Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Int J Mol Sci ; 25(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062874

ABSTRACT

To analyze the mechanism of copper accumulation in the marine alga Ulva compressa, it was cultivated with 10 µM of copper, with 10 µM of copper and increasing concentrations of a sulfide donor (NaHS) for 0 to 7 days, and with 10 µM of copper and a concentration of the sulfide acceptor (hypotaurine) for 5 days. The level of intracellular copper was determined as well as the level of glutathione (GSH) and phytochelatins (PCs) and the expression of metallothioneins (UcMTs). The level of intracellular copper in the algae treated with copper increased at day 1, slightly increased until day 5 and remained unchanged until day 7. The level of copper in the algae cultivated with copper and 100 or 200 µM of NaHS continuously increased until day 7 and the copper level was higher in the algae cultivated with 200 µM of NaHS compared to 100 µM of NaHS. In contrast, the level of intracellular copper decreased in the algae treated with copper and hypotaurine. The level of intracellular copper did not correlate with the level of GSH or with the expression of UcMTs, and PCs were not detected in response to copper, or copper and NaHS. Algae treated with copper and with copper and 200 µM of NaHS for 5 days were visualized by TEM and the elemental composition of electrondense particles was analyzed by EDXS. The algae treated with copper showed electrondense particles containing copper and sulfur, but not nitrogen, and they were mainly located in the chloroplast, but also in the cytoplasm. The algae treated with copper and NaHS showed a higher level of electrondense particles containing copper and sulfur, but not nitrogen, and they were located in the chloroplast, and in the cytoplasm. Thus, copper is accumulated as copper sulfide insoluble particles, and not bound to GSH, PCs or UcMTs, in the marine alga U. compressa.


Subject(s)
Copper , Glutathione , Metallothionein , Phytochelatins , Sulfides , Ulva , Copper/metabolism , Ulva/metabolism , Ulva/drug effects , Phytochelatins/metabolism , Glutathione/metabolism , Metallothionein/metabolism , Sulfides/metabolism , Taurine/analogs & derivatives
2.
Braz. j. biol ; 69(3): 969-977, Aug. 2009. tab
Article in English | LILACS | ID: lil-527168

ABSTRACT

This work aims to assess the potential of the green seaweed Ulva fasciata Delile as an alternative source of dietary fibre (DF). Total DF content was determined, some of its physico-chemical properties described and the physiological effects of U. fasciata meal on rats fed a hypercholesterolemic diet were investigated. U. fasciata may be considered a potential alternative source of DF with a total content of about 400 g.kg-1 (dry basis) and interesting physico-chemical properties: water retention capacity of 8.74 g/water.g-1 dry sample (seaweed meal) and 0.90 (seaweed carbohydrate extract), lipid adsorption capacity of 4.52 g/oil.g-1 dry sample (seaweed meal) and 5.70 (seaweed carbohydrate extract), intrinsic viscosity of 2.4 dl.g-1 (seaweed carbohydrate extract) and cation exchange capacity of 3.51 Eq.kg-1 (seaweed carbohydrate extract). The diet containing seaweed meal was able to keep rats' total cholesterol (TC) down without causing any undesirable increase in LDL-C fraction. No evidence of toxic and/or antinutritional components in the seaweed meal was detected. Rats showed a fecal volume much greater (13 g) than that fed on cellulose diet ( 7 g) (p < 0.05). These properties confer on the seaweed the potential to be used in food technology for the acquisition of low-calorie food and might be important in body weight control, reduction of blood TC and LDL-C as well as in prevention of gastrointestinal diseases.


Este trabalho objetivou avaliar o potencial da alga marinha verde Ulva fasciata Delile como fonte alternativa de fibra alimentar. Foram realizadas a determinação do teor de fibra alimentar total e a descrição de algumas propriedades físico-químicas, e os efeitos fisiológicos da farinha da alga seca sobre ratos alimentados com dieta hipercolesterolemizante foram investigados. Esta alga pode ser considerada uma fonte alternativa potencial de fibra com cerca de 400 g.kg-1 (base seca) e propriedades físico-químicas interessantes: uma capacidade de retenção de água de 8,74 g/água.g-1 de amostra seca (farinha de alga) e 0,90 (extrato de carboidratos), uma capacidade de adsorção de lipídeos de 4,52 g/óleo.g-1 de amostra seca (farinha de alga) e 5,70 (extrato de carboidratos), uma viscosidade intrínseca de 2,4 dl.g-1 (extrato de carboidrato da alga) e capacidade de troca iônica de 3,51 Eq.kg-1 (extrato de carboidrato). A dieta contendo farinha de alga foi capaz de manter baixos os níveis de colesterol total de ratos sem causar aumento indesejável na fração LDL-C. Nenhuma evidência de componentes tóxicos e/ou antinutricionais na farinha de alga foi encontrada. Os ratos mostraram um volume fecal maior (13 g) do que aqueles alimentados com dieta contendo celulose como fonte de fibra (7 g) (p < 0,05). Essas propriedades conferem a alga o potencial de ser utilizada na tecnologia de alimentos para a aquisição de alimentos de baixas calorias, podendo ser importante para o controle do peso corporal, redução do colesterol sanguíneo total e da fração LDL-C, como também na prevenção de doenças gastrintestinais.


Subject(s)
Animals , Rats , Dietary Fiber/metabolism , Hypercholesterolemia/diet therapy , Lipids/blood , Seaweed/chemistry , Ulva/chemistry , Cholesterol, Dietary/administration & dosage , Dietary Fiber/analysis , Dietary Fiber/therapeutic use , Feces , Seaweed/metabolism , Seaweed/physiology , Ulva/metabolism , Ulva/physiology
3.
Electron. j. biotechnol ; 7(1): 47-54, Apr. 2004. ilus, tab
Article in English | LILACS | ID: lil-363998

ABSTRACT

The batch removal of copper (II) ions from aqueous solution under different experimental conditions using Ulva reticulata was investigated in this study. The copper (II) uptake was dependent on initial pH and initial copper concentration, with pH 5.5 being the optimum value. The equilibrium data were fitted using Langmuir and Freundlich isotherm model, with the maximum copper (II) uptake of 74.63 mg/g determined at a pH of 5.5. The Freundlich model regression resulted in high correlation coefficients and the model parameters were largely dependent on initial solution pH. At various initial copper (II) concentrations (250 to 1000 mg/L), sorption equilibrium was attained between 30 and 120 min. The copper (II) uptake by U. reticulata was best described by Pseudo-second order rate model and the rate constant, the initial sorption rate and the equilibrium sorption capacity were also reported. The elution efficiency for copper-desorption from U. reticulata was determined for 0.1 M HCl, H2SO4, HNO3 and CaCl2 at various Solid-to-Liquid ratios (S/L). The solution CaCl2 (0.1 M) in HCl at pH 3 was chosen to be the most suitable copper-desorbing agent. The biomass was also employed in three sorption-desorption cycles with 0.1 M CaCl2 (in HCl, pH 3) as the elutant.


Subject(s)
Copper/metabolism , Ulva/metabolism , Adsorption , Biodegradation, Environmental , Biomass , Hydrogen-Ion Concentration , Kinetics , Models, Biological , Metals, Heavy/metabolism , Water Purification/methods , Solvents , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL