ABSTRACT
Worldwide, the fungus known as huitlacoche (Ustilago maydis (DC.) Corda) is a phytopathogen of maize plants that causes important economic losses in different countries. Conversely, it is an iconic edible fungus of Mexican culture and cuisine, and it has high commercial value in the domestic market, though recently there has been a growing interest in the international market. Huitlacoche is an excellent source of nutritional compounds such as protein, dietary fiber, fatty acids, minerals, and vitamins. It is also an important source of bioactive compounds with health-enhancing properties. Furthermore, scientific evidence shows that extracts or compounds isolated from huitlacoche have antioxidant, antimicrobial, anti-inflammatory, antimutagenic, antiplatelet, and dopaminergic properties. Additionally, the technological uses of huitlacoche include stabilizing and capping agents for inorganic nanoparticle synthesis, removing heavy metals from aqueous media, having biocontrol properties for wine production, and containing biosurfactant compounds and enzymes with potential industrial applications. Furthermore, huitlacoche has been used as a functional ingredient to develop foods with potential health-promoting benefits. The present review focuses on the biocultural importance, nutritional content, and phytochemical profile of huitlacoche and its related biological properties as a strategy to contribute to global food security through food diversification; moreover, the biotechnological uses of huitlacoche are also discussed with the aim of contributing to the use, propagation, and conservation of this valuable but overlooked fungal resource.
Subject(s)
Basidiomycota , Ustilago , Mexico , Dietary FiberABSTRACT
To look in-depth into the traditional Mexican truffle, this study investigated the phytochemical and pharmacological properties of field-collected corn galls and the fermentate of its pathogen Ustilago maydis MZ496986. Here, we established the chemical profiles of both materials via the gradient HPLC-UV method and successfully identified six previously unreported chemical entities, ustilagols A-F (1-6), and 17 known components. Compounds 3, 5, and 9 exhibited potent nitric oxide production inhibitory activities in murine brain microglial BV-2 cells (IC50 = 6.7 ± 0.5, 5.8 ± 0.9, and 3.9 ± 0.1 µM) without cytotoxic effects. DIMBOA (9) also attenuates lipopolysaccharide (LPS)-stimulated NF-κB activation in RAW 264.7 macrophages (IC50 = 58.1 ± 7.2 µM). Ustilagol G (7) showed potent antiplatelet aggregation in U46619-stimulated human platelets (IC50 = 16.5 ± 5.3 µM). These findings highlighted the potential of corn galls and U. maydis MZ496986 fermentate as functional foods for improving inflammation-related discomforts and vascular obstruction.
Subject(s)
Basidiomycota , Ustilago , Animals , Mice , Humans , Ustilago/genetics , Fungi , Macrophages , Zea mays/microbiologyABSTRACT
Molecular mimicry is one of the evolutionary strategies that parasites use to manipulate the host metabolism and perform an effective infection. This phenomenon has been observed in several animal and plant pathosystems. Despite the relevance of this mechanism in pathogenesis, little is known about it in fungus-plant interactions. For that reason, we performed an in silico method to select plausible mimicry candidates for the Ustilago maydis-maize interaction. Our methodology used a tripartite sequence comparison between the parasite, the host, and nonparasitic organisms' genomes. Furthermore, we used RNA sequencing information to identify gene coexpression, and we determined subcellular localization to detect potential cases of colocalization in the imitator-imitated pairs. With these approximations, we found a putative extracellular formin in U. maydis with the potential to rearrange the host cell cytoskeleton. In parallel, we detected at least two maize genes involved in the cytoskeleton rearrangement differentially expressed under U. maydis infection; thus, this find increases the expectation for the potential mimicry role of the fungal protein. The use of several sources of data led us to develop a strict and replicable in silico methodology to detect molecular mimicry in pathosystems with enough information available. Furthermore, this is the first time that a genomewide search has been performed to detect molecular mimicry in a U. maydis-maize system. Additionally, to allow the reproducibility of this experiment and the use of this pipeline, we created a Web server called Molecular Mimicry Finder.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Subject(s)
Ustilago , Zea mays , Basidiomycota , Computer Simulation , Cytoskeleton , Formins , Host-Pathogen Interactions , Molecular Mimicry , Plant Diseases , Reproducibility of Results , Ustilago/geneticsABSTRACT
We report the characterization of the gene UMAG_00031 from Ustilago maydis, previously identified as upregulated at alkaline pH. This gene is located on chromosome 1 and contains an ORF of 1539 bp that encodes a putative protein of 512 amino acids with an MW of 54.8 kDa. The protein is predicted to contain seven transmembrane domains (TMDs) and a signal peptide suggesting that is located in the cell membrane. Null ΔUMAG_00031 mutants were constructed, and their phenotype was analyzed. The mutant displayed a pleiotropic phenotype suggesting its participation in processes of alkaline pH adaptation independent of the Pal/Rim pathway. Also, it was involved in the dimorphic process induced by fatty acids. These results indicate that the protein encoded by the UMAG_00031 gene possibly functions as a receptor of different signals in the cell membrane of the fungus.
Subject(s)
Genes, Fungal/genetics , Membrane Proteins/genetics , Morphogenesis/genetics , Ustilago/genetics , Ustilago/metabolism , Adaptation, Physiological/genetics , Fungal Proteins/genetics , Hydrogen-Ion Concentration , Phenotype , Up-RegulationABSTRACT
The evolutionarily conserved serine/threonine kinase TOR recruits different subunits to assemble the Target of Rapamycin Complex 1 (TORC1), which is inhibited by rapamycin and regulates ribosome biogenesis, autophagy, and lipid metabolism by regulating the expression of lipogenic genes. In addition, TORC1 participates in the cell cycle, increasing the length of the G2 phase. In the present work, we investigated the effect of rapamycin on cell growth, cell morphology and neutral lipid metabolism in the phytopathogenic fungus Ustilago maydis. Inhibition of TORC1 by rapamycin induced the formation of septa that separate the nuclei that were formed after mitosis. Regarding neutral lipid metabolism, a higher accumulation of triacylglycerols was not detected, but the cells did contain large lipid bodies, which suggests that small lipid bodies became fused into big lipid droplets. Vacuoles showed a similar behavior as the lipid bodies, and double labeling with Blue-CMAC and BODIPY indicates that vacuoles and lipid bodies were independent organelles. The results suggest that TORC1 has a role in cell morphology, lipid metabolism, and vacuolar physiology in U. maydis.
Subject(s)
Lipid Metabolism/drug effects , Sirolimus/pharmacology , Ustilago/drug effects , Antifungal Agents/pharmacology , Lipids/analysis , Mechanistic Target of Rapamycin Complex 1/metabolism , Triglycerides/administration & dosage , Ustilago/chemistry , Vacuoles/chemistryABSTRACT
In the present manuscript, we describe the mechanisms involved in the yeast-to-hypha dimorphic transition of the plant pathogenic Basidiomycota fungus Ustilago maydis. During its life cycle, U. maydis presents two stages: one in the form of haploid saprophytic yeasts that divide by budding and the other that is the product of the mating of sexually compatible yeast cells (sporidia), in the form of mycelial dikaryons that invade the plant host. The occurrence of the involved dimorphic transition is controlled by the two mating loci a and b. In addition, the dimorphic event can be obtained in vitro by different stimuli: change in the pH of the growth medium, use of different carbon sources, and by nitrogen depletion. The presence of other factors and mechanisms may affect this phenomenon; among these, we may cite the PKA and MAPK signal transduction pathways, polyamines, and factors that affect the structure of the nucleosomes. Some of these factors and conditions may affect all these dimorphic events, or they may be specific for only one or more but not all the processes involved. The conclusion reached by these experiments is that U. maydis has constituted a useful model for the analysis of the mechanisms involved in cell differentiation of fungi in general.
Subject(s)
Signal Transduction , Ustilago/cytology , Ustilago/physiology , Cyclic AMP-Dependent Protein Kinases/metabolism , DNA Methylation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Histidine Kinase/metabolism , Histone Acetyltransferases/metabolism , Homeostasis , Hydrogen-Ion Concentration , Mitogen-Activated Protein Kinases/metabolism , Polyamines/metabolismABSTRACT
We have described that formation of basidiocarps by Ustilago maydis requires illumination. In the current research, we have proceeded to analyze what kind of light receptors are involved in this phenomenon. Accordingly, we investigated whether the homologues of the White Collar (WC), and the phytochrome (PHY) genes played a role in this process. Mutants deficient in either one of the three U. maydis WC homologue genes (WCO1a, WCO1b, WCO2), or the phytochrome-encoding the PHY gene were obtained. Phenotypic analysis of the mutants showed that ∆wco1a mutants formed similar numbers of basidiocarps than wild-type strain, whereas ∆wco1b mutants were severely affected in basidiocarp formation when illuminated with white, blue or red light. ∆wco2 and ∆phy1 mutants did not form basidiocarps under any illumination condition. These data indicate that Wco1a is the main blue light receptor, and Wco1b may operate as a secondary blue light receptor; Phy1 is the red light receptor, and Wco2 the transcription factor that controls the photo stimulation of the genes involved in the formation of fruiting bodies. It is suggested that effectiveness of the light receptors depends on the whole structure of the complex, possibly, because their association is necessary to maintain their functional structure.
Subject(s)
Fruiting Bodies, Fungal/physiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Photoreceptors, Microbial/genetics , Photoreceptors, Microbial/metabolism , Ustilago/physiology , Fruiting Bodies, Fungal/radiation effects , Ustilago/genetics , Ustilago/radiation effectsABSTRACT
Ustilago maydis is a dimorphic fungus that has emerged as a model organism for the study of fungal phytopathogenicity and RNA biology. In a previous study, we isolated the U. maydis UmRrm75 gene. The deletion of the UmRrm75 gene affected morphogenesis and pathogenicity. UmRrm75 gene encodes a protein containing three RNA recognition motifs. Here we determined that UmRrm75 has chaperone activity in Escherichia coli using the transcription anti-termination assay. Subsequently, we analyzed the growth of ΔUmRrm75 mutants at 15 °C and 37 °C, observing that mutant strains had reduced growth in comparison to parental strains. UmRrm75 gene expression was induced under these non-optimal temperatures. ΔUmRrm75 mutant colonies displayed a dark-brown color at 28 °C, which was confirmed to be melanin based on spectroscopic analysis and spectrometric data. Furthermore, ΔUmRrm75 mutant strains showed the presence of peroxisomes, and increased H2O2 levels, even at 28 °C. The ΔUmRrm75 mutant strains displayed a higher expression of redox-sensor UmYap1 gene and increased catalase activity than the parental strains. Our data show that deletion of the UmRrm75 gene results in higher levels of H2O2, increased melanin content, and abiotic stress sensitivity.
Subject(s)
Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Hydrogen Peroxide/metabolism , Melanins/metabolism , RNA-Binding Proteins/genetics , Ustilago/genetics , Fungal Proteins/metabolism , Fungi , Mutation , Organisms, Genetically Modified , RNA-Binding Proteins/metabolism , Ustilago/metabolismABSTRACT
BACKGROUND: The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (Hmgr) catalyzes the synthesis of mevalonate, a key compound for the synthesis of cholesterol in humans and ergosterol in fungi. Since the Hmgr enzymes of Saccharomyces cerevisiae, Schizosaccharomyces pombe and Candida glabrata are similar to the Hmgr enzymes of mammals, fungal Hmgr enzymes have been proposed as a model for studying antifungal agents. AIMS: To examine the correlation between inhibiting Um-Hmgr enzyme and the viability, sterols synthesis and mating in Ustilago maydis. METHODS: Using in silico analysis, the ORF codifying for Um-Hmgr was identified and the protein characteristics were deduced. The effect of the competitive inhibitors of Um-Hmgr on the viability of this basidiomycota, the synthesis of its sterols, and its mating were evaluated. RESULTS: The Umhmgr gene (XP_011389590.1) identified putatively codifies a protein of 1443 aa (ca. MW=145.5kDa) that has a possible binding domain in the endoplasmic reticulum (ER) and high identity with the Hmgr catalytic domain of humans and other yeasts. The inhibition of Um-Hmgr caused a decrease of viability and synthesis of sterols, and also the inhibition of mating. The activity of Um-Hmgr is mainly located in the membrane fraction of the fungus. CONCLUSIONS: Given our results we believe U. maydis is a valid model for studying synthetic inhibitors with lipid-lowering or antifungal activity. Additionally, we propose the Hmgr enzyme as an alternative molecular target to develop compounds for treating both phytopathogenic and pathogenic human fungi.
Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Microbial Viability/drug effects , Simvastatin/pharmacology , Ustilago/drug effects , Ustilago/enzymology , Sterols/biosynthesis , Ustilago/physiologyABSTRACT
The basidiomycete Ustilago maydis is a biotrophic organism responsible for corn smut disease. In recent years, it has become one of the most promising models for biochemical and biotechnological research due to advantages, such as rapid growth, and easy genetic manipulation. In some aspects, this yeast is more similar to complex eukaryotes, such as humans, compared to standard laboratory yeast models. U. maydis can be employed as a tool to explore physiological processes with more versatility than other fungi. Previously, U. maydis was only considered as a phytopathogenic fungus, but different studies have shown its potential as a research model. Therefore, numerous promising studies have focused on deepening our understanding of the natural interactions, enzyme production, and biotechnological capacity. In this review, we explore general characteristics of U. maydis, both as pathogenic and "innocuous" basidiomycete. Additionally, a comparison with other yeast models focusing on genetic, biochemical, and biotechnological research are analyzed, to emphasize the versatility, dynamism, and novelty that U. maydis has as a research model. In this review, we highlight the applications of the yeast form of the fungus; however, since the filamentous form is also of relevance, it is addressed in the present work, as well.
Subject(s)
Biotechnology/methods , Genetics, Microbial/methods , Metabolic Networks and Pathways/genetics , Ustilago/genetics , Ustilago/metabolism , Models, Biological , Plant Diseases/microbiology , Ustilago/pathogenicity , Zea mays/microbiologyABSTRACT
OBJECTIVES: Ustilago maydis lipase A (UMLA) expressed in Pichia pastoris was compared with Candida antarctica lipase A (CALA) to study its biochemical properties such as thermostability and selectivity. RESULTS: UMLA had similar behavior to its homologue CALA regarding the effect of pH and temperature on enzymatic activity, substrate preference and selectivity. Both lipases were active on insoluble triglycerides as well as natural oils and hydrolyzed preferably esters with short and medium acyl and alkyl chains. Both enzymes were slightly selective for the (S)-glycidyl butyrate enantiomer and had a remarkable preference for the sn-2 position of triglycerides. The optimal activity was 40 and 50 °C for UMLA and CALA, respectively. However, temperature had a greater effect on the stability of UMLA compared to CALA, observing a half-life at 50 °C of 2.07 h and 12.83 h, respectively. CONCLUSIONS: UMLA shares some biochemical properties with CALA such as the sn-2 preference on triglyceride hydrolysis and transesterification. However, the high thermostability attributed to CALA was not observed in UMLA; this can be due to the lack of stabilization via AXXXA motifs in helices and fewer proline residues at the surface.
Subject(s)
Candida/enzymology , Lipase/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Ustilago/enzymology , Enzyme Stability , Esterification , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Half-Life , Hydrogen-Ion Concentration , Hydrolysis , Lipase/chemistry , Lipase/metabolism , Substrate Specificity , Thermodynamics , Triglycerides/metabolismABSTRACT
The aim of this work was to evaluate the effect of the addition of huitlacoche paste to nixtamalized blue-corn flours (NBCF) on the physicochemical, thermal, and rheological properties of masas. Raw blue maize was nixtamalized (hydrothermal alkalinized process), then was wet-milled in a stone mill, masa was dehydrated, pulverized and sieved to obtain NBCF; commercial nixtamalized blue-corn flour (CNBCF) was used as a control. Huitlacoche paste in concentrations of 3, 6, 9, 12, 15, and 18% was added to nixtamalized flours. Characteristics of the blue grain showed its great effects on water absorption, viscosity, and masa cohesiveness; the addition of huitlacoche significantly influenced adhesiveness, water-absorption, color, and the rheological properties (pâ¯<â¯0.05). Values between 0.03 and 0.083â¯kg-force resulted in masas with optimal adhesiveness. The inclusion of huitlacoche paste can be achieved with a maximal addition of 9% in NBCF for an industrial process and could comprise a new industrialization alternative.
Subject(s)
Flour/analysis , Ustilago/growth & development , Zea mays/chemistry , Color , Rheology , Solubility , Viscosity , Water/chemistry , Zea mays/metabolismABSTRACT
The pep4um gene (um04926) of Ustilago maydis encodes a protein related to either vacuolar or lysosomal aspartic proteases. Bioinformatic analysis of the Pep4um protein revealed that it is a soluble protein with a signal peptide suggesting that it likely passes through the secretory pathway, and it has two probable self-activation sites, which are similar to those in Saccharomyces cerevisiae PrA. Moreover, the active site of the Pep4um has the two characteristic aspartic acid residues of aspartyl proteases. The pep4um gene was cloned, expressed in Pichia pastoris and a 54 kDa recombinant protein was observed. Pep4um-rec was confirmed to be an aspartic protease by specifically inhibiting its enzymatic activity with pepstatin A. Pep4um-rec enzymatic activity on acidic hemoglobin was optimal at pH 4.0 and at 40 °C. To the best of our knowledge this is the first report about the heterologous expression of an aspartic protease from a basidiomycete. An in-depth in silico analysis suggests that Pep4um is homolog of the human cathepsin D protein. Thus, the Pep4um-rec protein may be used to test inhibitors of human cathepsin D, an important breast cancer therapeutic target.
Subject(s)
Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/genetics , Cloning, Molecular/methods , Ustilago/enzymology , Aspartic Acid Endopeptidases/metabolism , Catalytic Domain , Cathepsin D/genetics , Computer Simulation , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Humans , Models, Molecular , Molecular Weight , Phylogeny , Pichia/genetics , Pichia/growth & development , Protein Sorting Signals , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Ustilago/geneticsABSTRACT
The current understanding of the genetic diversity of the phytopathogenic fungus Ustilago maydis is limited. To determine the genetic diversity and structure of U. maydis, 48 fungal isolates were analyzed using mitochondrial simple sequence repeats (SSRs). Tumours (corn smut or 'huitlacoche') were collected from different Mexican states with diverse environmental conditions. Using bioinformatic tools, five microsatellites were identified within intergenic regions of the U. maydis mitochondrial genome. SSRMUM4 was the most polymorphic marker. The most common repeats were hexanucleotides. A total of 12 allelic variants were identified, with a mean of 2.4 alleles per locus. An estimate of the genetic diversity using analysis of molecular variance (AMOVA) revealed that the highest variance component is within states (84%), with moderate genetic differentiation between states (16%) (FST = 0.158). A dendrogram generated using the unweighted paired-grouping method with arithmetic averages (UPGMA) and the Bayesian analysis of population structure grouped the U. maydis isolates into two subgroups (K = 2) based on their shared SSRs.
Subject(s)
Genetic Variation , Genome, Mitochondrial , Microsatellite Repeats , Ustilago/genetics , Bayes Theorem , Genome, Fungal , Mexico , Mitochondria/genetics , Sequence Analysis, DNAABSTRACT
Chitosan is a stressing molecule that affects the cells walls and plasma membrane of fungi. For chitosan derivatives, the action mode is not clear. In this work, we used the yeast Ustilago maydis to study the effects of these molecules on the plasma membrane, focusing on physiologic and stress responses to chitosan (CH), oligochitosan (OCH), and glycol-chitosan (GCH). Yeasts were cultured with each of these molecules at 1 mg·mL-1 in minimal medium. To compare plasma membrane damage, cells were cultivated in isosmolar medium. Membrane potential (Δψ) as well as oxidative stress were measured. Changes in the total plasma membrane phospholipid and protein profiles were analyzed using standard methods, and fluorescence-stained mitochondria were observed. High osmolarity did not protect against CH inhibition and neither affected membrane potential. The OCH did produce higher oxidative stress. The effects of these molecules were evidenced by modifications in the plasma membrane protein profile. Also, mitochondrial damage was evident for CH and OCH, while GCH resulted in thicker cells with fewer mitochondria and higher glycogen accumulation.
Subject(s)
Cell Membrane/drug effects , Cell Wall/drug effects , Chitin/analogs & derivatives , Chitosan/pharmacology , Ustilago/drug effects , Cell Membrane/ultrastructure , Cell Membrane Permeability , Cell Wall/ultrastructure , Chitin/pharmacology , Membrane Potentials/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , Oligosaccharides , Osmolar Concentration , Phospholipids/metabolism , Polyamines/pharmacology , Polyelectrolytes , Reactive Oxygen Species/agonists , Reactive Oxygen Species/metabolism , Ustilago/metabolism , Ustilago/ultrastructureABSTRACT
In many organisms, the growth under nitrogen-deprivation or a poor nitrogen source impacts on the carbon flow distribution and causes accumulation of neutral lipids, which are stored as lipid droplets (LDs). Efforts are in progress to find the mechanism of LDs synthesis and degradation, and new organisms capable of accumulating large amounts of lipids for biotechnological applications. In this context, when Ustilago maydis was cultured in the absence of a nitrogen source, there was a large accumulation of lipid bodies containing mainly triacylglycerols. The most abundant fatty acids in lipid bodies at the stationary phase were palmitic, linoleic, and oleic acids, and they were synthesized de novo by the fatty-acid synthase. In regard to the production of NADPH for the synthesis of fatty acids, the cytosolic NADP+-dependent isocitrate dehydrogenase and the glucose-6-phosphate and 6-phosphogluconate dehydrogenases couple showed the highest specific activities, with a lower activity of the malic enzyme. The ATP-citrate lyase activity was not detected in any of the culture conditions, which points to a different mechanism for the transfer of acetyl-CoA into the cytosol. Protein and RNA contents decreased when U. maydis was grown without a nitrogen source. Due to the significant accumulation of triacylglycerols and the particular composition of fatty acids, U. maydis can be considered an alternative model for biotechnological applications.
Subject(s)
Fatty Acids/biosynthesis , Lipid Droplets/metabolism , Nitrogen/metabolism , Triglycerides/biosynthesis , Ustilago/metabolism , Carbon/metabolism , Fatty Acid Synthases/metabolism , Fatty Acids/metabolism , Glucosephosphate Dehydrogenase/metabolism , Isocitrate Dehydrogenase/metabolism , Malate Dehydrogenase/metabolism , Multienzyme Complexes/metabolism , Oxidation-Reduction , Oxo-Acid-Lyases/metabolism , Phosphogluconate Dehydrogenase/metabolismABSTRACT
Previously, we demonstrated that when Ustilago maydis (DC) Cda., a phytopathogenic basidiomycete and the causal agent of corn smut, is grown in the vicinity of maize embryogenic calli in a medium supplemented with the herbicide Dicamba, it developed gastroid-like basidiocarps. To elucidate the molecular mechanisms involved in the basidiocarp development by the fungus, we proceeded to analyze the transcriptome of the process, identifying a total of 2002 and 1064 differentially expressed genes at two developmental stages, young and mature basidiocarps, respectively. Function of these genes was analyzed with the use of different databases. MIPS analysis revealed that in the stage of young basidiocarp, among the ca. two thousand differentially expressed genes, there were some previously described for basidiocarp development in other fungal species. Additional elements that operated at this stage included, among others, genes encoding the transcription factors FOXO3, MIG3, PRO1, TEC1, copper and MFS transporters, and cytochromes P450. During mature basidiocarp development, important up-regulated genes included those encoding hydrophobins, laccases, and ferric reductase (FRE/NOX). The demonstration that a mapkk mutant was unable to form basidiocarps, indicated the importance of the MAPK signaling pathway in this developmental process.
Subject(s)
Dicamba/pharmacology , Fruiting Bodies, Fungal/genetics , Transcriptome/drug effects , Ustilago/genetics , Fruiting Bodies, Fungal/drug effects , Fruiting Bodies, Fungal/growth & development , Fungal Proteins/biosynthesis , Gene Expression Profiling , Gene Expression Regulation, Fungal/drug effects , Plant Diseases/microbiology , Ustilago/drug effects , Ustilago/growth & development , Ustilago/pathogenicity , Zea mays/microbiologyABSTRACT
MAIN CONCLUSION: Smut pathogen induced an early modulation of the production and scavenging of reactive oxygen species during defence responses in resistant sugarcane that coincided with the developmental stages of fungal growth. Sporisorium scitamineum is the causal agent of sugarcane smut disease. In this study, we characterized sugarcane reactive oxygen species (ROS) metabolism in response to the pathogen in smut-resistant and -susceptible genotypes. Sporisorium scitamineum teliospore germination and appressorium formation coincided with H2O2 accumulation in resistant plants. The superoxide dismutase (SOD) activity was not responsive in any of the genotypes; however, a higher number of isoenzymes were detected in resistant plants. In addition, related to resistance were lipid peroxidation, a decrease in catalase (CAT), and an increase in glutathione S-transferase (GST) activities and an earlier transcript accumulation of ROS marker genes (CAT3, CATA, CATB, GST31, GSTt3, and peroxidase 5-like). Furthermore, based on proteomic data, we suggested that the source of the increased hydrogen peroxide (H2O2) may be due to a protein of the class III peroxidase, which was inhibited in the susceptible genotype. H2O2 is sensed and probably transduced through overlapping systems related to ascorbate-glutathione and thioredoxin to influence signalling pathways, as revealed by the presence of thioredoxin h-type, ascorbate peroxidase, and guanine nucleotide-binding proteins in the infected resistant plants. Altogether, our data depicted the balance of the oxidative burst and antioxidant enzyme activity in the outcome of this interaction.
Subject(s)
Plant Diseases/microbiology , Respiratory Burst/physiology , Saccharum/physiology , Ustilago/pathogenicity , Disease Susceptibility/metabolism , Gene Expression Regulation, Plant/physiology , Genotype , Hydrogen Peroxide/metabolism , Lipid Peroxidation , Reactive Oxygen Species/metabolism , Saccharum/microbiologyABSTRACT
Huitlacoche mushroom (composed by the fruiting bodies growing on the maize ears from the basidiomycete Ustilago maydis) is a culinary delicacy with a great economic and nutraceutical value. In this work, phenolic content, antioxidant activity, ergosterol and fatty acids profile from huitlacoche produced in 15 creole and in one hybrid maize genotypes, and harvested at different stages of development were determined. The hybrid crop was studied in raw and cooked samples. Total phenolic content ranged from 415.6 to 921.8.0 mg gallic acid equivalents per 100 g of flour. Samples exhibited attractive antioxidant activities: 75 % of antiradical activity on average by DPPH methodology, and ORAC values up to 7661.3 µmol Trolox equivalents /100 g. Important quantities of ferulic acid, quercetin, ergosterol, linoleic and oleic acids were observed. Stage of development and cooking process had an effect on evaluated compounds, sometimes negative and sometimes positive. Results suggest that huitlacoche is an attractive food source of phenolics with excellent antioxidant potential and interesting lipidic compounds.
Subject(s)
Agaricales/chemistry , Antioxidants/analysis , Phenols/analysis , Ustilago/chemistry , Zea mays/microbiology , Coumaric Acids/analysis , Ergosterol/analysis , Fatty Acids/analysis , Food Handling , Gallic Acid/analysis , Genotype , Linoleic Acid/analysis , Oleic Acid/analysis , Quercetin/analysisABSTRACT
The use of corn smut for the production of recombinant vaccines has been recently implemented by our group. In this study, the stability and immunogenic properties of the corn smut-based cholera vaccine, based on the cholera toxin B subunit (CTB), were determined in mouse. The immunogenic potential of distinct corn smut CTB doses ranging from 1 to 30µg were assessed, with maximum humoral responses at both the systemic (IgG) and intestinal (IgA) levels at a dose of 15µg. The humoral response last for up to 70days after the third boost. Mice were fully protected against a challenge with cholera toxin after receiving three 15µg-doses. Remarkably, the corn smut-made vaccine retained its immunogenic activity after storage at room temperature for a period of 1year and no reduction on CTB was observed following exposure at 50°C for 2h. These data support the use of the corn smut-made CTB vaccine as a highly stable and effective immunogen and justify its evaluation in target animal models, such as piglet and sheep, as well as clinical evaluations in humans.