Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.875
Filter
1.
Int J Immunopathol Pharmacol ; 38: 3946320241240706, 2024.
Article in English | MEDLINE | ID: mdl-38712735

ABSTRACT

Introduction: Bladder cancer represents a significant public health concern with diverse genetic alterations influencing disease onset, progression, and therapy response. In this study, we explore the multifaceted role of Solute Carrier Family 31 Member 1 (SLC31A1) in bladder cancer, a pivotal gene involved in copper homeostasis. Methods: Our research involved analyzing the SLC31A1 gene expression via RT-qPCR, promoter methylation via targeted bisulfite sequencing, and mutational status via Next Generation Sequencing (NGS) using the clinical samples sourced by the local bladder cancer patients. Later on, The Cancer Genome Atlas (TCGA) datasets were utilized for validation purposes. Moreover, prognostic significance, gene enrichment terms, and therapeutic drugs of SLC31A1 were also explored using KM Plotter, DAVID, and DrugBank databases. Results: We observed that SLC31A1 was significantly up-regulated at both the mRNA and protein levels in bladder cancer tissue samples, suggesting its potential involvement in bladder cancer development and progression. Furthermore, our investigation into the methylation status revealed that SLC31A1 was significantly hypomethylated in bladder cancer tissues, which may contribute to its overexpression. The ROC analysis of the SLC31A1 gene indicated promising diagnostic potential, emphasizing its relevance in distinguishing bladder cancer patients from normal individuals. However, it is crucial to consider other factors such as cancer stage, metastasis, and recurrence for a more accurate evaluation in the clinical context. Interestingly, mutational analysis of SLC31A1 demonstrated only benign mutations, indicating their unknown role in the SLC31A1 disruption. In addition to its diagnostic value, high SLC31A1 expression was associated with poorer overall survival (OS) in bladder cancer patients, shedding light on its prognostic relevance. Gene enrichment analysis indicated that SLC31A1 could influence metabolic and copper-related processes, further underscoring its role in bladder cancer. Lastly, we explored the DrugBank database to identify potential therapeutic agents capable of reducing SLC31A1 expression. Our findings unveiled six important drugs with the potential to target SLC31A1 as a treatment strategy. Conclusion: Our comprehensive investigation highlights SLC31A1 as a promising biomarker for bladder cancer development, progression, and therapy.


Subject(s)
Copper Transporter 1 , DNA Methylation , Disease Progression , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/drug therapy , Copper Transporter 1/genetics , Copper Transporter 1/metabolism , Gene Expression Regulation, Neoplastic , Male , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Promoter Regions, Genetic , Mutation , Middle Aged , Prognosis , Aged , Up-Regulation
2.
Cell Mol Biol Lett ; 29(1): 66, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724931

ABSTRACT

The development of compact CRISPR systems has facilitated delivery but has concurrently reduced gene editing efficiency, thereby limiting the further utilization of CRISPR systems. Enhancing the efficiency of CRISPR systems poses a challenging task and holds significant implications for the advancement of biotechnology. In our work, we report a synthetic dual-antibody system that can stably exist in the intracellular environment, specifically inhibiting the functions of NF-κB and ß-catenin. This not only elevates the transgenic expression of the CRISPR system by suppressing the innate immune response within cells to enhance the gene editing efficiency but also demonstrates a notable tumor inhibitory effect. Based on the specific output expression regulation of CRISPR-CasΦ, we constructed a CRISPR-based gene expression platform, which includes sensor modules for detecting intracellular ß-catenin and NF-κB, as well as an SDA module to enhance overall efficiency. In vitro experiments revealed that the CRISPR-based gene expression platform exhibited superior CDK5 expression inhibition efficiency and specific cytotoxicity towards tumor cells. In vitro experiments, we found that CRISPR-based gene expression platforms can selectively kill bladder cancer cells through T cell-mediated cytotoxicity. Our design holds significant assistant potential of transgene therapy and may offer the capability to treat other diseases requiring transgene therapy.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy , Urinary Bladder Neoplasms/metabolism , Humans , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Gene Editing/methods , beta Catenin/metabolism , beta Catenin/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Gene Expression/genetics , Gene Expression Regulation, Neoplastic , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
3.
Proc Natl Acad Sci U S A ; 121(20): e2312855121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38713626

ABSTRACT

The immune landscape of bladder cancer progression is not fully understood, and effective therapies are lacking in advanced bladder cancer. Here, we visualized that bladder cancer cells recruited neutrophils by secreting interleukin-8 (IL-8); in turn, neutrophils played dual functions in bladder cancer, including hepatocyte growth factor (HGF) release and CCL3highPD-L1high super-immunosuppressive subset formation. Mechanistically, c-Fos was identified as the mediator of HGF up-regulating IL-8 transcription in bladder cancer cells, which was central to the positive feedback of neutrophil recruitment. Clinically, compared with serum IL-8, urine IL-8 was a better biomarker for bladder cancer prognosis and clinical benefit of immune checkpoint blockade (ICB). Additionally, targeting neutrophils or hepatocyte growth factor receptor (MET) signaling combined with ICB inhibited bladder cancer progression and boosted the antitumor effect of CD8+ T cells in mice. These findings reveal the mechanism by which tumor-neutrophil cross talk orchestrates the bladder cancer microenvironment and provide combination strategies, which may have broad impacts on patients suffering from malignancies enriched with neutrophils.


Subject(s)
Disease Progression , Interleukin-8 , Neutrophils , Tumor Microenvironment , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/immunology , Tumor Microenvironment/immunology , Humans , Neutrophils/immunology , Neutrophils/metabolism , Animals , Mice , Interleukin-8/metabolism , Cell Line, Tumor , Hepatocyte Growth Factor/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , B7-H1 Antigen/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Female , Male , Neutrophil Infiltration
4.
J Cell Mol Med ; 28(9): e18342, 2024 May.
Article in English | MEDLINE | ID: mdl-38693852

ABSTRACT

Urothelial carcinoma (UC) urgently requires new therapeutic options. Histone deacetylases (HDAC) are frequently dysregulated in UC and constitute interesting targets for the development of alternative therapy options. Thus, we investigated the effect of the second generation HDAC inhibitor (HDACi) quisinostat in five UC cell lines (UCC) and two normal control cell lines in comparison to romidepsin, a well characterized HDACi which was previously shown to induce cell death and cell cycle arrest. In UCC, quisinostat led to cell cycle alterations, cell death induction and DNA damage, but was well tolerated by normal cells. Combinations of quisinostat with cisplatin or the PARP inhibitor talazoparib led to decrease in cell viability and significant synergistic effect in five UCCs and platinum-resistant sublines allowing dose reduction. Further analyses in UM-UC-3 and J82 at low dose ratio revealed that the mechanisms included cell cycle disturbance, apoptosis induction and DNA damage. These combinations appeared to be well tolerated in normal cells. In conclusion, our results suggest new promising combination regimes for treatment of UC, also in the cisplatin-resistant setting.


Subject(s)
Apoptosis , Histone Deacetylase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors , Urinary Bladder Neoplasms , Humans , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/pharmacology , DNA Damage/drug effects , Drug Synergism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urologic Neoplasms/drug therapy , Urologic Neoplasms/pathology
5.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732087

ABSTRACT

Non-muscle invasive bladder cancer is a common tumour in men and women. In case of resistance to the standard therapeutic agents, gemcitabine can be used as off-label instillation therapy into the bladder. To reduce potential side effects, continuous efforts are made to optimise the therapeutic potential of drugs, thereby reducing the effective dose and consequently the pharmacological burden of the medication. We recently demonstrated that it is possible to significantly increase the therapeutic efficacy of mitomycin C against a bladder carcinoma cell line by exposure to non-toxic doses of blue light (453 nm). In the present study, we investigated whether the therapeutically supportive effect of blue light can be further enhanced by the additional use of the wavelength-specific photosensitiser riboflavin. We found that the gemcitabine-induced cytotoxicity of bladder cancer cell lines (BFTC-905, SW-1710, RT-112) was significantly enhanced by non-toxic doses of blue light in the presence of riboflavin. Enhanced cytotoxicity correlated with decreased levels of mitochondrial ATP synthesis and increased lipid peroxidation was most likely the result of increased oxidative stress. Due to these properties, blue light in combination with riboflavin could represent an effective therapy option with few side effects and increase the success of local treatment of bladder cancer, whereby the dose of the chemotherapeutic agent used and thus the chemical load could be significantly reduced with similar or improved therapeutic success.


Subject(s)
Deoxycytidine , Gemcitabine , Light , Riboflavin , Urinary Bladder Neoplasms , Humans , Riboflavin/pharmacology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Oxidative Stress/drug effects , Cell Survival/drug effects , Cell Survival/radiation effects , Lipid Peroxidation/drug effects , Adenosine Triphosphate/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/radiation effects , Blue Light
6.
Aging (Albany NY) ; 16(8): 6757-6772, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38656882

ABSTRACT

USP15, a pivotal member of the deubiquitinase family, plays a crucial role in orchestrating numerous vital biological processes, including the regulation of NF-κB signaling pathway and deubiquitination of proto-oncogenes. In various cancers, USP15 has been validated to exhibit up-regulated expression, impacting the initiation and progression of cancer. However, its precise mechanism in bladder cancer remains elusive. Our study shed light on the significant overexpression of USP15 in bladder cancer cells compared to normal bladder cells, correlating with a poorer prognosis for bladder cancer patients. Strikingly, attenuation of USP15 expression greatly attenuated the proliferation, migration, and invasion of bladder cancer cells. Moreover, upregulation of USP15 was found to drive cancer progression through the activation of the NF-κB signaling pathway. Notably, USP15 directly deubiquitinates BRCC3, heightening its expression level, and subsequent overexpression of BRCC3 counteracted the antitumoral efficacy of USP15 downregulation. Overall, our findings elucidated the carcinogenic effects of USP15 in bladder cancer, primarily mediated by the excessive activation of the NF-κB signaling pathway, thereby promoting tumor development. These results underscore the potential of USP15 as a promising therapeutic target for bladder cancer in the future.


Subject(s)
Cell Proliferation , Disease Progression , NF-kappa B , Signal Transduction , Ubiquitin-Specific Proteases , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Humans , NF-kappa B/metabolism , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Ubiquitination , Animals
7.
Cell Signal ; 119: 111154, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38565412

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs), which are covalently closed non-coding RNAs, are frequently dysregulated in cancer. However, their precise role in bladder cancer (BCa) remains largely unknown. METHODS: Expression of hsa_circ_0005320 in tissues and cell lines was detected using quantitative real-time PCR. Proliferation and colony forming capacity of BCa cells were assessed using Cell Counting Kit-8, ethynyl-labeled deoxyuridine, and colony formation assays. The cell cycle was analyzed using flow cytometry. Protein expression of insulin-like growth factor II mRNA-binding protein 3 (IGF2BP3) and cyclin dependent kinase 2 (CDK2) was examined using western blots. The binding of RNA and protein was validated using RNA immunoprecipitation. Additionally, xenograft tumor models were established to validate the function of hsa_circ_0005320 in vivo. RESULTS: We screened hsa_circ_0005320 from previous high-throughput sequencing and found that it was highly expressed in BCa tissues and associated with tumor differentiation and depth of invasion in BCa patients. Through functional experiments, we demonstrated that hsa_circ_0005320 promoted cell proliferation and regulated the cell cycle. Mechanistically, hsa_circ_0005320 interacted with and upregulated the expression of IGF2BP3, which binds to and enhances the stability of CDK2 mRNA. Furthermore, knockdown of hsa_circ_0005320 resulted in a reduction in tumor burden in vivo. CONCLUSIONS: Collectively, these findings highlight the pro-oncogenic role of hsa_circ_0005320 in BCa through the IGF2BP3/CDK2 axis, providing valuable insights into the mechanism of circRNAs in tumor progression.


Subject(s)
Cell Cycle , Cell Proliferation , Cyclin-Dependent Kinase 2 , RNA, Circular , RNA-Binding Proteins , Urinary Bladder Neoplasms , Humans , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 2/genetics , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , RNA, Circular/metabolism , RNA, Circular/genetics , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Line, Tumor , Mice , Male , Mice, Nude , Female , Gene Expression Regulation, Neoplastic , Mice, Inbred BALB C , Middle Aged
8.
Cell Signal ; 119: 111164, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583745

ABSTRACT

The development of resistance to cisplatin (CDDP) in bladder cancer presents a notable obstacle, with indications pointing to the substantial role of circular RNAs (circRNAs) in this resistance. Nevertheless, the precise mechanisms through which circRNAs govern resistance are not yet fully understood. Our findings demonstrate that circUGGT2 is significantly upregulated in bladder cancer, facilitating cancer cell migration and invasion. Additionally, our analysis of eighty patient outcomes revealed a negative correlation between circUGGT2 expression levels and prognosis. Using circRNA pull-down assays, mass spectrometry analyses, and RNA Immunoprecipitation (RIP), it was shown that circUGGT2 interacts with the KU heterodimer, consisting of KU70 and KU80. Both KU70 and KU80 are critical components of the non-homologous end joining (NHEJ) pathway, which plays a role in CDDP resistance. Flow cytometry was utilized in this study to illustrate the impact of circUGGT2 on the sensitivity of bladder cancer cell lines to CDDP through its interaction with KU70 and KU80. Additionally, a reduction in the levels of DNA repair factors associated with the NHEJ pathway, such as KU70, KU80, DNA-PKcs, and XRCC4, was observed in chromatin of bladder cancer cells following circUGGT2 knockdown post-CDDP treatment, while the levels of DNA repair factors in total cellular proteins remained constant. Thus, the promotion of CDDP resistance by circUGGT2 is attributed to its facilitation of repair factor recruitment to DNA breaks via interaction with the KU heterodimer. Furthermore, our study demonstrated that knockdown of circUGGT2 resulted in reduced levels of γH2AX, a marker of DNA damage response, in CDDP-treated bladder cancer cells, implicating circUGGT2 in the NHEJ pathway for DNA repair.


Subject(s)
Cisplatin , DNA End-Joining Repair , Drug Resistance, Neoplasm , Ku Autoantigen , RNA, Circular , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/drug therapy , Cisplatin/pharmacology , Cisplatin/therapeutic use , Drug Resistance, Neoplasm/genetics , RNA, Circular/metabolism , RNA, Circular/genetics , Cell Line, Tumor , Ku Autoantigen/metabolism , Ku Autoantigen/genetics , Gene Expression Regulation, Neoplastic/drug effects , Cell Movement/drug effects , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Disease Progression
9.
Pathol Res Pract ; 257: 155296, 2024 May.
Article in English | MEDLINE | ID: mdl-38615507

ABSTRACT

POU class 2 homeobox 3 (POU2F3)-positive small cell bladder carcinoma (SCBC) is an extremely rare entity, and its clinicopathologic features have not been fully described. Here, we investigated the clinicopathologic features of 4 cases of POU2F3-positive small cell bladder carcinoma (SCBC) and reviewed the literature. We collected 12 cases of SCBC from our departmental archives and detected the expression of POU2F3 by immunohistochemical (IHC) staining. Selected cases with or without POU2F3 expression were subjected to gene expression analysis between two different groups using DESeq2 software. We identified 4 POU2F3-positive SCBC patients, 2 males and 2 females, with a mean age of 77 years. Three patients had hematuria, and 1 patient had dysuria. Radiologic findings showed a bladder mass. Pathologic diagnosis showed that 3 cases were pure SCBC and 1 was mixed urothelial cancer (UC). Histopathologically, four POU2F3-positive SCBC tumors were composed of small round cells with sparse cytoplasm, the nuclei were salt-and-pepper-like or finely granular. Tumor cells showed characteristic cytoplasmic staining with punctate positive signals for cytokeratin. Syn and CD56 were diffusely positive in all the 4 patients. CgA was positive in only one patient. POU2F3-positive SCBC showed higher expression levels of POU2F3, HMGA2 and PLCG2 genes by RNA-Seq. Our data showed the specific clinicopathologic features of 4 rare POU2F3-positive SCBC cases, and the distinct molecular feature was observed between POU2F3-positive and negative SCBC in the limited number of cases.


Subject(s)
Biomarkers, Tumor , Carcinoma, Small Cell , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/genetics , Male , Female , Aged , Carcinoma, Small Cell/pathology , Carcinoma, Small Cell/metabolism , Carcinoma, Small Cell/genetics , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Aged, 80 and over , Middle Aged , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/analysis
10.
Int J Nanomedicine ; 19: 3677-3695, 2024.
Article in English | MEDLINE | ID: mdl-38681092

ABSTRACT

Bladder cancer, a prevalent malignant neoplasm of the urinary tract, exhibits escalating morbidity and mortality rates. Current diagnosis standards rely on invasive and costly cystoscopy and histopathology, underscoring the urgency for non-invasive, high-throughput, and cost-effective novel diagnostic techniques to ensure timely detection and standardized treatment. Recent years have witnessed the rise of exosome research in bladder cancer studies. Exosomes contain abundant bioactive molecules that can help elucidate the intricate mechanisms underlying bladder cancer pathogenesis and metastasis. Exosomes hold potential as biomarkers for early bladder cancer diagnosis while also serving as targeted drug delivery vehicles to enhance treatment efficacy and mitigate adverse effects. Furthermore, exosome analyses offer insights into the complex molecular signaling networks implicated in bladder cancer progression, revealing novel therapeutic targets. This review provides a comprehensive overview of prevalent exosome isolation techniques and highlights the promising clinical utility of exosomes in both diagnostic and therapeutic applications in bladder cancer management.


Subject(s)
Biomarkers, Tumor , Exosomes , Urinary Bladder Neoplasms , Exosomes/metabolism , Humans , Urinary Bladder Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Drug Delivery Systems/methods , Animals
11.
Anticancer Res ; 44(5): 1963-1971, 2024 May.
Article in English | MEDLINE | ID: mdl-38677769

ABSTRACT

BACKGROUND/AIM: Cancer cachexia is a wasting syndrome that has a devastating impact on the prognosis of patients with cancer. It is well-documented that pro-inflammatory cytokines are involved in the progression of this disorder. Therefore, this study was conducted to investigate the protective effect of taurine, an essential nonprotein amino acid with great anti-inflammatory properties, in attenuating muscle atrophy induced by cancer. MATERIALS AND METHODS: Conditioned media (CM) derived from T24 human bladder carcinoma cells with or without 5 mM taurine were incubated with human skeletal muscle cells (HSkMCs) and their differentiation was examined. The intracellular reactive oxygen species (ROS), morphology, and the catabolic pathway were monitored. RESULTS: T24-derived CM with high levels of TNF-α and IL-6 caused aberrant ROS accumulation and formation of atrophic myotubes by HSkMCs. In T24 cancer cells, taurine significantly inhibited the production of TNF-α and IL-6. In HSkMCs, taurine increased ROS clearance during differentiation and preserved the myotube differentiation ability impaired by the inflammatory tumor microenvironment. In addition, taurine ameliorated myotube atrophy by regulating the Akt/FoxO1/MuRF1 and MAFbx signaling pathways. CONCLUSION: Taurine rescues cancer-induced atrophy in human skeletal muscle cells by ameliorating the inflammatory tumor microenvironment. Taurine supplementation may be a promising approach for intervening with the progression of cancer cachexia.


Subject(s)
Muscular Atrophy , Reactive Oxygen Species , Taurine , Tumor Microenvironment , Humans , Taurine/pharmacology , Tumor Microenvironment/drug effects , Muscular Atrophy/pathology , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Muscular Atrophy/etiology , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Cell Differentiation/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/drug effects , Signal Transduction/drug effects , Cachexia/drug therapy , Cachexia/pathology , Cachexia/metabolism , Cachexia/etiology , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/metabolism , Culture Media, Conditioned/pharmacology , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism
12.
BMC Urol ; 24(1): 96, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658905

ABSTRACT

BACKGROUND: A high level of PD-L1 expression is the most relevant predictive parameter for response to immune checkpoint inhibitor (CPI) therapy in urinary bladder cancer. Existing data on the relationship between PD-L1 expression and the natural course of disease are controversial and sparse. METHODS: To expand our understanding of the relationship between PD-L1 expression and parameters of cancer aggressiveness, PD-L1 was analyzed on tissue microarrays containing 2710 urothelial bladder carcinomas including 512 patients with follow-up data who underwent radical cystectomy and follow-up therapies in the pre-immune checkpoint inhibitor therapy era. RESULTS: Tumor cell positivity in ≥10% of cells were seen in 513 (20%) and an immune cell positivity occurred in 872 (34%) of 2566 interpretable cancers. PD-L1 positivity in tumor cells increased from pTaG2 low grade (0.9% positive) to pTaG3 high grade (4.1%; p = 0.0255) and was even higher in muscle-invasive (pT2-4) carcinomas (29.3%; p < 0.0001). However, within pT2-4 carcinomas, PD-L1 positivity was linked to low pT stage (p = 0.0028), pN0 (p < 0.0001), L0 status (p = 0.0005), and a better prognosis within 512 patients with cystectomy who never received CPIs (p = 0.0073 for tumor cells and p = 0.0086 for inflammatory cells). PD-L1 staining in inflammatory cells was significantly linked to PD-L1 staining in tumor cells (p < 0.0001) and both were linked to a positive p53 immunostaining (p < 0.0001). CONCLUSION: It cannot be fully excluded that the strong statistical link between PD-L1 status and favorable histological tumor features as well as better prognosis could influence the outcome of studies evaluating CPIs in muscle-invasive urothelial carcinoma.


Subject(s)
B7-H1 Antigen , Carcinoma, Transitional Cell , Immune Checkpoint Inhibitors , Neoplasm Invasiveness , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/metabolism , B7-H1 Antigen/analysis , B7-H1 Antigen/biosynthesis , Male , Female , Prognosis , Carcinoma, Transitional Cell/pathology , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/metabolism , Aged , Middle Aged , Immune Checkpoint Inhibitors/therapeutic use , Aged, 80 and over , Retrospective Studies
13.
Cell Death Dis ; 15(4): 293, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664366

ABSTRACT

Research and development on Nectin-4 antibody-drug conjugates (ADC) have been greatly accelerated since the approval of enfortumab vedotin to treat uroepithelial cancer. During the course of this study, we identified that autophagy serves as a cytoprotective mechanism during Nectin-4-MMAE treatment and proposed a strategy to enhance the antitumor effects of Nectin-4-MMAE in bladder cancer. Nectin-4-MMAE rapidly internalized into bladder cancer cells in 30 minutes and released MMAE, inducing the onset of caspase-mediated apoptosis and leading to the inhibition of tumor cell growth. Transcriptomics showed significant alterations in autophagy-associated genes in bladder cancer cells treated with Nectin-4-MMAE, which suggested autophagy was activated by Nectin-4-MMAE. Furthermore, autophagy activation was characterized by ultrastructural analysis of autophagosome accumulation, immunofluorescence of autophagic flux, and immunoblotting autophagy marker proteins SQSTM1 and LC3 I/II. Importantly, inhibiting autophagy by LY294002 and chloroquine significantly enhances the cytotoxicity effects of Nectin-4-MMAE in bladder cancer cells. Additionally, we detected the participation of the AKT/mTOR signaling cascade in the induction of autophagy by Nectin-4-MMAE. The combination of Nectin-4-MMAE and an autophagy inhibitor demonstrated enhanced antitumor effects in the HT1376 xenograft tumor model. After receiving a single dose of Nectin-4-MMAE, the group that received the combination treatment showed a significant decrease in tumor size compared to the group that received only one type of treatment. Notably, one mouse in the combination treatment group achieved complete remission of the tumor. The combination group exhibited a notable rise in apoptosis and necrosis, as indicated by H&E staining and immunohistochemistry (cleaved caspase-3, ki67). These findings demonstrated the cytoprotective role of autophagy during Nectin-4-MMAE treatment and highlighted the potential of combining Nectin-4-MMAE with autophagy inhibitors for bladder cancer treatment.


Subject(s)
Autophagy , Cell Adhesion Molecules , Morpholines , Nectins , Urinary Bladder Neoplasms , Autophagy/drug effects , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/genetics , Humans , Animals , Cell Line, Tumor , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Mice , Morpholines/pharmacology , Morpholines/therapeutic use , Xenograft Model Antitumor Assays , Oligopeptides/pharmacology , Apoptosis/drug effects , Mice, Nude , Chromones/pharmacology , Chloroquine/pharmacology , Chloroquine/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Mice, Inbred BALB C , Female , Proto-Oncogene Proteins c-akt/metabolism
14.
Sci Rep ; 14(1): 8324, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38594513

ABSTRACT

Bladder cancer (BLCA) is a common malignant tumor in urinary system all over the world. However, due to its high recurrence rate and complex causes, clinicians often have limited options for surgical and drug treatments. Recent researchs on the molecular mechanism of BLCA have reveals its biological progress and potential for early diagnosis. Serine hydroxymethyltransferase 1/2 (SHMT1/2) is a crucial enzyme in the one-carbon metabolism of tumor cells, and the expression levels of these isozymes have been found to be associated with the biological progression of various malignant tumors. However, the impact of SHMT1/2 on the biological progression of bladder cancer and its molecular regulation mechanism remain unclear. In this research utilizes BLCA clinical sample data, the TCGA database, and in vitro cell experiments to predict the expression levels of SHMT1/2 in BLCA. The findings indicate that SHMT1 remained unchanged, while SHMT2 expression is increased in BLCA, which was related to poor prognosis. Additionally, SHMT2 affects the growth, migration, and apoptosis of bladder cancer cells in vitro. It also influences the expression levels of E-cadherin and N-cadherin, ultimately impacting the malignant biological progression of bladder tumors. These results establish a correlation between SHMT2 and the malignant biological progression of BLCA, providing a theoretical basis for the early diagnosis and treatment of bladder cancer.


Subject(s)
Glycine Hydroxymethyltransferase , Urinary Bladder Neoplasms , Humans , Glycine Hydroxymethyltransferase/genetics , Urinary Bladder Neoplasms/metabolism , Serine/metabolism , Prognosis
15.
Mymensingh Med J ; 33(2): 461-465, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38557526

ABSTRACT

Urothelial carcinoma (UC) is the most common malignancy of urinary bladder. It is the 9th leading cause of death worldwide and second most common genitourinary malignancy among male. Incidence is increasing in developing countries like Bangladesh. About 80% of patients are found between 50 to 80 years of age. It is 3-4 times more common in male than in female. Determination of therapeutic strategy and prediction of progression of urothelial carcinoma is a major clinical challenge. Treatment of urothelial carcinoma still now mostly depends on pathological stages. Amplification or genomic alteration of Cyclin D1 (a proto-oncogene) may cause protein overexpression which is frequently realized as a clonal pathology in various human neoplasms including bladder cancer. Evaluation of Cyclin D1 expression is promising for guiding therapeutic strategies, risk stratification and prediction of tumor progression. The aim of the study was to determine the expression of Cyclin D1 in urothelial carcinoma of urinary bladder and its association with tumour grade. This cross-sectional observational study was conducted in Department of Pathology, Dhaka Medical College, Dhaka, Bangladesh from July 2019 to June 2021. Histomorphologically diagnosed 51 urothelial carcinomas were included. Sections were stained with hematoxylin and eosin. Immunostaining with Cyclin D1 antibody was also done. Relevant information was collected and recorded in a predesigned data sheet. Statistical analysis was carried out as required. Mean age ±SD was 57.8±10.55 years. Male female ratio was 4.6:1. In this study 39(76.5%) patients were smoker. Regarding clinical presentations 36(70.6%) patients presented with painless hematuria alone. Lateral wall (64.7%) was the most frequent tumor location. Among 51 cases, 38(74.5%) cases were high grade urothelial carcinoma (HGUC) and 13(25.5%) cases were low grade urothelial carcinoma (LGUC). Considering Cyclin D1 expression, most of the LGUC cases showed high level of expression by both percentage (84.6%) and intensity (84.6%). Most of the HGUC cases showed low level of expression by both percentage (63.2%) and intensity (60.5%). Cyclin D1 showed significant inverse association with HGUC (p<0.05). In urothelial carcinoma of urinary bladder, Cyclin D1 expression was decreased with increasing grade of the tumor. Cyclin D1 expression was inversely associated with tumour grade.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Female , Humans , Male , Bangladesh/epidemiology , Carcinoma, Transitional Cell/metabolism , Carcinoma, Transitional Cell/pathology , Cross-Sectional Studies , Cyclin D1/metabolism , Urinary Bladder/metabolism , Urinary Bladder/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology
16.
Nat Commun ; 15(1): 2818, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561369

ABSTRACT

Interplay between innate and adaptive immune cells is important for the antitumor immune response. However, the tumor microenvironment may turn immune suppressive, and tumor associated macrophages are playing a role in this transition. Here, we show that CD276, expressed on tumor-associated macrophages (TAM), play a role in diminishing the immune response against tumors. Using a model of tumors induced by N-butyl-N-(4-hydroxybutyl) nitrosamine in BLCA male mice we show that genetic ablation of CD276 in TAMs blocks efferocytosis and enhances the expression of the major histocompatibility complex class II (MHCII) of TAMs. This in turn increases CD4 + and cytotoxic CD8 + T cell infiltration of the tumor. Combined single cell RNA sequencing and functional experiments reveal that CD276 activates the lysosomal signaling pathway and the transcription factor JUN to regulate the expression of AXL and MerTK, resulting in enhanced efferocytosis in TAMs. Proving the principle, we show that simultaneous blockade of CD276 and PD-1 restrain tumor growth better than any of the components as a single intervention. Taken together, our study supports a role for CD276 in efferocytosis by TAMs, which is potentially targetable for combination immune therapy.


Subject(s)
Tumor-Associated Macrophages , Urinary Bladder Neoplasms , Animals , Male , Mice , Efferocytosis , Immune Evasion , Macrophages/metabolism , Transcription Factors/metabolism , Tumor Microenvironment , Urinary Bladder Neoplasms/metabolism
17.
Ann Ital Chir ; 95(2): 246-252, 2024.
Article in English | MEDLINE | ID: mdl-38684494

ABSTRACT

BACKGROUND: Bladder cancer is the most common malignancy of the urinary system, and the search for new and reliable biomarkers has important clinical significance for the personalized treatment of bladder cancer. This study aims to explore the correlation between nuclear proliferation antigen (Ki-67) or Profilin-1 (PFN1) levels, clinicopathological characteristics, and postoperative prognosis in patients with bladder cancer. METHODS: Patients with bladder cancer who underwent transurethral resection of bladder cancer tumor in The Fourth Affiliated Hospital of Soochow University, hospital from January 2019 to January 2021 were selected as the study group (n = 60), and patients with benign lesions of bladder cancer during the same period were selected as the control group (n = 60). The expression of Ki-67 and PFN1 in tumor and bladder tissues of the two groups was analyzed. Ki-67 recorded the patient's pathological parameters and calculated the patient's postoperative prognosis. The correlation between Ki-67 and PFN1 expression levels, pathological parameters, and postoperative prognosis was analyzed. RESULTS: The positive expression rates of Ki-67 and PFN1 in the study group were 63.33% and 73.33%, respectively, which were significantly higher than the positive expression rates in the control group (χ2 = 14.803, 17.757, p < 0.001). The positive expression rates of Ki-67 and PFN1 were related to histological grade, clinical stage, infiltration, and lymph node metastasis, and the differences were statistically significant (p < 0.05). Bladder cancer patients with non muscle-invasive bladder cancer (NMIBC), high-grade histological grade, Ta~T1 clinical stage, invasive, and lymph node metastasis have a higher Ki-67 positive expression rate than bladder cancer patients with muscle-invasive bladder cancer (MIBC), low-grade histological grade, T2~T4, non-invasive, and no lymph node metastasis. The high expression level of Ki-67 has little relationship with gender, age, tumor diameter, and vascular invasion (p > 0.05). The survival time and three-year survival rate of the Ki-67 positive expression group were significantly lower than those of the Ki-67 negative expression group (p < 0.05). The survival time and three-year survival rate of the PFN1 positive expression group were significantly lower than those of the PFN1 negative expression group (p < 0.05). CONCLUSION: The positive expression rates of Ki-67 and PFN1 in bladder tumor tissue are significantly higher than those in bladder tissue, and pathological pattern, histological grade, clinical stage, infiltration, and lymph node metastasis are related to the positive expression rates of Ki-67 and PFN1, and different genders, ages, tumors diameter and vascular invasion are not related to the positive expression rates of Ki-67 and PFN1. The survival time and three-year survival rates of bladder cancer patients with Ki-67 positive and PFN1 positive expression are shorter.


Subject(s)
Ki-67 Antigen , Profilins , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/surgery , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/mortality , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/chemistry , Ki-67 Antigen/analysis , Profilins/analysis , Male , Female , Prognosis , Middle Aged , Aged , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Neoplasm Staging
18.
Cells ; 13(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38667323

ABSTRACT

Bladder cancer aggressiveness is correlated with abnormal N-cadherin transmembrane glycoprotein expression. This protein is cleaved by the metalloprotease ADAM10 and the γ-secretase complex releasing a pro-angiogenic N-terminal fragment (NTF) and a proliferation-activating soluble C-terminal fragment (CTF2). Tetraspanin 15 (Tspan15) is identified as an ADAM10-interacting protein to induce selective N-cadherin cleavage. We first demonstrated, in invasive T24 bladder cancer cells, that N-cadherin was cleaved by ADAM10 generating NTF in the extracellular environment and leaving a membrane-anchored CTF1 fragment and that Tspan15 is required for ADAM10 to induce the selective N-cadherin cleavage. Targeting N-cadherin function in cancer is relevant to preventing tumor progression and metastases. For antitumor molecules to inhibit N-cadherin function, they should be complete and not cleaved. We first showed that the GW501516, an agonist of the nuclear receptor PPARß/δ, decreased Tspan15 and prevented N-cadherin cleavage thus decreasing NTF. Interestingly, the drug did not modify ADAM10 expression, which was important because it could limit side effects since ADAM10 cleaves numerous substrates. By targeting Tspan15 to block ADAM10 activity on N-cadherin, GW501516 could prevent NTF pro-tumoral effects and be a promising molecule to treat bladder cancer. More interestingly, it could optimize the effects of the N-cadherin antagonists those such as ADH-1 that target the N-cadherin ectodomain.


Subject(s)
ADAM10 Protein , Amyloid Precursor Protein Secretases , Antigens, CD , Cadherins , Dipeptides , Hydroxamic Acids , Membrane Proteins , Tetraspanins , Urinary Bladder Neoplasms , Humans , ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Cadherins/metabolism , Cell Line, Tumor , Membrane Proteins/metabolism , Neoplasm Invasiveness , Proteolysis/drug effects , Tetraspanins/metabolism , Tetraspanins/genetics , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics
19.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674148

ABSTRACT

It is now generally accepted that the success of antitumor therapy can be impaired by concurrent antibiotic therapy, the presence of certain bacteria, and elevated defensin levels around the tumor tissue. The aim of our current investigation was to identify the underlying changes in microbiome and defensin levels in the tumor tissue induced by different antibiotics, as well as the duration of this modification. The microbiome of the tumor tissues was significantly different from that of healthy volunteers. Comparing only the tumor samples, no significant difference was confirmed between the untreated group and the group treated with antibiotics more than 3 months earlier. However, antibiotic treatment within 3 months of analysis resulted in a significantly modified microbiome composition. Irrespective of whether Fosfomycin, Fluoroquinolone or Beta-lactam treatment was used, the abundance of Bacteroides decreased, and Staphylococcus abundance increased. Large amounts of the genus Acinetobacter were observed in the Fluoroquinolone-treated group. Regardless of the antibiotic treatment, hBD1 expression of the tumor cells consistently doubled. The increase in hBD2 and hBD3 expression was the highest in the Beta-lactam treated group. Apparently, antibiotic treatment within 3 months of sample analysis induced microbiome changes and defensin expression levels, depending on the identity of the applied antibiotic.


Subject(s)
Anti-Bacterial Agents , Microbiota , Urinary Bladder Neoplasms , beta-Defensins , Humans , beta-Defensins/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/microbiology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Microbiota/drug effects , Male , Female , Middle Aged , Aged , Fosfomycin/therapeutic use , Fosfomycin/pharmacology , Fluoroquinolones/therapeutic use , Fluoroquinolones/pharmacology , beta-Lactams/therapeutic use , beta-Lactams/pharmacology
20.
Molecules ; 29(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38675715

ABSTRACT

Urothelial carcinoma (UC) is the fourth most prevalent cancer amongst males worldwide. While patients with non-muscle-invasive disease have a favorable prognosis, 25% of UC patients present with locally advanced disease which is associated with a 10-15% 5-year survival rate and poor overall prognosis. Muscle-invasive bladder cancer (MIBC) is associated with about 50% 5 year survival when treated by radical cystectomy or trimodality therapy; stage IV disease is associated with 10-15% 5 year survival. Current therapeutic modalities for MIBC include neoadjuvant chemotherapy, surgery and/or chemoradiation, although patients with relapsed or refractory disease have a poor prognosis. However, the rapid success of immuno-oncology in various hematologic and solid malignancies offers new targets with tremendous therapeutic potential in UC. Historically, there were no predictive biomarkers to guide the clinical management and treatment of UC, and biomarker development was an unmet need. However, recent and ongoing clinical trials have identified several promising tumor biomarkers that have the potential to serve as predictive or prognostic tools in UC. This review provides a comprehensive summary of emerging biomarkers and molecular tumor targets including programmed death ligand 1 (PD-L1), epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), fibroblast growth factor receptor (FGFR), DNA damage response and repair (DDR) mutations, poly (ADP-ribose) polymerase (PARP) expression and circulating tumor DNA (ctDNA), as well as their clinical utility in UC. We also evaluate recent advancements in precision oncology in UC, while illustrating limiting factors and challenges related to the clinical application of these biomarkers in clinical practice.


Subject(s)
Biomarkers, Tumor , Molecular Targeted Therapy , Urinary Bladder Neoplasms , Humans , Prognosis , Urinary Bladder Neoplasms/therapy , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/drug therapy , Antigens, Neoplasm/metabolism , Urologic Neoplasms/therapy , Carcinoma, Transitional Cell/therapy , Carcinoma, Transitional Cell/metabolism , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...