Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Genes (Basel) ; 15(4)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38674450

ABSTRACT

Retinitis pigmentosa is a group of genetically determined retinal dystrophies characterized by primary photoreceptor apoptosis and can occur in isolated or syndromic conditions. This study reviewed the clinical data of 15 patients with syndromic retinitis pigmentosa from a Rare Disease Reference Center in Brazil and the results of their next-generation sequencing tests. Five males and ten females participated, with the mean ages for ocular disease onset, fundoscopic diagnosis, and molecular evaluation being 9, 19, and 29 years, respectively. Bardet-Biedl syndrome (n = 5) and Usher syndrome (n = 3) were the most frequent diagnoses, followed by other rare conditions. Among the patients, fourteen completed molecular studies, with three negative results and eleven revealing findings in known genes, including novel variants in MKKS (c.432_435del, p.Phe144Leufs*14), USH2A (c.(7301+1_7302-1)_(9369+1_9370-1)del), and CEP250 (c.5383dup, p.Glu1795Glyfs*13, and c.5050del, p.Asp1684Thrfs*9). Except for Kearn-Sayre, all presented an autosomal recessive inheritance pattern with 64% homozygosity results. The long gap between symptom onset and diagnosis highlights the diagnostic challenges faced by the patients. This study reaffirms the clinical heterogeneity of syndromic retinitis pigmentosa and underscores the pivotal role of molecular analysis in advancing our understanding of these diseases.


Subject(s)
Retinitis Pigmentosa , Humans , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology , Retinitis Pigmentosa/diagnosis , Male , Female , Adult , Adolescent , Child , Young Adult , Usher Syndromes/genetics , Usher Syndromes/pathology , Usher Syndromes/diagnosis , Brazil/epidemiology , Middle Aged , High-Throughput Nucleotide Sequencing , Bardet-Biedl Syndrome/genetics , Mutation
2.
Transl Vis Sci Technol ; 12(2): 26, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36795064

ABSTRACT

Purpose: Mutations in USH2A gene are responsible for the greatest proportion of the Usher Syndrome (USH) population, among which more than 30% are frameshift mutations on exon 13. A clinically relevant animal model has been absent for USH2A-related vision loss. Here we sought to establish a rabbit model carrying USH2A frameshift mutation on exon 12 (human exon 13 equivalent). Methods: CRISPR/Cas9 reagents targeting the rabbit USH2A exon 12 were delivered into rabbit embryos to produce an USH2A mutant rabbit line. The USH2A knockout animals were subjected to a series of functional and morphological analyses, including acoustic auditory brainstem responses, electroretinography, optical coherence tomography, fundus photography, fundus autofluorescence, histology, and immunohistochemistry. Results: The USH2A mutant rabbits exhibit hyper-autofluorescent signals on fundus autofluorescence and hyper-reflective signals on optical coherence tomography images as early as 4 months of age, which indicate retinal pigment epithelium damage. Auditory brainstem response measurement in these rabbits showed moderate to severe hearing loss. Electroretinography signals of both rod and cone function were decreased in the USH2A mutant rabbits starting from 7 months of age and further decreased at 15 to 22 months of age, indicating progressive photoreceptor degeneration, which is confirmed by histopathological examination. Conclusions: Disruption of USH2A gene in rabbits is sufficient to induce hearing loss and progressive photoreceptor degeneration, mimicking the USH2A clinical disease. Translational Relevance: To our knowledge, this study presents the first mammalian model of USH2 showing the phenotype of retinitis pigmentosa. This study supports the use of rabbits as a clinically relevant large animal model to understand the pathogenesis and to develop novel therapeutics for Usher syndrome.


Subject(s)
Retinal Degeneration , Retinitis Pigmentosa , Usher Syndromes , Humans , Animals , Rabbits , Usher Syndromes/genetics , Usher Syndromes/pathology , Retinal Degeneration/genetics , Mutation , Mammals , Extracellular Matrix Proteins/genetics
3.
Transl Vis Sci Technol ; 12(2): 2, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36723965

ABSTRACT

Purpose: To identify challenges and opportunities for the development of treatments for Usher syndrome (USH) type 1B. Methods: In September 2021, the Foundation Fighting Blindness hosted a virtual workshop of clinicians, academic and industry researchers, advocates, and affected individuals and their families to discuss the challenges and opportunities for USH1B treatment development. Results: The workshop began with insights from individuals affected by USH1B. Presentation topics included myosin VIIA protein function in the ear and eye and its role in disease pathology; challenges with the USH1B mouse model most used in disease research to date; new investigations into alternative disease models that may provide closer analogues to USH1B in the human retina, including retinal organoids and large animal models; and learnings from and limitations of available disease natural history data. Participants discussed the need for an open dialogue between researchers and regulators to design USH1B clinical trials with appropriate outcome measures of vision improvement, along with multimodal imaging of the retina and other testing approaches that can help inform trial designs. The workshop concluded with presentations and a roundtable reviewing emerging treatments, including USH1B-targeted genetic augmentation therapy and gene-agnostic approaches. Conclusions: Initiatives like this workshop are important to foster all stakeholders in support of achieving the shared goal of treating and curing USH1B. Translational Relevance: Presentations and discussions focused on overcoming disease modeling and clinical trial design challenges to facilitate development, testing, and implementation of effective USH1B treatments.


Subject(s)
Myosins , Usher Syndromes , Mice , Animals , Humans , Myosins/genetics , Myosins/metabolism , Mutation , Usher Syndromes/genetics , Usher Syndromes/therapy , Usher Syndromes/pathology , Myosin VIIa/genetics
4.
Int J Mol Sci ; 22(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201633

ABSTRACT

Usher syndrome (USH) is an autosomal recessive syndromic ciliopathy characterized by sensorineural hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. There are three clinical types depending on the severity and age of onset of the symptoms; in addition, ten genes are reported to be causative of USH, and six more related to the disease. These genes encode proteins of a diverse nature, which interact and form a dynamic protein network called the "Usher interactome". In the organ of Corti, the USH proteins are essential for the correct development and maintenance of the structure and cohesion of the stereocilia. In the retina, the USH protein network is principally located in the periciliary region of the photoreceptors, and plays an important role in the maintenance of the periciliary structure and the trafficking of molecules between the inner and the outer segments of photoreceptors. Even though some genes are clearly involved in the syndrome, others are controversial. Moreover, expression of some USH genes has been detected in other tissues, which could explain their involvement in additional mild comorbidities. In this paper, we review the genetics of Usher syndrome and the spectrum of mutations in USH genes. The aim is to identify possible mutation associations with the disease and provide an updated genotype-phenotype correlation.


Subject(s)
Mutation , Usher Syndromes/genetics , Animals , Cadherin Related Proteins , Cadherins/genetics , Cell Cycle Proteins/genetics , Ciliopathies/etiology , Ciliopathies/pathology , Cytoskeletal Proteins/genetics , Disease Models, Animal , Genetic Association Studies , Humans , Membrane Proteins/genetics , Myosin VIIa/genetics , Protein Interaction Maps/genetics , Usher Syndromes/pathology
5.
Am J Med Genet A ; 185(12): 3717-3727, 2021 12.
Article in English | MEDLINE | ID: mdl-34331386

ABSTRACT

Sensorineural hearing loss (SNHL) is characteristic of Usher syndrome type 2 (USH2), but less is known about SNHL in nonsyndromic autosomal recessive retinitis pigmentosa (ARRP) and olfaction in USH2A-associated retinal degeneration. The Rate of Progression of USH2A-related Retinal Degeneration (RUSH2A) is a natural history study that enrolled 127 participants, 80 with USH2 and 47 with ARRP. Hearing was measured by pure-tone thresholds and word recognition scores, and olfaction by the University of Pennsylvania Smell Identification Test (UPSIT). SNHL was moderate in 72% of USH2 participants and severe or profound in 25%, while 9% of ARRP participants had moderate adult-onset SNHL. Pure-tone thresholds worsened with age in ARRP but not in USH2 participants. The degree of SNHL was not associated with other participant characteristics in either USH2 or ARRP. Median pure-tone thresholds in ARRP participants were significantly higher than the normative population (p < 0.001). Among 14 USH2 participants reporting newborn hearing screening results, 7 reported passing. Among RUSH2A participants, 7% had mild microsmia and 5% had moderate or severe microsmia. Their mean (±SD) UPSIT score was 35 (±3), similar to healthy controls (34 [±3]; p = 0.39). Olfaction differed by country (p = 0.02), but was not significantly associated with clinical diagnosis, age, gender, race/ethnicity, smoking status, visual measures, or hearing. Hearing loss in USH2A-related USH2 did not progress with age. ARRP patients had higher pure-tone thresholds than normal. Newborn hearing screening did not identify all USH2A-related hearing loss. Olfaction was not significantly worse than normal in participants with USH2A-related retinal degeneration.


Subject(s)
Extracellular Matrix Proteins/genetics , Genetic Predisposition to Disease , Hearing Loss, Sensorineural/genetics , Retinitis Pigmentosa/genetics , Usher Syndromes/genetics , Adolescent , Adult , Age of Onset , Female , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/pathology , Humans , Male , Middle Aged , Mutation , Pedigree , Retinal Degeneration/diagnosis , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/pathology , Smell/genetics , Usher Syndromes/diagnosis , Usher Syndromes/pathology , Young Adult
6.
Genes (Basel) ; 12(6)2021 05 25.
Article in English | MEDLINE | ID: mdl-34070435

ABSTRACT

Usher syndrome (USH) is the leading cause of inherited combined hearing and vision loss. As an autosomal recessive trait, it affects 15,000 people in the United States alone and is responsible for ~21% of inherited blindness and 3 to 6% of early childhood deafness. Approximately 2/3 of the patients with Usher syndrome suffer from USH2, of whom 85% have mutations in the USH2A gene. Patients affected by USH2 suffer from congenital bilateral progressive sensorineural hearing loss and retinitis pigmentosa which leads to progressive loss of vision. To study the molecular mechanisms of this disease and develop a gene therapy strategy, we generated human induced pluripotent stem cells (iPSCs) from peripheral blood mononuclear cells (PBMCs) obtained from a patient carrying compound heterozygous variants of USH2A c.2299delG and c.1256G>T and the patient's healthy sibling. The pluripotency and stability were confirmed by pluripotency cell specific marker expression and molecular karyotyping. Subsequent CRISPR/Cas9 genome editing using a homology repair template was used to successfully correct the USH2A c.2299delG mutation back to normal c.2299G in the generated patient iPSCs to create an isogenic pair of lines. Importantly, this manuscript describes the first use of the recombinant Cas9 and synthetic gRNA ribonucleoprotein complex approach to correct the USH2A c.2299delG without additional genetic effects in patient-derived iPSCs, an approach that is amenable for therapeutic genome editing. This work lays a solid foundation for future ex vivo and in vivo gene therapy investigations and these patient's iPSCs also provide an unlimited resource for disease modeling and mechanistic studies.


Subject(s)
Extracellular Matrix Proteins/genetics , Gene Editing/methods , Induced Pluripotent Stem Cells/metabolism , Primary Cell Culture/methods , Usher Syndromes/genetics , CRISPR-Cas Systems , Cells, Cultured , Extracellular Matrix Proteins/metabolism , Female , Gene Deletion , Humans , Usher Syndromes/metabolism , Usher Syndromes/pathology
7.
Int J Mol Sci ; 22(8)2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33920085

ABSTRACT

Hearing loss is the most common sensory disorder with ~466 million people worldwide affected, representing about 5% of the population. A substantial portion of hearing loss is genetic. Hearing loss can either be non-syndromic, if hearing loss is the only clinical manifestation, or syndromic, if the hearing loss is accompanied by a collage of other clinical manifestations. Usher syndrome is a syndromic form of genetic hearing loss that is accompanied by impaired vision associated with retinitis pigmentosa and, in many cases, vestibular dysfunction. It is the most common cause of deaf-blindness. Currently cochlear implantation or hearing aids are the only treatments for Usher-related hearing loss. However, gene therapy has shown promise in treating Usher-related retinitis pigmentosa. Here we review how the etiologies of Usher-related hearing loss make it a good candidate for gene therapy and discuss how various forms of gene therapy could be applied to Usher-related hearing loss.


Subject(s)
Ear, Inner/pathology , Genetic Therapy , Hearing Loss/therapy , Retinitis Pigmentosa/therapy , Usher Syndromes/therapy , Ear, Inner/growth & development , Hearing Loss/etiology , Hearing Loss/genetics , Hearing Loss/pathology , Humans , Mutation/genetics , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology , Usher Syndromes/etiology , Usher Syndromes/genetics , Usher Syndromes/pathology
8.
Genes (Basel) ; 12(2)2021 02 15.
Article in English | MEDLINE | ID: mdl-33671976

ABSTRACT

MYO7A gene encodes unconventional myosin VIIA, which, when mutated, causes a phenotypic spectrum ranging from recessive hearing loss DFNB2 to deaf-blindness, Usher Type 1B (USH1B). MYO7A mutations are reported in nine DFNB2 families to date, none from sub-Saharan Africa.In DNA, from a cohort of 94 individuals representing 92 families from the Limpopo province of South Africa, eight MYO7A variations were detected among 10 individuals. Family studies identified homozygous and compound heterozygous mutations in 17 individuals out of 32 available family members. Four mutations were novel, p.Gly329Asp, p.Arg373His, p.Tyr1780Ser, and p.Pro2126Leufs*5. Two variations, p.Ser617Pro and p.Thr381Met, previously listed as of uncertain significance (ClinVar), were confirmed to be pathogenic. The identified mutations are predicted to interfere with the conformational properties of myosin VIIA through interruption or abrogation of multiple interactions between the mutant and neighbouring residues. Specifically, p.Pro2126Leufs*5, is predicted to abolish the critical site for the interactions between the tail and the motor domain essential for the autoregulation, leaving a non-functional, unregulated protein that causes hearing loss. We have identified MYO7A as a possible key deafness gene among indigenous sub-Saharan Africans. The spectrum of MYO7A mutations in this South African population points to DFNB2 as a specific entity that may occur in a homozygous or in a compound heterozygous state.


Subject(s)
Genetic Predisposition to Disease , Hearing Loss, Sensorineural/genetics , Myosin VIIa/genetics , Usher Syndromes/genetics , Adult , Amino Acid Sequence/genetics , Female , Hearing Loss, Sensorineural/epidemiology , Hearing Loss, Sensorineural/pathology , Heterozygote , Homozygote , Humans , Male , Mutation/genetics , Pedigree , Phenotype , South Africa/epidemiology , Usher Syndromes/epidemiology , Usher Syndromes/pathology
9.
Dis Model Mech ; 13(11)2020 11 27.
Article in English | MEDLINE | ID: mdl-33361086

ABSTRACT

The mariner (myo7aa-/- ) mutant is a zebrafish model for Usher syndrome type 1 (USH1). To further characterize hair cell synaptic elements in myo7aa-/- mutants, we focused on the ribbon synapse and evaluated ultrastructure, number and distribution of immunolabeled ribbons, and postsynaptic densities. By transmission electron microscopy, we determined that myo7aa-/- zebrafish have fewer glutamatergic vesicles tethered to ribbon synapses, yet maintain a comparable ribbon area. In myo7aa-/- hair cells, immunolocalization of Ctbp2 showed fewer ribbon-containing cells in total and an altered distribution of Ctbp2 puncta compared to wild-type hair cells. myo7aa-/- mutants have fewer postsynaptic densities - as assessed by MAGUK immunolabeling - compared to wild-type zebrafish. We quantified the circular swimming behavior of myo7aa-/- mutant fish and measured a greater turning angle (absolute smooth orientation). It has previously been shown that L-type voltage-gated calcium channels are necessary for ribbon localization and occurrence of postsynaptic density; thus, we hypothesized and observed that L-type voltage-gated calcium channel agonists change behavioral and synaptic phenotypes in myo7aa-/- mutants in a drug-specific manner. Our results indicate that treatment with L-type voltage-gated calcium channel agonists alter hair cell synaptic elements and improve behavioral phenotypes of myo7aa-/- mutants. Our data support that L-type voltage-gated calcium channel agonists induce morphological changes at the ribbon synapse - in both the number of tethered vesicles and regarding the distribution of Ctbp2 puncta - shift swimming behavior and improve acoustic startle response.


Subject(s)
Calcium Channels, L-Type/metabolism , Hearing Loss/pathology , Synapses/pathology , Usher Syndromes/pathology , Zebrafish/physiology , Animals , Disease Models, Animal , Eye Proteins/metabolism , Guanylate Kinases/metabolism , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/pathology , Hearing Loss/complications , Larva/metabolism , Mechanotransduction, Cellular , Mutation/genetics , Myosins/genetics , Myosins/metabolism , Reflex, Startle , Stereocilia/pathology , Stereocilia/ultrastructure , Swimming , Synapses/ultrastructure , Usher Syndromes/complications , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
11.
Ophthalmic Genet ; 41(5): 465-469, 2020 10.
Article in English | MEDLINE | ID: mdl-32664777

ABSTRACT

BACKGROUND: To report the case of a patient with two distinct genetic systemic diseases - pseudoxanthoma elasticum (PXE) and Usher syndrome - confirmed by genetic testing. MATERIALS AND METHODS: Single Retrospective Case Report. RESULTS: A 36-year-old woman presented with acute central vision loss of the left eye (OS). Fundus exam revealed choroidal neovascularization OS in the setting of angioid streaks secondary to an underlying diagnosis of PXE. Unexpectedly, she also exhibited peripheral bony spicules with significant visual field constriction. Physical exam revealed skin papules on her neck and hearing loss. The presence of angioid streaks and skin findings was compatible with PXE; the etiology of her pigmentary retinopathy and hearing loss was elucidated using genetic testing. The patient was found to be compound heterozygous for pathogenic variants in both the ABCC6 and USH2A genes, confirming the diagnosis of two rare disorders in a single patient. CONCLUSIONS: PXE and Usher syndrome are rare systemic disorders that cause distinctive retinal abnormalities. This report highlights the importance of genetic testing in diagnosing uncommon hereditary retinal disorders and outlines the progression of disease over 6 years.


Subject(s)
Extracellular Matrix Proteins/genetics , Multidrug Resistance-Associated Proteins/genetics , Mutation , Pseudoxanthoma Elasticum/pathology , Usher Syndromes/pathology , Adult , Female , Humans , Prognosis , Pseudoxanthoma Elasticum/complications , Pseudoxanthoma Elasticum/genetics , Retrospective Studies , Usher Syndromes/complications , Usher Syndromes/genetics
12.
Ophthalmic Genet ; 41(5): 401-412, 2020 10.
Article in English | MEDLINE | ID: mdl-32372680

ABSTRACT

Usher syndrome has classically been described as a combination of hearing loss and rod-cone dystrophy; vestibular dysfunction is present in many patients. Three distinct clinical subtypes were documented in the late 1970s. Genotyping efforts have led to the identification of several genes associated with the disease. Recent literature has seen multiple publications referring to "atypical" Usher syndrome presentations. This manuscript reviews the molecular etiology of Usher syndrome, highlighting rare presentations and molecular causes. Reports of "atypical" disease are summarized noting the wide discrepancy in the spectrum of phenotypic deviations from the classical presentation. Guidelines for establishing a clear nomenclature system are suggested.


Subject(s)
Chromosome Aberrations , Phenotype , Rare Diseases/genetics , Rare Diseases/pathology , Usher Syndromes/genetics , Usher Syndromes/pathology , Animals , Genotype , Humans , Rare Diseases/classification , Usher Syndromes/classification
13.
J Biol Chem ; 295(28): 9281-9296, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32209652

ABSTRACT

Specialized transporting and sensory epithelial cells employ homologous protocadherin-based adhesion complexes to remodel their apical membrane protrusions into organized functional arrays. Within the intestine, the nutrient-transporting enterocytes utilize the intermicrovillar adhesion complex (IMAC) to assemble their apical microvilli into an ordered brush border. The IMAC bears remarkable homology to the Usher complex, whose disruption results in the sensory disorder type 1 Usher syndrome (USH1). However, the entire complement of proteins that comprise both the IMAC and Usher complex are not yet fully elucidated. Using a protein isolation strategy to recover the IMAC, we have identified the small EF-hand protein calmodulin-like protein 4 (CALML4) as an IMAC component. Consistent with this finding, we show that CALML4 exhibits marked enrichment at the distal tips of enterocyte microvilli, the site of IMAC function, and is a direct binding partner of the IMAC component myosin-7b. Moreover, distal tip enrichment of CALML4 is strictly dependent upon its association with myosin-7b, with CALML4 acting as a light chain for this myosin. We further show that genetic disruption of CALML4 within enterocytes results in brush border assembly defects that mirror the loss of other IMAC components and that CALML4 can also associate with the Usher complex component myosin-7a. Our study further defines the molecular composition and protein-protein interaction network of the IMAC and Usher complex and may also shed light on the etiology of the sensory disorder USH1H.


Subject(s)
Calmodulin/metabolism , Cell Membrane/metabolism , Enterocytes/metabolism , Myosin Light Chains/metabolism , Usher Syndromes/metabolism , Animals , COS Cells , Caco-2 Cells , Calmodulin/genetics , Cell Membrane/genetics , Cell Membrane/pathology , Chlorocebus aethiops , Enterocytes/pathology , HEK293 Cells , Humans , Mice , Mice, Knockout , Myosin Heavy Chains/metabolism , Myosin Light Chains/genetics , Myosin Type II/metabolism , Usher Syndromes/genetics , Usher Syndromes/pathology
14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 37(4): 431-433, 2020 Apr 10.
Article in Chinese | MEDLINE | ID: mdl-32219829

ABSTRACT

OBJECTIVE: To detect potential variants in a family affected with Usher syndrome type I, and analyze its genotype-phenotype correlation. METHODS: Clinical data of the family was collected. Potential variants in the proband were detected by high-throughput sequencing. Suspected variants were verified by Sanger sequencing. RESULTS: The proband developed night blindness at 10 year old, in addition with bilateral cataract and retinal degeneration. Hearing loss occurred along with increase of age. High-throughput sequencing and Sanger sequencing revealed that she has carried compound heterozygous variants of the MYO7A gene, namely c.2694+2T>G and c.6028G>A. Her sister carried the same variants with similar clinical phenotypes. Her daughter was heterozygous for the c.6028G>A variant but was phenotypically normal. CONCLUSION: The clinical features and genetic variants were delineated in this family with Usher syndrome type I. The results have enriched the phenotype and genotype data of the disease and provided a basis for genetic counseling.


Subject(s)
Genotype , Phenotype , Usher Syndromes , Child , Female , Genetic Variation , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Mutation , Myosin VIIa/genetics , Night Blindness/etiology , Pedigree , Usher Syndromes/genetics , Usher Syndromes/pathology
15.
Hum Mol Genet ; 29(11): 1882-1899, 2020 07 21.
Article in English | MEDLINE | ID: mdl-31998945

ABSTRACT

USH2A variants are the most common cause of Usher syndrome type 2, characterized by congenital sensorineural hearing loss and retinitis pigmentosa (RP), and also contribute to autosomal recessive non-syndromic RP. Several treatment strategies are under development; however, sensitive clinical trial endpoint metrics to determine therapeutic efficacy have not been identified. In the present study, we have performed longitudinal retrospective examination of the retinal and auditory symptoms in (i) 56 biallelic molecularly confirmed USH2A patients and (ii) ush2a mutant zebrafish to identify metrics for the evaluation of future clinical trials and rapid preclinical screening studies. The patient cohort showed a statistically significant correlation between age and both rate of constriction for the ellipsoid zone length and hyperautofluorescent outer retinal ring area. Visual acuity and pure tone audiograms are not suitable outcome measures. Retinal examination of the novel ush2au507 zebrafish mutant revealed a slowly progressive degeneration of predominantly rods, accompanied by rhodopsin and blue cone opsin mislocalization from 6 to 12 months of age with lysosome-like structures observed in the photoreceptors. This was further evaluated in the ush2armc zebrafish model, which revealed similar changes in photopigment mislocalization with elevated autophagy levels at 6 days post fertilization, indicating a more severe genotype-phenotype correlation and providing evidence of new insights into the pathophysiology underlying USH2A-retinal disease.


Subject(s)
Extracellular Matrix Proteins/genetics , Hearing Loss, Sensorineural/genetics , Retina/physiopathology , Retinitis Pigmentosa/genetics , Usher Syndromes/genetics , Adolescent , Adult , Aged , Animals , Autophagy/genetics , Disease Models, Animal , Electroretinography , Female , Genetic Association Studies , Genotype , Hearing Loss, Sensorineural/physiopathology , Humans , Male , Middle Aged , Mutation/genetics , Opsins/genetics , Retina/diagnostic imaging , Retina/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinitis Pigmentosa/physiopathology , Rhodopsin/genetics , Rod Opsins/genetics , Usher Syndromes/diagnostic imaging , Usher Syndromes/pathology , Visual Acuity/genetics , Visual Acuity/physiology , Young Adult , Zebrafish/genetics
16.
Br J Ophthalmol ; 104(4): 480-486, 2020 04.
Article in English | MEDLINE | ID: mdl-31266775

ABSTRACT

AIMS: Using optical coherence tomography angiography (OCTA) to characterise microvascular changes in the retinal plexuses and choriocapillaris (CC) of patients with MYO7A and USH2A mutations and correlate with genotype, retinal structure and function. METHODS: Twenty-seven patients with molecularly confirmed USH2A (n=21) and MYO7A (n=6) mutations underwent macular 6×6 mm OCTA using the AngioVue. Heidelberg spectral-domain OCT scans and MAIA microperimetry were also performed, the preserved ellipsoid zone (EZ) band width and mean macular sensitivity (MS) were recorded. OCTA of the inner retina, superficial capillary plexus (SCP), deep capillary plexus (DCP) and CC were analysed. Vessel density (VD) was calculated from the en face OCT angiograms of retinal circulation. RESULTS: Forty-eight eyes with either USH2A (n=37, mean age: 34.4±12.2 years) or MYO7A (n=11, mean age: 37.1±12.4 years), and 35 eyes from 18 age-matched healthy participants were included. VD was significantly decreased in the retinal circulation of patients with USH2A and MYO7A mutations compared with controls (p<0.001). Changes were observed in both the SCP and DCP, but no differences in retinal perfusion were detected between USH2A and MYO7A groups. No vascular defects were detected in CC of the USH2A group, but peripheral defects were detected in older MYO7A patients from the fourth decade of life. VD in the DCP showed strong association with MS and EZ width (Spearman's rho =0.64 and 0.59, respectively, p<0.001). CONCLUSION: OCTA was able to detect similar retinal microvascular changes in patients with USH2A and MYO7A mutations. The CC was generally affected in MYO7A mutations. OCT angiography may further enhance our understanding of inherited eye diseases and their phenotype-genotype associations.


Subject(s)
Extracellular Matrix Proteins/genetics , Mutation , Myosin VIIa/genetics , Retinal Diseases/diagnosis , Retinal Vessels/pathology , Usher Syndromes/pathology , Adult , Choroid/blood supply , Choroid/diagnostic imaging , Female , Fluorescein Angiography , Humans , Male , Middle Aged , Retinal Diseases/genetics , Retinal Diseases/physiopathology , Retinal Vessels/diagnostic imaging , Tomography, Optical Coherence , Usher Syndromes/diagnostic imaging , Usher Syndromes/genetics , Visual Acuity/physiology , Visual Field Tests , Young Adult
17.
J Pathol ; 250(2): 195-204, 2020 02.
Article in English | MEDLINE | ID: mdl-31625146

ABSTRACT

Usher syndrome type 3 (USH3) is an autosomal recessively inherited disorder caused by mutations in the gene clarin-1 (CLRN1), leading to combined progressive hearing loss and retinal degeneration. The cellular distribution of CLRN1 in the retina remains uncertain, either because its expression levels are low or because its epitopes are masked. Indeed, in the adult mouse retina, Clrn1 mRNA is developmentally downregulated, detectable only by RT-PCR. In this study we used the highly sensitive RNAscope in situ hybridization assay and single-cell RNA-sequencing techniques to investigate the distribution of Clrn1 and CLRN1 in mouse and human retina, respectively. We found that Clrn1 transcripts in mouse tissue are localized to the inner retina during postnatal development and in adult stages. The pattern of Clrn1 mRNA cellular expression is similar in both mouse and human adult retina, with CLRN1 transcripts being localized in Müller glia, and not photoreceptors. We generated a novel knock-in mouse with a hemagglutinin (HA) epitope-tagged CLRN1 and showed that CLRN1 is expressed continuously at the protein level in the retina. Following enzymatic deglycosylation and immunoblotting analysis, we detected a single CLRN1-specific protein band in homogenates of mouse and human retina, consistent in size with the main CLRN1 isoform. Taken together, our results implicate Müller glia in USH3 pathology, placing this cell type to the center of future mechanistic and therapeutic studies to prevent vision loss in this disease. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Ependymoglial Cells/metabolism , Membrane Proteins/biosynthesis , Retina/metabolism , Usher Syndromes/metabolism , Animals , Glycosylation , Humans , In Situ Hybridization , Membrane Proteins/genetics , Mice, Inbred C57BL , Neuroglia/metabolism , RNA, Messenger/genetics , Usher Syndromes/pathology
18.
Adv Exp Med Biol ; 1185: 543-547, 2019.
Article in English | MEDLINE | ID: mdl-31884668

ABSTRACT

Mutations in USH2A, ADGRV1, and WHRN genes cause Usher syndrome type 2 (USH2) and retinitis pigmentosa (RP). The proteins encoded by these genes form the periciliary membrane complex (PMC) in photoreceptors. Unlike patients, who show retinal degeneration in their second decade of life, mice carrying USH2 mutations have very-late-onset retinal degeneration, although the PMC is disrupted. A similar weak retinal degeneration phenotype was also reported in ush2a mutant zebrafish. The lack of appropriate USH2 animal models hinders our understanding on PMC function in photoreceptors and retinal pathogenesis caused by USH2 mutations. In this study, we examined the molecular composition of the PMC and the morphology of the PMC and its surrounding subcellular structure in Syrian hamster photoreceptors. We demonstrate that the PMC and its neighboring structure in hamsters are similar to those in mice. Therefore, the Syrian hamster may not offer advantages over the mouse as an animal model for USH2 pathogenic studies.


Subject(s)
Extracellular Matrix Proteins/genetics , Photoreceptor Cells/pathology , Usher Syndromes/genetics , Animals , Cricetinae , Disease Models, Animal , Mesocricetus , Mutation , Usher Syndromes/pathology
19.
Ophthalmic Genet ; 40(6): 545-548, 2019 12.
Article in English | MEDLINE | ID: mdl-31755791

ABSTRACT

Background: Gene editing has shown huge potential in correcting aberrant splicing and Cas13 has been identified as being particularly suitable for targeting RNA. It has therefore become increasingly important to highlight new splice site mutations that may be correctable, particularly in genes that are too large to be encoded by AAV vectors. About 20% of Usher Type 1 cases are caused by mutations in CDH23.Purpose: To report a novel splice site mutation of CDH23 associated with Usher Type 1D.Materials and Methods: Case report.Results: A 35-year-old Caucasian female who is congenitally deaf with vestibular dysfunction presented with visual acuity of 6/12 in both eyes. Fundus examination revealed findings typical of retinitis pigmentosa with foveal preservation of photoreceptor layer. Next generation sequencing analysis revealed a novel homozygous variant, c.9319 + 1G>T in CDH23 consistent with the diagnosis of Usher Syndrome Type 1D. The c.9319 + 1G>T variant is predicted to affect splicing at the exon 65/intron 65 boundary, which highly likely leads to complete skipping of exon 65.Conclusions: We describe a case of a typical Usher Syndrome Type 1D caused by a novel splice site variant in CDH23. Currently there are no treatments for CDH23 related retinal degeneration, partly because the cDNA size of 10kb is too large for AAV vector gene augmentation therapy. Alternative strategies include CRISPR-Cas9 adenine base editors and RNA editing with CRISPR-Cas13. Single-nucleotide editing represents a promising approach for targeting this variant in CDH23 to restore the wildtype splice donor site at this position.


Subject(s)
Cadherins/genetics , Mutation , RNA Splicing/genetics , Usher Syndromes/genetics , Usher Syndromes/pathology , Adult , Cadherin Related Proteins , Female , Genotype , Humans
20.
Gene ; 704: 113-120, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30974196

ABSTRACT

Usher syndrome (USH) is a clinically common autosomal recessive disorder characterized by retinitis pigmentosa (RP) and sensorineural hearing loss with or without vestibular dysfunction. In this study, we identified a Hunan family of Chinese descent with two affected members clinically diagnosed with Usher syndrome type 3 (USH3) displaying hearing, visual acuity, and olfactory decline. Whole-exome sequencing (WES) identified a nonsense variant in ABHD12 gene that was confirmed to be segregated in this family by Sanger sequencing and exhibited a recessive inheritance pattern. In this family, two patients carried homozygous variant in the ABHD12 (NM_015600: c.249C>G). Mutation of ABHD12, an enzyme that hydrolyzes an endocannabinoid lipid transmitter, caused incomplete PHARC syndrome, as demonstrated in previous reports. Therefore, we also conducted a summary based on variants in ABHD12 in PHARC patients, and in PHARC patients showing that there was no obvious correlation between the genotype and phenotype. We believe that this should be considered during the differential diagnosis of USH. Our findings predicted the potential function of this gene in the development of hearing and vision loss, particularly with regard to impaired signal transmission, and identified a novel nonsense variant to expand the variant spectrum in ABHD12.


Subject(s)
Codon, Nonsense , Monoacylglycerol Lipases/genetics , Usher Syndromes/genetics , Adult , Aged , Ataxia/genetics , Ataxia/pathology , Cataract/genetics , Cataract/pathology , Child , Family , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Homozygote , Humans , Male , Pedigree , Phenotype , Polyneuropathies/genetics , Polyneuropathies/pathology , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology , Usher Syndromes/pathology , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...