Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Science ; 383(6684): eadi3332, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38359126

ABSTRACT

The identification of mechanisms to store glucose carbon in the form of glycogen rather than fat in hepatocytes has important implications for the prevention of nonalcoholic fatty liver disease (NAFLD) and other chronic metabolic diseases. In this work, we show that glycogenesis uses its intermediate metabolite uridine diphosphate glucose (UDPG) to antagonize lipogenesis, thus steering both mouse and human hepatocytes toward storing glucose carbon as glycogen. The underlying mechanism involves transport of UDPG to the Golgi apparatus, where it binds to site-1 protease (S1P) and inhibits S1P-mediated cleavage of sterol regulatory element-binding proteins (SREBPs), thereby inhibiting lipogenesis in hepatocytes. Consistent with this mechanism, UDPG administration is effective at treating NAFLD in a mouse model and human organoids. These findings indicate a potential opportunity to ameliorate disordered fat metabolism in the liver.


Subject(s)
Lipogenesis , Liver Glycogen , Liver , Non-alcoholic Fatty Liver Disease , Proprotein Convertases , Serine Endopeptidases , Uridine Diphosphate Glucose , Animals , Humans , Mice , Carbon/metabolism , Glucose/metabolism , Hepatocytes/metabolism , Liver/metabolism , Liver Glycogen/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Proprotein Convertases/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Uridine Diphosphate Glucose/administration & dosage , Uridine Diphosphate Glucose/metabolism , Male , Mice, Inbred C57BL , HEK293 Cells
2.
Vascul Pharmacol ; 103-105: 36-46, 2018 04.
Article in English | MEDLINE | ID: mdl-29253618

ABSTRACT

AIMS: UDP-sugars can act as extracellular signalling molecules, but relatively little is known about their cardiovascular actions. The P2Y14 receptor is a Gi/o-coupled receptor which is activated by UDP-glucose and related sugar nucleotides. In this study we sought to investigate whether P2Y14 receptors are functionally expressed in the porcine coronary artery using a selective P2Y14 receptor agonist, MRS2690, and a novel selective P2Y14 receptor antagonist, PPTN (4,7-disubstituted naphthoic acid derivative). METHODS AND RESULTS: Isometric tension recordings were used to evaluate the effects of UDP-sugars in porcine isolated coronary artery segments. The effects of the P2 receptor antagonists suramin and PPADS, the P2Y14 receptor antagonist PPTN, and the P2Y6 receptor antagonist MRS2578, were investigated. Measurement of vasodilator-stimulated phosphoprotein (VASP) phosphorylation using flow cytometry was used to assess changes in cAMP levels. UDP-glucose, UDP-glucuronic acid UDP-N-acetylglucosamine (P2Y14 receptor agonists), elicited concentration-dependent contractions of the porcine coronary artery. MRS2690 was a more potent vasoconstrictor than the UDP-sugars. Concentration dependent contractile responses to MRS2690 and UDP-sugars were enhanced in the presence of forskolin (activator of cAMP), where the level of basal tone was maintained by addition of U46619, a thromboxane A2 mimetic. Contractile responses to MRS2690 were blocked by PPTN, but not by MRS2578. Contractile responses to UDP-glucose were also attenuated by PPTN and suramin, but not by MRS2578. Forskolin-induced VASP-phosphorylation was reduced in porcine coronary arteries exposed to UDP-glucose and MRS2690, consistent with P2Y14 receptor coupling to Gi/o proteins and inhibition of adenylyl cyclase activity. CONCLUSIONS: Our data support a role of UDP-sugars as extracellular signalling molecules and show for the first time that they mediate contraction of porcine coronary arteries via P2Y14 receptors.


Subject(s)
Coronary Vessels/metabolism , Receptors, Purinergic P2/metabolism , Uridine Diphosphate Sugars/metabolism , Vasoconstriction/physiology , Adult , Animals , Colforsin/pharmacology , Female , Humans , Isothiocyanates/pharmacology , Male , Receptors, Purinergic P2/drug effects , Signal Transduction/physiology , Swine , Thiourea/analogs & derivatives , Thiourea/pharmacology , Uridine Diphosphate Glucose/administration & dosage , Uridine Diphosphate Glucose/analogs & derivatives , Uridine Diphosphate Glucose/metabolism , Uridine Diphosphate Glucose/pharmacology , Vasoconstrictor Agents/pharmacology
3.
Neuroscience ; 284: 444-458, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25453769

ABSTRACT

Periventricular leukomalacia (PVL) is one of the foremost neurological conditions leading to long-term abnormalities in premature infants. Since it is difficult to prevent initiation of this damage in utero, promoting the innate regenerative potential of the brain after birth may provide a more feasible, prospective therapy for PVL. Treatment with UDP-glucose (UDPG), an endogenous agonist of G protein-coupled receptor 17 (GPR17) that may enhance endogenous self-repair potentiality, glial cell line-derived neurotrophic factor (GDNF), a neurotrophic factor associated with the growth and survival of nerve cells, and memantine, a noncompetitive antagonist of N-methyl-d-aspartate (NMDA) receptors that block ischemia-induced glutamate signal transduction, has been reported to achieve functional, neurological improvement in neonatal rats with PVL. The aim of the present study was to further explore whether UDPG, GDNF and/or memantine could promote corresponding self-repair of the subventricular zone (SVZ) and white matter (WM) in neonatal rats with ischemia-induced PVL. SVZ or WM tissue samples and cultured glial progenitor cells derived from a 5 day-old neonatal rat model of PVL were utilized for studying response to UDPG, GDNF and memantine in vivo and in vitro, respectively. Labeling with 5'-bromo-2'-deoxyuridine and immunofluorescent cell lineage markers after hypoxia-ischemia or oxygen-glucose deprivation (OGD) revealed that UDPG, GDNF and memantine each significantly increased glial progenitor cells and preoligodendrocytes (preOLs), as well as more differentiated immature and mature oligodendrocyte (OL), in both the SVZ and WM in vivo or in vitro. SVZ and WM glial cell apoptosis was also significantly reduced by UDPG, GDNF or memantine, both in vivo and in vitro. These results indicated that UDPG, GDNF or memantine may promote endogenous self-repair by stimulating proliferation of glial progenitor cells derived from both the SVZ and WM, activating their differentiation into more mature OLs, and raising the survival rate of these newly generated glial cells in neonatal rats with ischemic PVL.


Subject(s)
Brain Ischemia/drug therapy , Leukomalacia, Periventricular/drug therapy , Neuroglia/drug effects , Neuroprotective Agents/administration & dosage , Stem Cell Niche/drug effects , White Matter/drug effects , Animals , Animals, Newborn , Brain/drug effects , Brain/pathology , Brain/physiopathology , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Cell Hypoxia/drug effects , Cell Hypoxia/physiology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Disease Models, Animal , Glial Cell Line-Derived Neurotrophic Factor/administration & dosage , Glucose/deficiency , Leukomalacia, Periventricular/pathology , Leukomalacia, Periventricular/physiopathology , Memantine/administration & dosage , Neural Stem Cells/drug effects , Neural Stem Cells/pathology , Neural Stem Cells/physiology , Neurogenesis/drug effects , Neurogenesis/physiology , Neuroglia/pathology , Neuroglia/physiology , Random Allocation , Rats, Inbred SHR , Stem Cell Niche/physiology , Uridine Diphosphate Glucose/administration & dosage , White Matter/pathology , White Matter/physiopathology
4.
Zhongguo Dang Dai Er Ke Za Zhi ; 14(12): 964-70, 2012 Dec.
Article in Chinese | MEDLINE | ID: mdl-23234788

ABSTRACT

OBJECTIVE: To evaluate pathologically the effect of the single or combined application of UDP-glucose, GDNF and memantine on the improvement of white matter injury in neonatal rats with periventricular leukomalacia (PVL) under light and electron microscopy. METHODS: A five-day-old neonatal rat model for PVL was established by ligation of the lateral common carotid artery following 120-minute hypoxia. Rats were randomly divided into six groups (30 rats in each group): sham-operated, PVL, UDP-glucose (UDP-glucose 2000 mg/kg intraperitoneally after PVL), GDNF (GDNF 100 µg/kg intracerebrally after PVL), tmemantine (memantine 20 mg/kg intraperitoneally after PVL), and a combination administration of three drugs (UDP-glucose, GDNF and memantine). The rats were sacrificed 7 or 21 days after PVL for assessment of pathological changes in the white matter under both light and electron microscopy. The number and thickness of the myelin sheath in the white matter were measured under electron microscopy, and both of pathological grading and scoring were undertaken under light microscopy. RESULTS: There was rare and sparse myelinogenesis with a loose arrangement of nerve fibers in the white matter under electron microscopy in the PVL group at 7 and 21 days after PVL. The number and thickness of the myelin sheath in the PVL group were significantly less than in the sham-operated, UDP-glucose, GDNF, memantine and combination administration groups (P<0.01). The results of pathological grading of white matter under light microscopy showed that all rats in the PVL group manifested either mild injury (38%-50%) or severe injury (50%-62%) at 7 and 21 days after PVL. The majority of rats (50%-88%) in the four drug administration groups had normal white matter at 7 and 21 days after PVL. The pathological scores at 7 and 21 days after PVL in the PVL group were the highest, and they were significantly higher than in the other five groups (P<0.05). CONCLUSIONS: The single or combined application of UDP-glucose, GDNF and memantine may significantly improve pathological changes in the white matter of rats with PVL. The favorable effect is inferred to be closely correlated with the improvement of brain microenvironment and the enhancement of nerve regeneration promoted by the three drugs.


Subject(s)
Brain Ischemia/drug therapy , Glial Cell Line-Derived Neurotrophic Factor/therapeutic use , Leukomalacia, Periventricular/drug therapy , Memantine/therapeutic use , Uridine Diphosphate Glucose/therapeutic use , Animals , Brain Ischemia/pathology , Cerebral Ventricles/pathology , Cerebral Ventricles/ultrastructure , Female , Glial Cell Line-Derived Neurotrophic Factor/administration & dosage , Humans , Infant, Newborn , Male , Memantine/administration & dosage , Microscopy, Electron , Rats , Rats, Sprague-Dawley , Uridine Diphosphate Glucose/administration & dosage
5.
Brain Res ; 1486: 112-20, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-23022311

ABSTRACT

The therapeutic effects of UDP-glucose (UDPG), an endogenous agonist of GPR17 that may promote the self-repair of white matter, glial cell line-derived neurotrophic factor (GDNF), a neurotrophic factor correlated with the growth and survival of nerve cells, and memantine, an antagonist of NMDA receptors, were evaluated for functional improvement of neonatal rats with experimental periventricular leukomalacia (PVL). Five day-old neonatal rat pups were subjected to an ischemia-induced model of PVL. The pups were then randomly divided into sham, PVL, PVL plus UDPG, PVL plus GDNF, and PVL plus memantine groups. All pups were weighed and the age at first eye opening recorded. Pathological changes and myelin sheath formation in the white matter were assessed under both light and electron microscopy on day 7 and 21 after induction of PVL. Values of escape latency (EL) and swimming distance (SD) in Morris water maze test, and the modified inclined plane scores in Rivlin inclined plane test were recorded for rats on day 26. Pups in the PVL group were found to be significantly lower in weight (p<0.05), delayed in age at first eye opening (p<0.01), and impaired in their inclined plane (p<0.01) and Morris water maze (p<0.01) performance compared with those in the sham, UDPG, GDNF and memantine groups. Histopathological grading of the white matter classified all pups in the PVL group with significantly more severe injury (p<0.01), and the number and thickness of their myelin sheaths were significantly less (p<0.01), compared to the UDPG, GDNF, memantine, or sham groups. These results indicate that treatment with UDPG, GDNF, and memantine may significantly improve long-term prognosis in neonatal rats with cerebral white matter injury, characteristic of PVL.


Subject(s)
Cerebrovascular Disorders/drug therapy , Glial Cell Line-Derived Neurotrophic Factor/administration & dosage , Memantine/administration & dosage , Uridine Diphosphate Glucose/administration & dosage , Animals , Animals, Newborn , Cerebral Ventricles/drug effects , Cerebral Ventricles/pathology , Cerebrovascular Disorders/diagnosis , Cerebrovascular Disorders/pathology , Drug Therapy, Combination , Maze Learning/drug effects , Maze Learning/physiology , Nerve Fibers, Myelinated/drug effects , Nerve Fibers, Myelinated/pathology , Prognosis , Random Allocation , Rats , Rats, Sprague-Dawley , Time Factors , Treatment Outcome
6.
Oncology ; 62(4): 363-70, 2002.
Article in English | MEDLINE | ID: mdl-12138245

ABSTRACT

5-Fluorouracil (5FU) shows a steep dose response curve in several experimental systems, but the clinical use of high doses is hampered by the toxic side effects of this drug. Uridine diphosphoglucose (UDPG) rescue allows an increase in the maximum tolerated dose of 5FU in mice from 100 (FU(100)) to 150 mg/kg (5FU(150)+UDPG) and the higher dose is more effective than the standard treatment against several tumors. In the present paper we report on the effect of high-dose 5FU on thymidylate synthase (TS) levels and on 5FU incorporation into RNA. In the resistant murine tumor (Colon 26A) high-dose 5FU inhibited TS catalytic activity 8 h after treatment (4-fold; p = 0.00041) and the inhibition persisted until day 3 (p < 10(-4)). Standard-dose 5FU did not significantly inhibit TS activity. In a relatively sensitive tumor (Colon 26-10), there was no difference in the initial extent of TS inhibition by the two 5FU doses, but TS was still inhibited (2-fold) on day 3 after (5FU(150)+UDPG) while it was within the normal range after 5FU(100). In both tumor types TS activity showed an impressive rebound (3-fold) on days 3-7, and this occurred after both 5FU doses. In Colon 26A, however, a new 5FU injection on day 7 was still able to inhibit TS but not as effectively as the first dose. 5FU incorporation into RNA reached similar peak values (8 pmol/microg RNA) after the two 5FU doses, but the clearance was faster in mice receiving UDPG rescue. We conclude that UDPG does not interfere with the extent of TS inhibition by 5FU, but UDPG allows the use of a higher dose of 5FU resulting in enhanced TS inhibition. UDPG, however, increases 5FU clearance from RNA. In this experimental system the inhibition of TS seems essential in order to obtain a good antitumor activity, while 5FU incorporation into RNA does not seem to play a role in the antitumor activity of 5FU. Since preliminary results indicate that UDPG is well tolerated by patients, the use of higher 5FU doses may improve the response rate of human tumors.


Subject(s)
Antimetabolites, Antineoplastic/administration & dosage , Colonic Neoplasms/drug therapy , Fluorouracil/administration & dosage , RNA, Neoplasm/metabolism , Thymidylate Synthase/antagonists & inhibitors , Uridine Diphosphate Glucose/administration & dosage , Animals , Colonic Neoplasms/enzymology , Colonic Neoplasms/genetics , Drug Resistance, Neoplasm , Mice , Mice, Inbred BALB C , Sensitivity and Specificity , Thymidylate Synthase/metabolism
7.
Clin Cancer Res ; 3(2): 309-15, 1997 Feb.
Article in English | MEDLINE | ID: mdl-9815688

ABSTRACT

Uridine diphosphoglucose (UDPG) is a precursor of uridine that can be used as a rescuing agent from 5-fluorouracil (5FU) toxicity. Four doses of UDPG (2000 mg/kg i.p. or p.o. at 2, 6, 24, and 30 h after 5FU bolus) allowed the escalation of a weekly bolus of 5FU from 100 mg/kg (5FU100) to 150 mg/kg (5FU150) in healthy and tumor-bearing BALB/c, C57/BI, and CD8F1 (BALB/c x DBA/8) mice. 5FU150 without rescuing agents is not tolerated by the animals. When followed by UDPG, on the contrary, it is possible to increase the dose of 5FU even when it is modulated by leucovorin. Toxicity was the same for 5FU100 and 5FU150 + UDPG, and the nadir values (expressed as a percentage of pretreatment values) were 83 and 85% for weight, 45 and 45% for hematocrit, and 45 and 61% for leukocytes, respectively. Platelets were not affected by treatment. A protective effect was also shown for the gastrointestinal tract. The enzymes thymidine kinase, maltase, and sucrase were measured in the intestinal mucosa at different times after 5FU treatment with or without UDPG rescue. Even if the nadir values in enzyme activities were similar in mice receiving or not receiving UDPG, the pattern of recovery showed that cell repopulation was more rapid in the group treated with UDPG. 5FU150 + UDPG had enhanced antitumor activity against CD8F1 mammary carcinoma and against the resistant tumor Colon 26 (tumor doubling time 1.9 days for controls, 8.5 days for 5FU100, 13.7 days for 5FU150 + UDPG, and 15.9 days for 5FU150 + leucovorin + UDPG). We demonstrated that UDPG administered at 2, 24, and 30 h after 5FU100 does not reduce the antitumor activity of 5FU in two sensitive tumors (Colon 38 and Colon 26-10). In conclusion, UDPG is a promising rescuing agent for 5FU; it reduces the toxic side effects and increases the therapeutic index.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Fluorouracil/pharmacology , Protective Agents/pharmacology , Uridine Diphosphate Glucose/pharmacology , Animals , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/adverse effects , Antimetabolites, Antineoplastic/blood , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/blood , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colonic Neoplasms/drug therapy , Digestive System/drug effects , Drug Interactions , Drug Screening Assays, Antitumor , Female , Fluorouracil/administration & dosage , Fluorouracil/adverse effects , Fluorouracil/blood , Leukocytes/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Protective Agents/administration & dosage , Uridine Diphosphate Glucose/administration & dosage , Uridine Diphosphate Glucose/blood
10.
Minerva Med ; 67(12): 132-40, 1976 Mar 10.
Article in Italian | MEDLINE | ID: mdl-1256689

ABSTRACT

Experimentation of two i.v. doses of a uridine-5-diphosphoglucose (UDPG) in 30 cases of acute viral hepatitis is reported. The therapeutic efficacy of the drug was assessed on qualitative and quantitative parameters indicative of liver distress. Statistically significant evidence was obtained of the efficacy of UDPG in acute and serious liver disease, and of the greater effectiveness of one of the two doses used. Excellent local and general tolerance was noted.


Subject(s)
Hepatitis A/drug therapy , Uridine Diphosphate Glucose/therapeutic use , Uridine Diphosphate Sugars/therapeutic use , Adolescent , Adult , Aged , Child , Female , Humans , Male , Middle Aged , Uridine Diphosphate Glucose/administration & dosage , Uridine Diphosphate Glucose/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...