltyramine is clinically safe and effective, further studies are required in the clinical and toxicological fields. This upcoming research will be crucial to achieving the overall potency of this substance as a natural drug and in terms of its potential synergies with other drugs.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Phytochemicals , Anti-Inflammatory Agents/pharmacology , Phytochemicals/pharmacology , Molecular Structure , Antioxidants/pharmacology , Humans , Tyramine/pharmacology , Animals
2.
EMBO J ; 43(16): 3466-3493, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38965418

ABSTRACT

The gut microbiota and their metabolites are closely linked to obesity-related diseases, such as type 2 diabetes, but their causal relationship and underlying mechanisms remain largely elusive. Here, we found that dysbiosis-induced tyramine (TA) suppresses high-fat diet (HFD)-mediated insulin resistance in both Drosophila and mice. In Drosophila, HFD increases cytosolic Ca2+ signaling in enterocytes, which, in turn, suppresses intestinal lipid levels. 16 S rRNA sequencing and metabolomics revealed that HFD leads to increased prevalence of tyrosine decarboxylase (Tdc)-expressing bacteria and resulting tyramine production. Tyramine acts on the tyramine receptor, TyrR1, to promote cytosolic Ca2+ signaling and activation of the CRTC-CREB complex to transcriptionally suppress dietary lipid digestion and lipogenesis in enterocytes, while promoting mitochondrial biogenesis. Furthermore, the tyramine-induced cytosolic Ca2+ signaling is sufficient to suppress HFD-induced obesity and insulin resistance in Drosophila. In mice, tyramine intake also improves glucose tolerance and insulin sensitivity under HFD. These results indicate that dysbiosis-induced tyramine suppresses insulin resistance in both flies and mice under HFD, suggesting a potential therapeutic strategy for related metabolic disorders, such as diabetes.


Subject(s)
Calcium Signaling , Diet, High-Fat , Gastrointestinal Microbiome , Insulin Resistance , Tyramine , Animals , Tyramine/metabolism , Tyramine/pharmacology , Gastrointestinal Microbiome/drug effects , Diet, High-Fat/adverse effects , Mice , Calcium Signaling/drug effects , Obesity/metabolism , Obesity/microbiology , Obesity/etiology , Male , Drosophila/metabolism , Dysbiosis/metabolism , Dysbiosis/microbiology , Mice, Inbred C57BL , Drosophila melanogaster/microbiology , Drosophila melanogaster/metabolism , Enterocytes/metabolism , Enterocytes/drug effects
3.
Biomacromolecules ; 25(8): 4965-4976, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39007721

ABSTRACT

As an emerging biomedical material, wound dressings play an important therapeutic function in the process of wound healing. It can provide an ideal healing environment while protecting the wound from a complex external environment. A hydrogel wound dressing composed of tilapia skin gelatin (Tsg) and fucoidan (Fuc) was designed in this article to enhance the microenvironment of wound treatment and stimulate wound healing. By mixing horseradish peroxidase (HRP), hydrogen peroxide (H2O2), tilapia skin gelatin-tyramine (Tsg-Tyr), and carboxylated fucoidan-tyramine in agarose (Aga), using the catalytic cross-linking of HRP/H2O2 and the sol-gel transformation of Aga, a novel gelatin-fucoidan (TF) double network hydrogel wound dressing was constructed. The TF hydrogels have a fast and adjustable gelation time, and the addition of Aga further enhances the stability of the hydrogels. Moreover, Tsg and Fuc are coordinated with each other in terms of biological efficacy, and the TF hydrogel demonstrated excellent antioxidant properties and biocompatibility in vitro. Also, in vivo wound healing experiments showed that the TF hydrogel could effectively accelerate wound healing, reduce wound microbial colonization, alleviate inflammation, and promote collagen deposition and angiogenesis. In conclusion, TF hydrogel wound dressings have the potential to replace traditional dressings in wound healing.


Subject(s)
Gelatin , Hydrogels , Hydrogen Peroxide , Polysaccharides , Wound Healing , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Polysaccharides/chemistry , Polysaccharides/pharmacology , Gelatin/chemistry , Mice , Tyramine/chemistry , Tyramine/pharmacology , Horseradish Peroxidase/chemistry , Bandages , Humans , Sepharose/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry
4.
Int J Biol Macromol ; 271(Pt 2): 132527, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777027

ABSTRACT

Wound infections, posing a grave risk of severe physical consequences and even mortality, exact a substantial financial toll on society, rendering them among the most formidable challenges confronting our world today. A critical imperative is the development of hydrogel dressings endowed with immune-regulating and antibacterial properties. This study is founded upon the symbiotic physical and efficacious attributes of two small natural molecules. An injectable hydrogel is meticulously crafted by encapsulating puerarin (PUE) into tyramine-modified hyaluronic acid, subsequently introducing rhein (RHE), and catalyzing the formation of inter-phenol crosslinks with H2O2/horseradish peroxidase (HA-Tyr-R@P). Exhibiting a favorable microenvironmental impact the developed hydrogel attains an antibacterial efficacy exceeding 95 %, coupled with a wound closure rate twice that of the control group. HA-Tyr-R@P hydrogels not only inhibit bacterial growth but also mitigate inflammation, fostering wound healing, owing to their harmonized physicochemical characteristics and synergistic therapeutic effects. This work underscores the creation of a singular, versatile hydrogel platform, negating the complexities and side effects associated with pharmaceutical preparations. Furthermore, it offers new ideas for the formulation of RHE-based hydrogels for wound healing, emphasizing the pivotal role of natural small molecules in advancing biological materials.


Subject(s)
Anthraquinones , Anti-Bacterial Agents , Anti-Inflammatory Agents , Hyaluronic Acid , Hydrogels , Isoflavones , Tyramine , Wound Healing , Tyramine/chemistry , Tyramine/pharmacology , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Isoflavones/chemistry , Isoflavones/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Wound Healing/drug effects , Mice , Anthraquinones/chemistry , Anthraquinones/pharmacology , Bandages
5.
Cell Host Microbe ; 32(6): 950-963.e8, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38788722

ABSTRACT

Inflammatory bowel disease (IBD) is characterized by dysbiosis of the gut microbiota and dysfunction of intestinal stem cells (ISCs). However, the direct interactions between IBD microbial factors and ISCs are undescribed. Here, we identify α2A-adrenergic receptor (ADRA2A) as a highly expressed GPCR in ISCs. Through PRESTO-Tango screening, we demonstrate that tyramine, primarily produced by Enterococcus via tyrosine decarboxylase (tyrDC), serves as a microbial ligand for ADRA2A. Using an engineered tyrDC-deficient Enterococcus faecalis strain and intestinal epithelial cell-specific Adra2a knockout mice, we show that Enterococcus-derived tyramine suppresses ISC proliferation, thereby impairing epithelial regeneration and exacerbating DSS-induced colitis through ADRA2A. Importantly, blocking the axis with an ADRA2A antagonist, yohimbine, disrupts tyramine-mediated suppression on ISCs and alleviates colitis. Our findings highlight a microbial ligand-GPCR pair in ISCs, revealing a causal link between microbial regulation of ISCs and colitis exacerbation and yielding a targeted therapeutic approach to restore ISC function in colitis.


Subject(s)
Colitis , Mice, Knockout , Receptors, Adrenergic, alpha-2 , Stem Cells , Tyramine , Animals , Tyramine/metabolism , Tyramine/pharmacology , Colitis/microbiology , Colitis/chemically induced , Colitis/metabolism , Mice , Receptors, Adrenergic, alpha-2/metabolism , Stem Cells/metabolism , Humans , Mice, Inbred C57BL , Tyrosine Decarboxylase/metabolism , Enterococcus faecalis/metabolism , Gastrointestinal Microbiome , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Yohimbine/pharmacology , Disease Models, Animal , Enterococcus/metabolism , Intestines/microbiology , Intestines/pathology , Cell Proliferation , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/metabolism , Dextran Sulfate
6.
Carbohydr Polym ; 327: 121635, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38171654

ABSTRACT

The migration of fibroblasts and endothelial cells is a critical determinant of wound-healing outcomes for skin injuries. Here, hyaluronic acid-tyramine (HAT) and thiolated glycol chitosan (TGC) conjugates were combined with copper-doped bioglass (ACuBG) nanoparticles to build a novel type of multi-crosslinked hydrogel for stimulating the migration of cells, and thus, expediting wound healing. The optimally devised HAT/TGC/ACuBG gels had markedly improved strength and stiffness compared to the gels built from either HAT or TGC while showing sufficient elasticity, which contributes to stimulating the migration of fibroblasts. The sustainable release of silicon and copper ions from the gels was found to jointly induce the migration of human umbilical vein endothelial cells. The results based on mouse full-thickness skin defects demonstrated that they were able to fully restore the skin defects with formation of complete appendages within two weeks, suggesting their promising potency for use in expediting wound healing.


Subject(s)
Chitosan , Nanoparticles , Mice , Animals , Humans , Hydrogels/pharmacology , Copper/pharmacology , Hyaluronic Acid , Endothelial Cells , Tyramine/pharmacology , Wound Healing
7.
J Asian Nat Prod Res ; 26(2): 237-247, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37812065

ABSTRACT

Three new phenylpropanoid glycosides, piperpubelide (1), 1-propionyl-3-hydroxy-phenyl-4-O-ß-D-glucopyranoside (2), and 1-propionyl-4-hydroxy-phenyl-3-O-ß-D-glucopyranoside (3), a new tyramine-type alkamide, puberulumine L (4), together with thirteen known compounds (5-17) were isolated from Piper puberulum (Benth.) Maxim. Their structures were elucidated by analysis of spectroscopic data involving NMR, IR, UV, and HRESIMS data. Calculated and experimental ECD was used to confirm the configuration of compound 1. Compounds 14, 16, and 17 exhibited relatively positive DPPH radical scavenging activities, with corresponding EC50 of 10.23, 24.12, and 21.83 µM, respectively. In addition, compound 5 inhibited LPS-induced NO production in BV-2 microglia with an IC50 value of 18.05 µM.


Subject(s)
Glucosides , Piper , Glucosides/pharmacology , Glucosides/chemistry , Piper/chemistry , Tyramine/pharmacology , Tyramine/chemistry , Molecular Structure , Glycosides/pharmacology , Glycosides/chemistry
8.
Int J Biol Macromol ; 259(Pt 2): 128843, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104684

ABSTRACT

Hydrogels are receiving increasing attention for their use in 3D cell culture, tissue engineering, and bioprinting applications. Each application places specific mechanical and biological demands on these hydrogels. We developed a hydrogel toolbox based on enzymatically crosslinkable polysaccharides via tyramine (TA) moieties, allowing for rapid and tunable crosslinking with well-defined stiffness and high cell viability. Including gelatin modified with TA moieties (Gel-TA) improved the hydrogels' biological properties; 3 T3 fibroblasts and HUVECs attached to and proliferated on the enriched hydrogels at minute Gel-TA concentrations, in contrast to bare or unmodified gelatin-enriched hydrogels. Moreover, we were able to switch HUVECs from a quiescent to a migratory phenotype simply by altering the ligand concentration, demonstrating the potential to easily control cell fate. In encapsulation studies, Gel-TA significantly improved the metabolic activity of 3 T3 fibroblasts in soft hydrogels. Furthermore, we showed rapid migration and network formation in Gel-TA enriched hydrogels in contrast to a non-migratory behavior in non-enriched polysaccharide hydrogels. Finally, low hydrogel density significantly improves tissue response in vivo with large infiltration and low fibrotic reaction. Further development by adding ECM proteins, peptides, and growth factor adhesion sites will lead to a toolbox for hydrogels tailored toward their desired application.


Subject(s)
Gelatin , Tyramine , Tyramine/pharmacology , Tyramine/chemistry , Gelatin/pharmacology , Gelatin/chemistry , Hyaluronic Acid/pharmacology , Hyaluronic Acid/chemistry , Dextrans , Hydrogels/pharmacology , Hydrogels/chemistry , Tissue Engineering
9.
Biochem Pharmacol ; 218: 115906, 2023 12.
Article in English | MEDLINE | ID: mdl-37951366

ABSTRACT

Burkholderia cenocepacia is an opportunistic respiratory pathogen of particular relevance to patients with cystic fibrosis (CF), primarily regulating its biological functions and virulence factors through two quorum sensing (QS) systems (CepI/R and CciI/R). The highly persistent incidence of multidrug resistant Burkholderia cenocepacia poses a global threat to public health. In this study, we investigated the effects of tyramine, one biogenic amine, on the QS systems of Burkholderia cenocepacia. Genetic and biochemical analyses revealed that tyramine inhibited the production of N-hexanoyl-homoserine (AHL) signaling molecules (C8-HSL and C6-HSL) by blocking the CepI/R and CciI/R systems. As a result, the inhibition of QS systems leads to reduced production of various virulence factors, such as biofilm formation, extracellular polysaccharides, lipase, and swarming motility. Notably, as a potential quorum sensing inhibitor, tyramine exhibits low toxicity in vivo in Galleria mellonella larvae and is well characterized by Lipinski's five rules. It also shows high gastrointestinal absorption and the ability to cross the blood-brain barrier according to SwissADME database and ProTox-II server. Additionally, tyramine was found to enhance the efficacy of tetracycline in reducing the infectivity of Burkholderia cenocepacia in Galleria mellonella larvae infection model. Therefore, tyramine could be a promising candidate for combination therapy with traditional antimicrobials to improve their effectiveness against Burkholderia cenocepacia.


Subject(s)
Burkholderia cenocepacia , Humans , Burkholderia cenocepacia/genetics , Quorum Sensing/genetics , Virulence , Tyramine/pharmacology , Anti-Bacterial Agents/pharmacology , Tetracycline/pharmacology , Virulence Factors/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial
10.
Clin Transl Sci ; 16(10): 2058-2069, 2023 10.
Article in English | MEDLINE | ID: mdl-37596819

ABSTRACT

The oral tyramine challenge evaluates the safety of novel monoamine oxidase (MAO) inhibitors when taken with tyramine-containing food or drinks. In its current design, it comprises an extensive series of tyramine escalation steps until a blood pressure threshold is met. Due to the high variation in tyramine bioavailability, and thereby in blood pressure effect, this classical design has various limitations, including safety concerns. Based on data from a previously performed tyramine challenge study, the present study explored a reduced new design that escalates up to 400 mg, and evaluates the dose to a tyramine peak plasma concentration of ≥10 ng/mL, instead of a dose up to 800 mg, and to a blood pressure change of ≥30 mm Hg. Tested by trial simulation, the new design proves more efficient than the classical design in terms of better identifying tyramine sensitivity of test and reference treatments and reducing false-positive and false-negative rates in estimating tyramine sensitivity by more than 10-fold. Since it escalates over a lower tyramine dose range, the new design reduces risk to subjects associated with tyramine-induced blood pressure excursions, is less demanding for study participants, and is more efficient. By its focus on tyramine bioavailability as the primary concern for novel MAO inhibitors, the new tyramine challenge study provides better answers in a simplified and safer design compared with the classical design in trial simulation, warranting its use in future clinical studies.


Subject(s)
Monoamine Oxidase Inhibitors , Tyramine , Humans , Monoamine Oxidase Inhibitors/adverse effects , Tyramine/pharmacology , Monoamine Oxidase/pharmacology , Blood Pressure
11.
Molecules ; 28(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36985809

ABSTRACT

Hordenine, a phenethylamine alkaloid, is found in a variety of plants and exhibits a broad array of biological activities and pharmacological properties, including anti-inflammatory and anti-fibrotic effects. However, the efficacy and underlying mechanisms of hordenine in treating ulcerative colitis (UC) remain unclear. To address this, we examined the therapeutic effects of hordenine on dextran sodium sulphate (DSS)-induced UC by comparing disease activity index (DAI), colon length, secretion of inflammatory factors, and degree of colonic histological lesions across diseased mice that were and were not treated with hordenine. We found that hordenine significantly reduced DAI and levels of pro-inflammatory factors, including interleukin (IL)-6, IL-1ß, and tumor necrosis factor alpha (TNF-α), and also alleviated colon tissue oedema, colonic lesions, inflammatory cells infiltration and decreased the number of goblet cells. Moreover, in vitro experiments showed that hordenine protected intestinal epithelial barrier function by increasing the expression of tight junction proteins including ZO-1 and occludin, while also promoting the healing of intestinal mucosa. Using immunohistochemistry and western blotting, we demonstrated that hordenine reduced the expression of sphingosine kinase 1 (SPHK1), sphingosine-1-phosphate receptor 1 (S1PR1), and ras-related C3 botulinum toxin substrate 1 (Rac1), and it inhibited the expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in colon tissues. Thus, hordenine appears to be effective in UC treatment owing to pharmacological mechanisms that favor mucosal healing and the inhibition of SPHK-1/S1PR1/STAT3 signaling.


Subject(s)
Colitis, Ulcerative , Colitis , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colon/metabolism , Tyramine/pharmacology , Anti-Inflammatory Agents/pharmacology , Interleukin-6/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal , Mice, Inbred C57BL , Colitis/drug therapy
12.
Biomolecules ; 12(12)2022 11 30.
Article in English | MEDLINE | ID: mdl-36551221

ABSTRACT

Sympathomimetic agents are a group of chemical compounds that are able to activate the sympathetic nervous system either directly via adrenergic receptors or indirectly by increasing endogenous catecholamine levels or mimicking their intracellular signaling pathways. Compounds from this group, both used therapeutically or abused, comprise endogenous catecholamines (such as adrenaline and noradrenaline), synthetic amines (e.g., isoproterenol and dobutamine), trace amines (e.g., tyramine, tryptamine, histamine and octopamine), illicit drugs (e.g., ephedrine, cathinone, and cocaine), or even caffeine and synephrine. In addition to the effects triggered by stimulation of the sympathetic system, the discovery of trace amine associated receptors (TAARs) in humans brought new insights about their sympathomimetic pharmacology and toxicology. Although synthetic sympathomimetic agents are mostly seen as toxic, natural sympathomimetic agents are considered more complacently in the terms of safety in the vision of the lay public. Here, we aim to discuss the pharmacological and mainly toxicological aspects related to sympathomimetic natural agents, in particular of trace amines, compounds derived from plants like ephedra and khat, and finally cocaine. The main purpose of this review is to give a scientific and updated view of those agents and serve as a reminder on the safety issues of natural sympathomimetic agents most used in the community.


Subject(s)
Cocaine , Sympathomimetics , Humans , Sympathomimetics/pharmacology , Norepinephrine , Tyramine/pharmacology , Amines , Cocaine/pharmacology
13.
Sci Rep ; 12(1): 20946, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36470960

ABSTRACT

To compare the behavioral roles of biogenic amines in the males of primitive and advanced eusocial bees, we determined the levels of dopamine- and octopamine-related substances in the brain, and the behavioral effects of these monoamines by drug injection in the primitive eusocial bumble bee, Bombus ignitus. The levels of dopamine and its precursors in the brain peaked at the late pupal stage, but the dopamine peak extended to adult emergence. The tyramine and octopamine levels increased from the mid-pupal to adult stages. The locomotor and flight activities, and light preference increased with age. Injection of octopamine and its receptor antagonist had significant effects on the locomotor and flight activities, whereas dopamine injection did not, indicating that these activities can be regulated by the octopaminergic system. We also determined the dynamics of dopamine-related substances in honey bee (Apis mellifera) drones. The changes in the dopamine level in the brains of honey bee drones exhibited two peaks from the pupal to adult stages, whereas the bumble bee males had only one peak. These are consistent with the behavioral functions of dopamine in honey bee drones and ineffectiveness of dopamine injection at the adult stage in bumble bee males.


Subject(s)
Dopamine , Octopamine , Male , Animals , Bees , Octopamine/pharmacology , Dopamine/pharmacology , Biogenic Amines , Tyramine/pharmacology , Brain
14.
Nutrients ; 14(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35956295

ABSTRACT

Dietary amines have been the subject of a novel interest in nutrition since the discovery of trace amine-associated receptors (TAARs), especially TAAR-1, which recognizes tyramine, phenethylamine, tryptamine, octopamine, N-methyltyramine (NMT), synephrine, amphetamine and related derivatives. Alongside the psychostimulant properties of TAAR-1 ligands, it is their ephedrine-like action on weight loss that drives their current consumption via dietary supplements advertised for 'fat-burning' properties. Among these trace amines, tyramine has recently been described, at high doses, to exhibit an antilipolytic action and activation of glucose transport in human adipocytes, i.e., effects that are facilitating lipid storage rather than mobilization. Because of its close structural similarity to tyramine, NMT actions on human adipocytes therefore must to be reevaluated. To this aim, we studied the lipolytic and antilipolytic properties of NMT together with its interplay with insulin stimulation of glucose transport along with amine oxidase activities in adipose cells obtained from women undergoing abdominal surgery. NMT activated 2-deoxyglucose uptake when incubated with freshly isolated adipocytes at 0.01-1 mM, reaching one-third of the maximal stimulation by insulin. However, when combined with insulin, NMT limited by half the action of the lipogenic hormone on glucose transport. The NMT-induced stimulation of hexose uptake was sensitive to inhibitors of monoamine oxidases (MAO) and of semicarbazide-sensitive amine oxidase (SSAO), as was the case for tyramine and benzylamine. All three amines inhibited isoprenaline-induced lipolysis to a greater extent than insulin, while they were poorly lipolytic on their own. All three amines-but not isoprenaline-interacted with MAO or SSAO. Due to these multiple effects on human adipocytes, NMT cannot be considered as a direct lipolytic agent, potentially able to improve lipid mobilization and fat oxidation in consumers of NMT-containing dietary supplements.


Subject(s)
Amine Oxidase (Copper-Containing) , p-Hydroxyamphetamine , Adipocytes , Amine Oxidase (Copper-Containing)/metabolism , Female , Glucose/metabolism , Humans , Insulin/metabolism , Monoamine Oxidase/metabolism , Tyramine/analogs & derivatives , Tyramine/metabolism , Tyramine/pharmacology , p-Hydroxyamphetamine/metabolism , p-Hydroxyamphetamine/pharmacology
15.
J. physiol. biochem ; 78(2): 543-556, May. 2022.
Article in English | IBECS | ID: ibc-215980

ABSTRACT

Among the dietary amines present in foods and beverages, tyramine has been widely studied since its excessive ingestion can cause catecholamine release and hypertensive crisis. However, tyramine exerts other actions than depleting nerve endings: it activates subtypes of trace amine associated receptors (TAARs) and is oxidized by monoamine oxidases (MAO). Although we have recently described that tyramine is antilipolytic in human adipocytes, no clear evidence has been reported about its effects on glucose transport in the same cell model, while tyramine mimics various insulin-like effects in rodent fat cells, such as activation of glucose transport, lipogenesis, and adipogenesis. Our aim was therefore to characterize the effects of tyramine on glucose transport in human adipocytes. The uptake of the non-metabolizable analogue 2-deoxyglucose (2-DG) was explored in adipocytes from human subcutaneous abdominal adipose tissue obtained from women undergoing reconstructive surgery. Human insulin used as reference agent multiplied by three times the basal 2-DG uptake. Tyramine was ineffective from 0.01 to 10 µM and stimulatory at 100 µM-1 mM, without reaching the maximal effect of insulin. This partial insulin-like effect was not improved by vanadium and was impaired by MAO-A and MAO-B inhibitors. Contrarily to benzylamine, mainly oxidized by semicarbazide-sensitive amine oxidase (SSAO), tyramine activation of glucose transport was not inhibited by semicarbazide. Tyramine effect was not dependent on the Gi-coupled receptor activation but was impaired by antioxidants and reproduced by hydrogen peroxide. In all, the oxidation of high doses of tyramine, already reported to inhibit lipolysis in human fat cells, also partially mimic another effect of insulin in these cells, the glucose uptake activation. Thus, other MAO substrates are potentially able to modulate carbohydrate metabolism. (AU)


Subject(s)
Humans , Female , Tyramine/pharmacology , Amine Oxidase (Copper-Containing) , Adipocytes/metabolism , Glucose/metabolism , Insulin/metabolism , Monoamine Oxidase
16.
Bioorg Med Chem Lett ; 67: 128746, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35447344

ABSTRACT

Monoamine oxidase B (MAO-B) inhibitors are established therapy for Parkinson's disease and act, in part, by blocking the MAO-catalysed metabolism of dopamine in the brain. Two propargylamine-containing MAO-B inhibitors, selegiline [(R)-deprenyl] and rasagiline, are currently used in the clinic for this purpose. These compounds are mechanism-based inactivators and, after oxidative activation, form covalent adducts with the FAD co-factor. An important consideration is that selegiline and rasagiline display specificity for MAO-B over the MAO-A isoform thus reducing the risk of tyramine-induced changes in blood-pressure. In the interest of discovering new propargylamine MAO inhibitors, the present study synthesises racemic N-propargylamine-2-aminotetralin (2-PAT), a compound that may be considered as both a six-membered ring analogue of rasagiline and a semi-rigid N-desmethyl ring-closed analogue of selegiline. The in vitro human MAO inhibition properties of this compound were measured and the results showed that 2-PAT is a 20-fold more potent inhibitor of MAO-A (IC50 = 0.721 µM) compared to MAO-B (IC50 = 14.6 µM). Interestingly, dialysis studies found that 2-PAT is a reversible MAO-A inhibitor, while acting as an inactivator of MAO-B. Since reversible MAO-A inhibitors are much less liable to potentiate tyramine-induced side effects than MAO-A inactivators, it is reasonable to suggest that 2-PAT could be a useful and safe therapeutic agent for disorders such as Parkinson's disease and depression.


Subject(s)
Parkinson Disease , Selegiline , Humans , Indans/pharmacology , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/therapeutic use , Pargyline/analogs & derivatives , Parkinson Disease/drug therapy , Propylamines , Selegiline/pharmacology , Tetrahydronaphthalenes , Tyramine/pharmacology
17.
Med Sci Sports Exerc ; 54(9): 1417-1427, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35420578

ABSTRACT

INTRODUCTION: Regular exercise training reduces arterial blood pressure, but the underlying mechanisms are unclear. Here, we evaluated the potential involvement of pannexin 1, an ATP releasing channel, in the blood pressure-reducing effect of training. METHODS: Middle-age men, 13 normotensive and 14 nonmedicated stage 1 hypertensive, completed 8 wk of intensive aerobic cycle training. Before and after training, blood pressure and changes in leg vascular conductance, induced by femoral arterial infusion of tyramine (induces endogenous noradrenaline release), acetylcholine, or sodium nitroprusside, were measured during control conditions and after acute pannexin 1 inhibition by probenecid. A skeletal muscle biopsy was obtained from the thigh, pre- and posttraining. RESULTS: Exercise training reduced mean systolic and diastolic blood pressure by ~5 ( P = 0.013) and 5 mm Hg ( P < 0.001), respectively, in the hypertensive group only. The reduction in blood pressure was not related to changes in pannexin 1 function because mean arterial blood pressure and tyramine-induced vasoconstriction remain unaltered by pannexin 1 inhibition after training in both groups. After training, pannexin 1 inhibition enhanced leg vascular conductance in the normo- and hypertensive groups at baseline (41.5%, P = 0.0036, and 37.7%, P = 0.024, respectively) and in response to sodium nitroprusside infusion (275%, P = 0.038, and 188%, P = 0.038, respectively). Training did not alter the pannexin 1 protein expression in skeletal muscle. Training enhanced the vasodilator response to acetylcholine infusion and increased the expression of microvascular function-relevant proteins. CONCLUSIONS: The exercise training-induced lowering of arterial blood pressure in nonmedicated hypertensive men does not involve an altered function of pannexin 1.


Subject(s)
Hypertension , Vasodilation , Acetylcholine/pharmacology , Arterial Pressure , Essential Hypertension , Exercise/physiology , Humans , Male , Middle Aged , Nitroprusside/pharmacology , Tyramine/pharmacology , Vasodilation/physiology
18.
Hypertension ; 79(5): 1132-1143, 2022 05.
Article in English | MEDLINE | ID: mdl-35291811

ABSTRACT

BACKGROUND: In preclinical models, the pannexin-1 channel has been shown to be involved in blood pressure regulation through an effect on peripheral vascular resistance. Pannexin-1 releases ATP, which can activate constrictive purinergic receptors on the smooth muscle cells. Pannexin-1 opening is proposed to be mediated by α-adrenergic receptors to potentiate sympathetic constriction. This positions pannexin-1 as a putative pharmacological target in blood pressure regulation in humans. The aim was to provide the first translational evidence for a role of pannexin-1 in essential hypertension in humans by use of an advanced invasive mechanistic approach. METHODS: Middle-aged stage-1 hypertensive (n=13; 135.7±6.4 over 83.7±3.7 mm Hg) and normotensive men (n=12; 117.3±5.7 over 72.2±3.5 mm Hg) were included. Blood pressure and leg vascular resistance were determined during femoral arterial infusion of tyramine (α-adrenergic receptor stimulation), sodium nitroprusside, and acetylcholine. Measurements were made during control conditions and with pannexin-1 blockade (3000 mg probenecid). Expression of Pannexin-1, purinergic- and α-adrenergic receptors in skeletal muscle biopsies was determined by Western blot. RESULTS: The changes in leg vascular resistance in response to tyramine (+289% versus +222%), sodium nitroprusside (-82% versus -78%) and acetylcholine (-40% versus -44%) infusion were not different between the 2 groups (P>0.05) and pannexin-1 blockade did not alter these variables (P>0.05). Expression of pannexin-1 and of purinergic- and α-adrenergic receptors was not different between the 2 groups (P>0.05). CONCLUSIONS: Contrary to our hypothesis, the data demonstrate that pannexin-1 does not contribute to the elevated blood pressure in essential hypertension, a finding, which also opposes that reported in preclinical models.


Subject(s)
Acetylcholine , Hypertension , Acetylcholine/pharmacology , Connexins , Essential Hypertension , Humans , Male , Middle Aged , Nerve Tissue Proteins , Nitroprusside/pharmacology , Receptors, Adrenergic, alpha/physiology , Tyramine/pharmacology
19.
J Physiol Biochem ; 78(2): 543-556, 2022 May.
Article in English | MEDLINE | ID: mdl-35066863

ABSTRACT

Among the dietary amines present in foods and beverages, tyramine has been widely studied since its excessive ingestion can cause catecholamine release and hypertensive crisis. However, tyramine exerts other actions than depleting nerve endings: it activates subtypes of trace amine associated receptors (TAARs) and is oxidized by monoamine oxidases (MAO). Although we have recently described that tyramine is antilipolytic in human adipocytes, no clear evidence has been reported about its effects on glucose transport in the same cell model, while tyramine mimics various insulin-like effects in rodent fat cells, such as activation of glucose transport, lipogenesis, and adipogenesis. Our aim was therefore to characterize the effects of tyramine on glucose transport in human adipocytes. The uptake of the non-metabolizable analogue 2-deoxyglucose (2-DG) was explored in adipocytes from human subcutaneous abdominal adipose tissue obtained from women undergoing reconstructive surgery. Human insulin used as reference agent multiplied by three times the basal 2-DG uptake. Tyramine was ineffective from 0.01 to 10 µM and stimulatory at 100 µM-1 mM, without reaching the maximal effect of insulin. This partial insulin-like effect was not improved by vanadium and was impaired by MAO-A and MAO-B inhibitors. Contrarily to benzylamine, mainly oxidized by semicarbazide-sensitive amine oxidase (SSAO), tyramine activation of glucose transport was not inhibited by semicarbazide. Tyramine effect was not dependent on the Gi-coupled receptor activation but was impaired by antioxidants and reproduced by hydrogen peroxide. In all, the oxidation of high doses of tyramine, already reported to inhibit lipolysis in human fat cells, also partially mimic another effect of insulin in these cells, the glucose uptake activation. Thus, other MAO substrates are potentially able to modulate carbohydrate metabolism.


Subject(s)
Amine Oxidase (Copper-Containing) , Tyramine , Adipocytes/metabolism , Female , Glucose/metabolism , Humans , Insulin/metabolism , Monoamine Oxidase/metabolism , Tyramine/pharmacology
20.
Gastroenterology ; 162(1): 150-165, 2022 01.
Article in English | MEDLINE | ID: mdl-34536451

ABSTRACT

BACKGROUND & AIMS: G protein-coupled receptor (GPR) 120 has been implicated in regulating metabolic syndromes with anti-inflammatory function. However, the role of GPR120 in intestinal inflammation is unknown. Here, we investigated whether and how GPR120 regulates CD4+ T cell function to inhibit colitis development. METHODS: Dextran sodium sulfate (DSS)-induced colitis model, Citrobacter rodentium infection model, and CD4+ T cell adoptive transfer model were used to analyze the role of GPR120 in regulating colitis development. The effect of GPR120 on CD4+ T cell functions was analyzed by RNA sequencing, flow cytometry, and Seahorse metabolic assays. Mice were administered GPR120 agonist for investigating the potential of GPR120 agonist in preventing and treating colitis. RESULTS: Deficiency of GPR120 in CD4+ T cells resulted in more severe colitis in mice upon dextran sodium sulfate insult and enteric infection. Transfer of GPR120-deficient CD4+CD45Rbhi T cells induced more severe colitis in Rag-/- mice with lower intestinal interleukin (IL) 10+CD4+ T cells. Treatment with the GPR120 agonist CpdA promoted CD4+ T cell production of IL10 by up-regulating Blimp1 and enhancing glycolysis, which was regulated by mTOR. GPR120 agonist-treated wild-type, but not IL10-deficient and Blimp1-deficient, T helper 1 cells induced less severe colitis. Furthermore, oral administration of GPR120 agonist protected mice from intestinal inflammation in both prevention and treatment schemes. Gpr120 expression was positively correlated with Il10 expression in the human colonic mucosa, including patients with inflammatory bowel diseases. CONCLUSIONS: Our findings show the role of GPR120 in regulating intestinal CD4+ T cell production of IL10 to inhibit colitis development, which identifies GPR120 as a potential therapeutic target for treating inflammatory bowel diseases.


Subject(s)
Acetates/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , CD4-Positive T-Lymphocytes/drug effects , Colitis/prevention & control , Colon/drug effects , Interleukin-10/metabolism , Receptors, G-Protein-Coupled/agonists , Tyramine/analogs & derivatives , Adoptive Transfer , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/transplantation , Case-Control Studies , Colitis/immunology , Colitis/metabolism , Colitis, Ulcerative/immunology , Colitis, Ulcerative/metabolism , Colon/immunology , Colon/metabolism , Crohn Disease/immunology , Crohn Disease/metabolism , Disease Models, Animal , Glycolysis/drug effects , Interleukin-10/genetics , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Tyramine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL