Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.037
Filter
1.
J Hazard Mater ; 477: 135423, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39106721

ABSTRACT

Infection with smut fungus like Ustilago maydis decreases crop yield via inducing gall formation. However, the in vitro impact of Ustilago spp. on plant growth and stress tolerance remains elusive. This study investigated the plant growth promotion and cadmium stress mitigation mechanisms of a filamentous fungus discovered on a cultural medium containing 25 µM CdCl2. ITS sequence alignment revealed 98.7 % similarity with Ustilago bromivora, naming the strain Ustilago sp. HFJ311 (HFJ311). Co-cultivation with HFJ311 significantly enhanced the growth of various plants, including Arabidopsis, tobacco, cabbage, carrot, rice, and maize, and improved Arabidopsis tolerance to abiotic stresses like salt and metal ions. HFJ311 increased chlorophyll and Fe contents in Arabidopsis shoots and enhanced root-to-shoot Fe translocation while decreasing root Fe concentration by approximately 70 %. Concurrently, HFJ311 reduced Cd accumulation in Arabidopsis by about 60 %, indicating its potential for bioremediation in Cd-contaminated soils. Additionally, HFJ311 stimulated IAA concentration by upregulating auxin biosynthesis genes. Overexpression of the Fe transporter IRT1 negated HFJ311's growth-promotion effects under Cd stress. These results suggest that HFJ311 stimulates plant growth and inhibits Cd uptake by enhancing Fe translocation and auxin biosynthesis while disrupting Fe absorption. Our findings offer a promising bioremediation strategy for sustainable agriculture and food security.


Subject(s)
Arabidopsis , Cadmium , Indoleacetic Acids , Iron , Ustilago , Arabidopsis/metabolism , Arabidopsis/microbiology , Arabidopsis/growth & development , Cadmium/metabolism , Iron/metabolism , Ustilago/metabolism , Ustilago/growth & development , Indoleacetic Acids/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Plant Roots/microbiology , Plant Roots/metabolism , Plant Roots/growth & development , Biological Transport , Zea mays/microbiology , Zea mays/metabolism , Zea mays/growth & development
2.
Microb Cell Fact ; 23(1): 204, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033104

ABSTRACT

The global demand for plant oil has reached unprecedented levels and is relevant in all industrial sectors. Driven by the growing awareness for environmental issues of traditional plant oils and the need for eco-friendly alternatives, microbial oil emerges as a promising product with significant potential. Harnessing the capabilities of oleaginous microorganisms is an innovative approach for achieving sustainable oil production. To increase economic feasibility, it is crucial to explore feedstocks such as agricultural waste streams as renewable resource for microbial bioprocesses. The fungal model Ustilago maydis is one promising organism in the field of microbial triglyceride production. It has the ability to metabolize a wide variety of carbon sources for cell growth and accumulates high amounts of triglycerides intracellularly. In this study we asked whether this large variety of usable carbon sources can also be utilized for triglyceride production, using corn stover saccharides as a showcase.Our experiments revealed metabolization of the major saccharide building blocks present in corn stover, demonstrating the remarkable potential of U. maydis. The microorganism exhibited the capacity to synthesize triglycerides using the saccharides glucose, fructose, sucrose, xylose, arabinose, and galactose as carbon source. Notably, while galactose has been formerly considered as toxic to U. maydis, we found that the fungus can metabolize this saccharide, albeit with an extended lag phase of around 100 hours. We identified two distinct methods to significantly reduce or even prevent this lag phase, challenging previous assumptions and expanding the understanding of U. maydis metabolism.Our findings suggest that the two tested methods can prevent long lag phases on feedstocks with high galactose content and that U. maydis can produce microbial triglycerides very efficiently on many different carbon sources. Looking forward, exploring the metabolic capabilities of U. maydis on additional polymeric components of corn stover and beyond holds promise for innovative applications, marking a significant step toward environmentally sustainable bioprocessing technologies.


Subject(s)
Galactose , Triglycerides , Zea mays , Zea mays/metabolism , Triglycerides/metabolism , Galactose/metabolism , Carbon/metabolism , Ustilago/metabolism , Basidiomycota
3.
FEMS Yeast Res ; 242024 Jan 09.
Article in English | MEDLINE | ID: mdl-39038994

ABSTRACT

Ustilago maydis and Ustilago cynodontis are natural producers of a broad range of valuable molecules including itaconate, malate, glycolipids, and triacylglycerols. Both Ustilago species are insensitive toward medium impurities, and have previously been engineered for efficient itaconate production and stabilized yeast-like growth. Due to these features, these strains were already successfully used for the production of itaconate from different alternative feedstocks such as molasses, thick juice, and crude glycerol. Here, we analyzed the amylolytic capabilities of Ustilago species for metabolization of starch, a highly abundant and low-cost polymeric carbohydrate widely utilized as a substrate in several biotechnological processes. Ustilago cynodontis was found to utilize gelatinized potato starch for both growth and itaconate production, confirming the presence of extracellular amylolytic enzymes in Ustilago species. Starch was rapidly degraded by U. cynodontis, even though no α-amylase was detected. Further experiments indicate that starch hydrolysis is caused by the synergistic action of glucoamylase and α-glucosidase enzymes. The enzymes showed a maximum activity of around 0.5 U ml-1 at the fifth day after inoculation, and also released glucose from additional substrates, highlighting potential broader applications. In contrast to U. cynodontis, U. maydis showed no growth on starch accompanied with no detectable amylolytic activity.


Subject(s)
Starch , Succinates , Ustilago , Ustilago/metabolism , Ustilago/genetics , Ustilago/enzymology , Ustilago/growth & development , Starch/metabolism , Succinates/metabolism , Glucan 1,4-alpha-Glucosidase/metabolism , Hydrolysis
4.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928169

ABSTRACT

Plant resistance against biotic stressors is significantly influenced by pathogenesis-related 1 (PR1) proteins. This study examines the systematic identification and characterization of PR1 family genes in sugarcane (Saccharum spontaneum Np-X) and the transcript expression of selected genes in two sugarcane cultivars (ROC22 and Zhongtang3) in response to Ustilago scitaminea pathogen infection. A total of 18 SsnpPR1 genes were identified at the whole-genome level and further categorized into four groups. Notably, tandem and segmental duplication occurrences were detected in one and five SsnpPR1 gene pairs, respectively. The SsnpPR1 genes exhibited diverse physio-chemical attributes and variations in introns/exons and conserved motifs. Notably, four SsnpPR1 (SsnpPR1.02/05/09/19) proteins displayed a strong protein-protein interaction network. The transcript expression of three SsnpPR1 (SsnpPR1.04/06/09) genes was upregulated by 1.2-2.6 folds in the resistant cultivar (Zhongtang3) but downregulated in the susceptible cultivar (ROC22) across different time points as compared to the control in response to pathogen infection. Additionally, SsnpPR1.11 was specifically upregulated by 1.2-3.5 folds at 24-72 h post inoculation (hpi) in ROC22, suggesting that this gene may play an important negative regulatory role in defense responses to pathogen infection. The genetic improvement of sugarcane can be facilitated by our results, which also establish the basis for additional functional characterization of SsnpPR1 genes in response to pathogenic stress.


Subject(s)
Gene Expression Regulation, Plant , Plant Diseases , Plant Proteins , Saccharum , Stress, Physiological , Ustilago , Saccharum/genetics , Saccharum/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Ustilago/genetics , Ustilago/pathogenicity , Plant Diseases/microbiology , Plant Diseases/genetics , Stress, Physiological/genetics , Disease Resistance/genetics , Multigene Family , Phylogeny
5.
Plant Physiol ; 195(2): 1642-1659, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38431524

ABSTRACT

Maize (Zea mays) smut is a common biotrophic fungal disease caused by Ustilago maydis and leads to low maize yield. Maize resistance to U. maydis is a quantitative trait. However, the molecular mechanism underlying the resistance of maize to U. maydis is poorly understood. Here, we reported that a maize mutant caused by a single gene mutation exhibited defects in both fungal resistance and plant development. maize mutant highly susceptible to U. maydis (mmsu) with a dwarf phenotype forms tumors in the ear. A map-based cloning and allelism test demonstrated that 1 gene encoding a putative arogenate dehydratase/prephenate dehydratase (ADT/PDT) is responsible for the phenotypes of the mmsu and was designated as ZmADT2. Combined transcriptomic and metabolomic analyses revealed that mmsu had substantial differences in multiple metabolic pathways in response to U. maydis infection compared with the wild type. Disruption of ZmADT2 caused damage to the chloroplast ultrastructure and function, metabolic flux redirection, and reduced the amounts of salicylic acid (SA) and lignin, leading to susceptibility to U. maydis and dwarf phenotype. These results suggested that ZmADT2 is required for maintaining metabolic flux, as well as resistance to U. maydis and plant development in maize. Meanwhile, our findings provided insights into the maize response mechanism to U. maydis infection.


Subject(s)
Disease Resistance , Plant Diseases , Zea mays , Zea mays/microbiology , Zea mays/genetics , Zea mays/growth & development , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Basidiomycota/physiology , Gene Expression Regulation, Plant , Phenotype , Mutation/genetics , Salicylic Acid/metabolism , Ustilago/genetics
6.
Biotechnol Bioeng ; 121(6): 1846-1858, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38494797

ABSTRACT

Itaconic acid is a platform chemical with a range of applications in polymer synthesis and is also discussed for biofuel production. While produced in industry from glucose or sucrose, co-feeding of glucose and acetate was recently discussed to increase itaconic acid production by the smut fungus Ustilago maydis. In this study, we investigate the optimal co-feeding conditions by interlocking experimental and computational methods. Flux balance analysis indicates that acetate improves the itaconic acid yield up to a share of 40% acetate on a carbon molar basis. A design of experiment results in the maximum yield of 0.14 itaconic acid per carbon source from 100 g L - 1 $\,\text{g L}{}^{-1}$ glucose and 12 g L - 1 $\,\text{g L}{}^{-1}$ acetate. The yield is improved by around 22% when compared to feeding of glucose as sole carbon source. To further improve the yield, gene deletion targets are discussed that were identified using the metabolic optimization tool OptKnock. The study contributes ideas to reduce land use for biotechnology by incorporating acetate as co-substrate, a C2-carbon source that is potentially derived from carbon dioxide.


Subject(s)
Glucose , Models, Biological , Succinates , Glucose/metabolism , Succinates/metabolism , Ustilago/metabolism , Ustilago/genetics , Basidiomycota
7.
Mol Plant Microbe Interact ; 37(3): 250-263, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38416124

ABSTRACT

Fungal pathogens deploy a set of molecules (proteins, specialized metabolites, and sRNAs), so-called effectors, to aid the infection process. In comparison to other plant pathogens, smut fungi have small genomes and secretomes of 20 Mb and around 500 proteins, respectively. Previous comparative genomic studies have shown that many secreted effector proteins without known domains, i.e., novel, are conserved only in the Ustilaginaceae family. By analyzing the secretomes of 11 species within Ustilaginaceae, we identified 53 core homologous groups commonly present in this lineage. By collecting existing mutants and generating additional ones, we gathered 44 Ustilago maydis strains lacking single core effectors as well as 9 strains containing multiple deletions of core effector gene families. Pathogenicity assays revealed that 20 of these 53 mutant strains were affected in virulence. Among the 33 mutants that had no obvious phenotypic changes, 13 carried additional, sequence-divergent, structurally similar paralogs. We report a virulence contribution of seven previously uncharacterized single core effectors and of one effector family. Our results help to prioritize effectors for understanding U. maydis virulence and provide genetic resources for further characterization. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Basidiomycota , Ustilaginales , Ustilago , Virulence/genetics , Ustilago/genetics , Plant Diseases/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Zea mays/microbiology
8.
New Phytol ; 241(4): 1747-1762, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38037456

ABSTRACT

Ustilago maydis is a biotrophic fungus that causes tumor formation on all aerial parts of maize. U. maydis secretes effector proteins during penetration and colonization to successfully overcome the plant immune response and reprogram host physiology to promote infection. In this study, we functionally characterized the U. maydis effector protein Topless (TPL) interacting protein 6 (Tip6). We found that Tip6 interacts with the N-terminus of RELK2 through its two Ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motifs. We show that the EAR motifs are essential for the virulence function of Tip6 and critical for altering the nuclear distribution pattern of RELK2. We propose that Tip6 mimics the recruitment of RELK2 by plant repressor proteins, thus disrupting host transcriptional regulation. We show that a large group of AP2/ERF B1 subfamily transcription factors are misregulated in the presence of Tip6. Our study suggests a regulatory mechanism where the U. maydis effector Tip6 utilizes repressive domains to recruit the corepressor RELK2 to disrupt the transcriptional networks of the host plant.


Subject(s)
Basidiomycota , Plant Diseases , Ustilago , Plant Diseases/microbiology , Zea mays/microbiology , Ustilago/metabolism , Co-Repressor Proteins/metabolism , Carcinogenesis , Fungal Proteins/metabolism
9.
Life Sci Alliance ; 7(2)2024 02.
Article in English | MEDLINE | ID: mdl-38016757

ABSTRACT

The BRCA2 tumor suppressor plays a critical role in homologous recombination by regulating RAD51, the eukaryotic homologous recombinase. We identified the BRCA2 homolog in a Basidiomycota yeast, Naganishia liquefaciens BRCA2 homologs are found in many Basidiomycota species but not in Ascomycota species. Naganishia BRCA2 (Brh2, for BRCA2 homolog) is about one-third the size of human BRCA2. Brh2 carries three potential BRC repeats with two oligonucleotide/oligosaccharide-binding domains. The homolog of DSS1, a small acidic protein serving as an essential partner of BRCA2 was also identified. The yeast two-hybrid assay shows the interaction of Brh2 with both Rad51 and Dss1. Unlike human BRCA2, Brh2 is not required for normal cell growth, whereas loss of Dss1 results in slow growth. The loss of Brh2 caused pronounced sensitivity to UV and ionizing radiation, and their HR ability, as assayed by gene-targeting efficiency, is compromised. These phenotypes are indistinguishable from those of the rad51 mutant, and the rad51 brh2 double mutant. Naganishia Brh2 is likely the BRCA2 ortholog that functions as an indispensable auxiliary factor for Rad51.


Subject(s)
Basidiomycota , Saccharomyces cerevisiae Proteins , Ustilago , Humans , Saccharomyces cerevisiae/metabolism , DNA-Binding Proteins/metabolism , Rad51 Recombinase/genetics , DNA Repair , Fungal Proteins/metabolism , Ustilago/genetics , Ustilago/metabolism , Basidiomycota/genetics , Basidiomycota/metabolism , BRCA2 Protein/genetics , Saccharomyces cerevisiae Proteins/metabolism
10.
Nat Commun ; 14(1): 6722, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872143

ABSTRACT

Ustilago maydis causes common smut in maize, which is characterized by tumor formation in aerial parts of maize. Tumors result from the de novo cell division of highly developed bundle sheath and subsequent cell enlargement. However, the molecular mechanisms underlying tumorigenesis are still largely unknown. Here, we characterize the U. maydis effector Sts2 (Small tumor on seedlings 2), which promotes the division of hyperplasia tumor cells. Upon infection, Sts2 is translocated into the maize cell nucleus, where it acts as a transcriptional activator, and the transactivation activity is crucial for its virulence function. Sts2 interacts with ZmNECAP1, a yet undescribed plant transcriptional activator, and it activates the expression of several leaf developmental regulators to potentiate tumor formation. On the contrary, fusion of a suppressive SRDX-motif to Sts2 causes dominant negative inhibition of tumor formation, underpinning the central role of Sts2 for tumorigenesis. Our results not only disclose the virulence mechanism of a tumorigenic effector, but also reveal the essential role of leaf developmental regulators in pathogen-induced tumor formation.


Subject(s)
Plant Diseases , Ustilago , Plant Tumors , Zea mays/metabolism , Hyperplasia , Ustilago/metabolism , Carcinogenesis , Fungal Proteins/genetics , Fungal Proteins/metabolism
11.
Int J Mol Sci ; 24(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834187

ABSTRACT

Common smut caused by Ustilago maydis is one of the dominant fungal diseases in plants. The resistance mechanism to U. maydis infection involving alterations in the cell wall is poorly studied. In this study, the resistant single segment substitution line (SSSL) R445 and its susceptible recurrent parent line Ye478 of maize were infected with U. maydis, and the changes in cell wall components and structure were studied at 0, 2, 4, 8, and 12 days postinfection. In R445 and Ye478, the contents of cellulose, hemicellulose, pectin, and lignin increased by varying degrees, and pectin methylesterase (PME) activity increased. The changes in hemicellulose and pectin in the cell wall after U. maydis infection were analyzed via immunolabeling using monoclonal antibodies against hemicellulsic xylans and high/low-methylated pectin. U. maydis infection altered methyl esterification of pectin, and the degree of methyl esterification was correlated with the resistance of maize to U. maydis. Furthermore, the relationship between methyl esterification of pectin and host resistance was validated using 15 maize inbred lines with different resistance levels. The results revealed that cell wall components, particularly pectin, were important factors affecting the colonization and propagation of U. maydis in maize, and methyl esterification of pectin played a role in the resistance of maize to U. maydis infection.


Subject(s)
Plant Diseases , Ustilago , Plant Diseases/microbiology , Esterification , Zea mays/metabolism , Pectins/metabolism , Ustilago/metabolism , Cell Wall/metabolism
12.
Int J Mol Sci ; 24(19)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37834371

ABSTRACT

Members of the WRKY transcription factor (TF) family are unique to plants and serve as important regulators of diverse physiological processes, including the ability of plants to manage biotic and abiotic stressors. However, the functions of specific WRKY family members in the context of maize responses to fungal pathogens remain poorly understood, particularly in response to Ustilago maydis (DC.) Corda (U. maydis), which is responsible for the devastating disease known as corn smut. A systematic bioinformatic approach was herein employed for the characterization of the maize WRKY TF family, leading to the identification of 120 ZmWRKY genes encoded on 10 chromosomes. Further structural and phylogenetic analyses of these TFs enabled their classification into seven different subgroups. Segmental duplication was established as a major driver of ZmWRKY family expansion in gene duplication analyses, while the Ka/Ks ratio suggested that these ZmWRKY genes had experienced strong purifying selection. When the transcriptional responses of these genes to pathogen inoculation were evaluated, seven U. maydis-inducible ZmWRKY genes were identified, as validated using a quantitative real-time PCR approach. All seven of these WKRY proteins were subsequently tested using a yeast one-hybrid assay approach, which revealed their ability to directly bind the ZmSWEET4b W-box element, thereby controlling the U. maydis-inducible upregulation of ZmSWEET4b. These results suggest that these WRKY TFs can control sugar transport in the context of fungal infection. Overall, these data offer novel insight into the evolution, transcriptional regulation, and functional characteristics of the maize WRKY family, providing a basis for future research aimed at exploring the mechanisms through which these TFs control host plant responses to common smut and other fungal pathogens.


Subject(s)
Plant Diseases , Ustilago , Plant Diseases/genetics , Plant Diseases/microbiology , Zea mays/genetics , Zea mays/microbiology , Transcription Factors/genetics , Ustilago/genetics , Phylogeny
13.
New Phytol ; 240(5): 1976-1989, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37680042

ABSTRACT

Ribotoxins are secreted ribonucleases that specifically target and cleave the universally conserved sarcin-ricin loop sequence of rRNA, which leads to inhibition of protein biosynthesis and subsequently to cell death. We have identified and characterized a secreted Ribo1 protein of plant pathogenic smut fungi. Heterologous expression in different model systems showed that smut Ribo1 has cytotoxic activity against bacteria, yeast, host and nonhost plants. Recombinant expression of Ribo1 in Nicotiana benthamiana induced plant cell death; however, an active site mutant induced cell death only when expressed as a secreted protein. In the maize smut Ustilago maydis, transcription of Ribo1 is specifically induced in early infection stages. While a knockout mutant revealed that Ribo1 is dispensable for U. maydis virulence, the overexpression of Ribo1 in planta had a strong dominant negative effect on virulence and induced host defense responses including cell death. Our findings suggest a function of Ribo1 during the epiphytic development rather than for invasive colonization of the host. Accordingly, in the presence of the biocontrol bacteria Pantoea sp., which were isolated from maize leaves, the ribo1 knockout mutant was significantly impaired in virulence. Together, we conclude that Ribo1 enables smut fungi to compete with host-associated bacteria during epiphytic development.


Subject(s)
Plant Diseases , Ustilago , Plant Diseases/microbiology , Ustilago/genetics , Fungal Proteins/metabolism , Fungi/metabolism , Virulence , Zea mays/microbiology
14.
Methods Mol Biol ; 2690: 87-100, 2023.
Article in English | MEDLINE | ID: mdl-37450139

ABSTRACT

Protein-protein interactions play an essential role in host-pathogen interactions. Phytopathogens secrete a cocktail of effector proteins to suppress plant immunity and reprogram host cell metabolism in their favor. Identification and characterization of effectors and their target protein complexes by co-immunoprecipitation can help to gain a deeper understanding of the functions of individual effectors during pathogenicity and can also provide new insights into the wiring of plant signaling pathways or metabolic complexes. Here we describe a detailed protocol to perform co-immunoprecipitation of effector-target protein complexes from plant extracts with an example of the Ustilago maydis/maize pathosystem for which we also provide a fungal protoplast transformation and maize seedling infection protocols.


Subject(s)
Plant Diseases , Ustilago , Plant Diseases/microbiology , Ustilago/metabolism , Virulence , Host-Pathogen Interactions , Seedlings/metabolism , Zea mays/metabolism , Fungal Proteins/metabolism
15.
Mol Plant Pathol ; 24(9): 1063-1077, 2023 09.
Article in English | MEDLINE | ID: mdl-37434353

ABSTRACT

Small heat shock proteins (sHsps) play diverse roles in the stress response and maintenance of cellular functions. The Ustilago maydis genome codes for few sHsps. Among these, Hsp12 has previously been demonstrated to be involved in the pathogenesis of the fungus by our group. In the present study we further investigated the biological function of the protein in the pathogenic development of U. maydis. Analysis of the primary amino acid sequence of Hsp12 in combination with spectroscopic methods to analyse secondary protein structures revealed an intrinsically disordered nature of the protein. We also carried out detailed analysis on the protein aggregation prevention activity associated with Hsp12. Our data suggest Hsp12 has trehalose-dependent protein aggregation prevention activity. Through assaying the interaction of Hsp12 with lipid membranes in vitro we also showed the ability of U. maydis Hsp12 to induce stability in lipid vesicles. U. maydis hsp12 deletion mutants exhibited defects in the endocytosis process and delayed completion of the pathogenic life cycle. Therefore, U. maydis Hsp12 contributes to the pathogenic development of the fungus through its ability to relieve proteotoxic stress during infection as well as its membrane-stabilizing function.


Subject(s)
Basidiomycota , Ustilago , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Protein Aggregates , Basidiomycota/metabolism , Ustilago/genetics , Ustilago/metabolism , Lipids , Fungal Proteins/genetics , Fungal Proteins/metabolism
16.
Molecules ; 28(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37298890

ABSTRACT

Worldwide, the fungus known as huitlacoche (Ustilago maydis (DC.) Corda) is a phytopathogen of maize plants that causes important economic losses in different countries. Conversely, it is an iconic edible fungus of Mexican culture and cuisine, and it has high commercial value in the domestic market, though recently there has been a growing interest in the international market. Huitlacoche is an excellent source of nutritional compounds such as protein, dietary fiber, fatty acids, minerals, and vitamins. It is also an important source of bioactive compounds with health-enhancing properties. Furthermore, scientific evidence shows that extracts or compounds isolated from huitlacoche have antioxidant, antimicrobial, anti-inflammatory, antimutagenic, antiplatelet, and dopaminergic properties. Additionally, the technological uses of huitlacoche include stabilizing and capping agents for inorganic nanoparticle synthesis, removing heavy metals from aqueous media, having biocontrol properties for wine production, and containing biosurfactant compounds and enzymes with potential industrial applications. Furthermore, huitlacoche has been used as a functional ingredient to develop foods with potential health-promoting benefits. The present review focuses on the biocultural importance, nutritional content, and phytochemical profile of huitlacoche and its related biological properties as a strategy to contribute to global food security through food diversification; moreover, the biotechnological uses of huitlacoche are also discussed with the aim of contributing to the use, propagation, and conservation of this valuable but overlooked fungal resource.


Subject(s)
Basidiomycota , Ustilago , Mexico , Dietary Fiber
17.
N Biotechnol ; 77: 30-39, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37336283

ABSTRACT

In this work, we established an efficient process for the production of itaconate from the regionally sourced industrial side-stream molasses using Ustilago cynodontis and Ustilago maydis. While being relatively cheap and more environmentally friendly than refined sugars, there are some major challenges to overcome when working with molasses. Some of those challenges are a high nitrogen load, unknown impurities in the feedstock, and high amounts of ill-favoured carbon sources, such as sucrose or lactate. We could show that the activity of the sucrose-hydrolysing enzyme invertase plays a crucial role in the efficiency of the process and that the fructose utilisation differs between the two strains used in this work. Thus, with a higher invertase activity, the ability to convert fructose into the desired product itaconate, and an overall higher tolerance towards undesired substances in molasses, U. maydis is better equipped for the process on the alternative feedstock molasses than U. cynodontis. The established process with U. maydis reached competitive yields of up to 0.38 g g-1 and a titre of more than 37 g L-1. This shows that an efficient and cost-effective itaconate production process is generally feasible using U. maydis, which has the potential to greatly increase the sustainability of industrial itaconate production.


Subject(s)
Ustilago , beta-Fructofuranosidase , Molasses , Succinates
18.
Curr Biol ; 33(11): R458-R460, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37279670

ABSTRACT

Djamei introduces the fungal pathogen (and culinary delicacy) Ustilago maydis.


Subject(s)
Basidiomycota , Ustilago , Zea mays , Plant Diseases/microbiology
19.
Mol Plant Pathol ; 24(7): 768-787, 2023 07.
Article in English | MEDLINE | ID: mdl-37171083

ABSTRACT

Plant-pathogenic fungi are causative agents of the majority of plant diseases and can lead to severe crop loss in infected populations. Fungal colonization is achieved by combining different strategies, such as avoiding and counteracting the plant immune system and manipulating the host metabolome. Of major importance are virulence factors secreted by fungi, which fulfil diverse functions to support the infection process. Most of these proteins are highly specialized, with structural and biochemical information often absent. Here, we present the atomic structures of the cerato-platanin-like protein Cpl1 from Ustilago maydis and its homologue Uvi2 from Ustilago hordei. Both proteins adopt a double-Ψß-barrel architecture reminiscent of cerato-platanin proteins, a class so far not described in smut fungi. Our structure-function analysis shows that Cpl1 binds to soluble chitin fragments via two extended grooves at the dimer interface of the two monomer molecules. This carbohydrate-binding mode has not been observed previously and expands the repertoire of chitin-binding proteins. Cpl1 localizes to the cell wall of U. maydis and might synergize with cell wall-degrading and decorating proteins during maize infection. The architecture of Cpl1 harbouring four surface-exposed loop regions supports the idea that it might play a role in the spatial coordination of these proteins. While deletion of cpl1 has only mild effects on the virulence of U. maydis, a recent study showed that deletion of uvi2 strongly impairs U. hordei virulence. Our structural comparison between Cpl1 and Uvi2 reveals sequence variations in the loop regions that might explain a diverging function.


Subject(s)
Plumbaginaceae , Ustilaginales , Ustilago , Fungal Proteins/genetics , Fungal Proteins/metabolism , Ustilaginales/metabolism , Plant Diseases/microbiology , Fungi/metabolism , Zea mays/microbiology
20.
J Exp Bot ; 74(15): 4736-4750, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37225161

ABSTRACT

Plant pathogens secrete effectors, which target host proteins to facilitate infection. The Ustilago maydis effector UmSee1 is required for tumor formation in the leaf during infection of maize. UmSee1 interacts with maize SGT1 (suppressor of G2 allele of skp1) and blocks its phosphorylation in vivo. In the absence of UmSee1, U. maydis cannot trigger tumor formation in the bundle sheath. However, it remains unclear which host processes are manipulated by UmSee1 and the UmSee1-SGT1 interaction to cause the observed phenotype. Proximity-dependent protein labeling involving the turbo biotin ligase tag (TurboID) for proximal labeling of proteins is a powerful tool for identifying the protein interactome. We have generated transgenic U. maydis that secretes biotin ligase-fused See1 effector (UmSee1-TurboID-3HA) directly into maize cells. This approach, in combination with conventional co-immunoprecipitation, allowed the identification of additional UmSee1 interactors in maize cells. Collectively, our data identified three ubiquitin-proteasome pathway-related proteins (ZmSIP1, ZmSIP2, and ZmSIP3) that either interact with or are close to UmSee1 during host infection of maize with U. maydis. ZmSIP3 represents a cell cycle regulator whose degradation appears to be promoted in the presence of UmSee1. Our data provide a possible explanation of the requirement for UmSee1 in tumor formation during U. maydis-Zea mays interaction.


Subject(s)
Neoplasms , Ustilago , Plant Diseases/microbiology , Zea mays/metabolism , Ustilago/genetics , Ustilago/metabolism , Biotin/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL