Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Nature ; 619(7968): 135-142, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37316671

ABSTRACT

Vaccination with Sabin, a live attenuated oral polio vaccine (OPV), results in robust intestinal and humoral immunity and has been key to controlling poliomyelitis. As with any RNA virus, OPV evolves rapidly to lose attenuating determinants critical to the reacquisition of virulence1-3 resulting in vaccine-derived, virulent poliovirus variants. Circulation of these variants within underimmunized populations leads to further evolution of circulating, vaccine-derived poliovirus with higher transmission capacity, representing a significant risk of polio re-emergence. A new type 2 OPV (nOPV2), with promising clinical data on genetic stability and immunogenicity, recently received authorization from the World Health Organization for use in response to circulating, vaccine-derived poliovirus outbreaks. Here we report the development of two additional live attenuated vaccine candidates against type 1 and 3 polioviruses. The candidates were generated by replacing the capsid coding region of nOPV2 with that from Sabin 1 or 3. These chimeric viruses show growth phenotypes similar to nOPV2 and immunogenicity comparable to their parental Sabin strains, but are more attenuated. Our experiments in mice and deep sequencing analysis confirmed that the candidates remain attenuated and preserve all the documented nOPV2 characteristics concerning genetic stability following accelerated virus evolution. Importantly, these vaccine candidates are highly immunogenic in mice as monovalent and multivalent formulations and may contribute to poliovirus eradication.


Subject(s)
Poliomyelitis , Poliovirus Vaccine, Oral , Poliovirus , Vaccines, Attenuated , Animals , Mice , Disease Models, Animal , Poliomyelitis/immunology , Poliomyelitis/prevention & control , Poliomyelitis/virology , Poliovirus/classification , Poliovirus/genetics , Poliovirus/immunology , Poliovirus Vaccine, Oral/chemistry , Poliovirus Vaccine, Oral/genetics , Poliovirus Vaccine, Oral/immunology , Vaccines, Attenuated/chemistry , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Disease Eradication
2.
J Virol ; 96(16): e0062722, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35924923

ABSTRACT

Rotavirus live-attenuated vaccines, both mono- and pentavalent, generate broadly heterotypic protection. B-cells isolated from adults encode neutralizing antibodies, some with affinity for VP5*, that afford broad protection in mice. We have mapped the epitope of one such antibody by determining the high-resolution cryo-EM structure of its antigen-binding fragment (Fab) bound to the virion of a candidate vaccine strain, CDC-9. The Fab contacts both the distal end of a VP5* ß-barrel domain and the two VP8* lectin-like domains at the tip of a projecting spike. Its interactions with VP8* do not impinge on the likely receptor-binding site, suggesting that the mechanism of neutralization is at a step subsequent to initial attachment. We also examined structures of CDC-9 virions from two different stages of serial passaging. Nearly all the VP4 (cleaved to VP8*/VP5*) spikes on particles from the earlier passage (wild-type isolate) had transitioned from the "upright" conformation present on fully infectious virions to the "reversed" conformation that is probably the end state of membrane insertion, unable to mediate penetration, consistent with the very low in vitro infectivity of the wild-type isolate. About half the VP4 spikes were upright on particles from the later passage, which had recovered substantial in vitro infectivity but had acquired an attenuated phenotype in neonatal rats. A mutation in VP4 that occurred during passaging appears to stabilize the interface at the apex of the spike and could account for the greater stability of the upright spikes on the late-passage, attenuated isolate. IMPORTANCE Rotavirus live-attenuated vaccines generate broadly heterotypic protection, and B-cells isolated from adults encode antibodies that are broadly protective in mice. Determining the structural and mechanistic basis of broad protection can contribute to understanding the current limitations of vaccine efficacy in developing countries. The structure of an attenuated human rotavirus isolate (CDC-9) bound with the Fab fragment of a broadly heterotypic protective antibody shows that protection is probably due to inhibition of the conformational transition in the viral spike protein (VP4) critical for viral penetration, rather than to inhibition of receptor binding. A comparison of structures of CDC-9 virus particles at two stages of serial passaging supports a proposed mechanism for initial steps in rotavirus membrane penetration.


Subject(s)
Broadly Neutralizing Antibodies , Capsid Proteins , Epitopes, B-Lymphocyte , Rotavirus , Vaccines, Attenuated , Virion , Animals , Broadly Neutralizing Antibodies/immunology , Broadly Neutralizing Antibodies/ultrastructure , Capsid Proteins/chemistry , Capsid Proteins/immunology , Capsid Proteins/ultrastructure , Cryoelectron Microscopy , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/ultrastructure , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/ultrastructure , Mice , Protein Conformation , Rats , Rotavirus/chemistry , Rotavirus/classification , Rotavirus/immunology , Rotavirus/physiology , Serial Passage , Vaccines, Attenuated/chemistry , Vaccines, Attenuated/immunology , Vaccines, Attenuated/metabolism , Virion/immunology , Virion/metabolism , Virion/ultrastructure
3.
Avian Dis ; 65(1): 30-39, 2021 03.
Article in English | MEDLINE | ID: mdl-34339119

ABSTRACT

Infectious laryngotracheitis virus (ILTV) is thought to exit the host in respiratory aerosols and enter by inhalation of these. High levels of ILTV DNA have been detected in excreta, raising the possibility of alternative routes of shedding from the host. However, it is not known whether or not the ILTV DNA in excreta represents infective virus. This study investigated transmission of wild type and vaccinal ILTV from infected to susceptible commercial meat chickens. Airborne- and excreta-mediated transmission of two field isolates of ILTV (Classes 9 and 10) and three vaccine strains (SA2, A20, and Serva) were tested. To test airborne transmission, air from isolators containing infected birds was ducted through a paired isolator containing uninfected chickens. To test excreta transmission, aliquots were prepared from excreta containing a high level of ILTV DNA within the first week after infection. Chicks were infected bilaterally by eye drop. Clinical signs were monitored daily and choanal cleft swab samples for ILTV detection by quantitative PCR were collected at 4, 8, 15, 22, and 28 days postinfection (DPI) in the airborne transmission study and at 7 and 14 DPI from the excreta transmission studies. There was no transmission of ILTV from excreta, suggesting that ILTV is inactivated during passage through the gut. All strains of ILTV were transmitted by the airborne route but only to a limited extent for the vaccine viruses. The field viruses induced clinical signs, pathology, and greatly elevated ILTV genome copies in swabs. In summary, these findings confirm the suspected airborne transmission of ILTV, demonstrate differential transmission potential between wild type and vaccine strains by this route, and indicate that excreta is unlikely to be important in the transmission of ILTV and the epidemiology of ILT.


Artículo regular­Transmisión aérea del virus de la laringotraqueítis infecciosa de tipo vacunal y silvestre y ausencia de infecciosidad de los extractos de excrementos de pollos infectados. Se cree que el virus de la laringotraqueítis infecciosa (ILTV) se elimina del huésped en forma de aerosoles respiratorios y entra por la inhalación de los mismos. Se han detectado altos niveles de ADN del virus de la laringotraqueítis en las excretas, lo que aumenta la posibilidad de rutas alternas de eliminación por el hospedador. Sin embargo, no se sabe si el ADN del virus de la laringotraqueítis presente en las excretas representa virus infeccioso. Este estudio investigó la transmisión del virus de la laringotraqueítis de tipo silvestre y vacunal de pollos de carne comerciales infectados a pollos susceptibles. Se evaluó la transmisión por vía aérea y mediada por excretas de dos cepas de campo del virus de la laringotraqueítis (clases 9 y 10) y tres cepas vacunales (SA2, A20 y Serva). Para evaluar la transmisión aérea, el aire de los aisladores que contienen aves infectadas se canalizó a través de un aislador emparejado que contenía pollos no infectados. Para probar la transmisión de excretas, se prepararon alícuotas a partir de excretas que contenían un alto nivel de ADN del virus de la laringotraqueítis durante la primera semana después de la infección. Los pollos se infectaron mediante aplicación de gota ocular de forma bilateral. Los signos clínicos se monitorearon diariamente y se recolectaron muestras de hisopado de la hendidura coanal para la detección del virus de la laringotraqueítis mediante PCR cuantitativa a los 4, 8, 15, 22 y 28 días después de la infección (DPI) en el estudio de transmisión aérea y a los 7 y 14 después de la inoculación en los estudios de transmisión de excretas. No se observó transmisión del virus de la laringotraqueítis de las excretas, lo que sugiere que este virus se inactiva durante el paso a través del intestino. Todas las cepas del virus de la laringotraqueítis se transmitieron por vía aérea, pero sólo de forma limitada con los virus vacunales. Los virus de campo indujeron signos clínicos, patología y números muy altos de copias del genoma del virus de la laringotraqueítis en muestras hisopos. En resumen, estos hallazgos confirman la sospecha de transmisión aérea del virus de laringotraqueítis, demuestran el diferente potencial de transmisión entre las cepas de tipo silvestre y vacunales por esta vía, e indican que es poco probable que las excretas sean importantes en la transmisión del virus de la laringotraqueítis y en la epidemiología del virus de la laringotraqueítis infecciosa.Key words: infectious laryngotracheitis virus, airborne transmission, meat chicken, excreta, epidemiology.


Subject(s)
Chickens , Herpesviridae Infections/veterinary , Herpesvirus 1, Gallid/physiology , Poultry Diseases/transmission , Viral Vaccines/chemistry , Animals , Herpesviridae Infections/transmission , Herpesviridae Infections/virology , Poultry Diseases/virology , Vaccines, Attenuated/chemistry
4.
Viruses ; 13(8)2021 08 23.
Article in English | MEDLINE | ID: mdl-34452536

ABSTRACT

The GPE- strain is a live attenuated vaccine for classical swine fever (CSF) developed in Japan. In the context of increasing attention for the differentiating infected from vaccinated animals (DIVA) concept, the achievement of CSF eradication with the GPE- proposes it as a preferable backbone for a recombinant CSF marker vaccine. While its infectious cDNA clone, vGPE-, is well characterized, 10 amino acid substitutions were recognized in the genome, compared to the original GPE- vaccine seed. To clarify the GPE- seed availability, this study aimed to generate and characterize a clone possessing the identical amino acid sequence to the GPE- seed. The attempt resulted in the loss of the infectious GPE- seed clone production due to the impaired replication by an amino acid substitution in the viral polymerase NS5B. Accordingly, replication-competent GPE- seed variant clones were produced. Although they were mostly restricted to propagate in the tonsils of pigs, similarly to vGPE-, their type I interferon-inducing capacity was significantly lower than that of vGPE-. Taken together, vGPE- mainly retains ideal properties for the CSF vaccine, compared with the seed variants, and is probably useful in the development of a CSF marker vaccine.


Subject(s)
Classical Swine Fever Virus/genetics , Classical Swine Fever/virology , Vaccines, Attenuated/genetics , Viral Vaccines/genetics , Amino Acid Sequence , Animals , Antibodies, Viral/immunology , Classical Swine Fever/immunology , Classical Swine Fever/prevention & control , Classical Swine Fever Virus/chemistry , Classical Swine Fever Virus/growth & development , Classical Swine Fever Virus/immunology , Genetic Variation , Sequence Alignment , Swine , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/chemistry , Vaccines, Attenuated/immunology , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/chemistry , Viral Vaccines/immunology
5.
Nature ; 595(7866): 289-294, 2021 07.
Article in English | MEDLINE | ID: mdl-34194041

ABSTRACT

The global decline in malaria has stalled1, emphasizing the need for vaccines that induce durable sterilizing immunity. Here we optimized regimens for chemoprophylaxis vaccination (CVac), for which aseptic, purified, cryopreserved, infectious Plasmodium falciparum sporozoites (PfSPZ) were inoculated under prophylactic cover with pyrimethamine (PYR) (Sanaria PfSPZ-CVac(PYR)) or chloroquine (CQ) (PfSPZ-CVac(CQ))-which kill liver-stage and blood-stage parasites, respectively-and we assessed vaccine efficacy against homologous (that is, the same strain as the vaccine) and heterologous (a different strain) controlled human malaria infection (CHMI) three months after immunization ( https://clinicaltrials.gov/ , NCT02511054 and NCT03083847). We report that a fourfold increase in the dose of PfSPZ-CVac(PYR) from 5.12 × 104 to 2 × 105 PfSPZs transformed a minimal vaccine efficacy (low dose, two out of nine (22.2%) participants protected against homologous CHMI), to a high-level vaccine efficacy with seven out of eight (87.5%) individuals protected against homologous and seven out of nine (77.8%) protected against heterologous CHMI. Increased protection was associated with Vδ2 γδ T cell and antibody responses. At the higher dose, PfSPZ-CVac(CQ) protected six out of six (100%) participants against heterologous CHMI three months after immunization. All homologous (four out of four) and heterologous (eight out of eight) infectivity control participants showed parasitaemia. PfSPZ-CVac(CQ) and PfSPZ-CVac(PYR) induced a durable, sterile vaccine efficacy against a heterologous South American strain of P. falciparum, which has a genome and predicted CD8 T cell immunome that differs more strongly from the African vaccine strain than other analysed African P. falciparum strains.


Subject(s)
Antibodies, Neutralizing/immunology , Liver/immunology , Liver/parasitology , Malaria Vaccines/immunology , Plasmodium falciparum/drug effects , Plasmodium falciparum/immunology , Vaccines, Attenuated/immunology , Adult , Animals , Antibody Formation/immunology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Life Cycle Stages/immunology , Malaria/blood , Malaria/immunology , Malaria/parasitology , Malaria/prevention & control , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Malaria Vaccines/chemistry , Male , Middle Aged , Plasmodium falciparum/growth & development , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Time Factors , Vaccination/adverse effects , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/chemistry
6.
Carbohydr Polym ; 261: 117859, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33766348

ABSTRACT

Development of an effective purification process in order to provide low cost and high-quality vaccine is the necessity of glycoconjugate vaccine manufacturing industries. In the present study, we have attempted to develop a method for simultaneous purification and depolymerization process for capsular polysaccharides (CPS) derived from Streptococcus pneumoniae serotype 2. Trifluoroacetic acid (TFA) was used to precipitate impurities which were then removed by centrifugation. It was observed that the TFA treatment could simultaneously depolymerize the CPS and purify it. The purified and depolymerized CPS was analyzed for its purity, structural identity and conformity, molecular size, antigenicity to meet desired quality specifications. The obtained results showed that the purification and depolymerization of S. pneumoniae serotype 2 CPS did not affect the antigenicity of CPS.


Subject(s)
Bacterial Capsules/chemistry , Polymerization/drug effects , Polysaccharides, Bacterial/isolation & purification , Streptococcus pneumoniae/drug effects , Trifluoroacetic Acid/pharmacology , Bacterial Capsules/drug effects , Bacterial Vaccines/chemistry , Bacterial Vaccines/immunology , Immunogenicity, Vaccine/drug effects , Microbial Viability/drug effects , Pneumococcal Infections/prevention & control , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/immunology , Polysaccharides, Bacterial/metabolism , Serogroup , Streptococcus pneumoniae/chemistry , Streptococcus pneumoniae/cytology , Streptococcus pneumoniae/immunology , Vaccines, Attenuated/chemistry , Vaccines, Attenuated/immunology
7.
Biotechnol Bioeng ; 118(1): 106-115, 2021 01.
Article in English | MEDLINE | ID: mdl-32880898

ABSTRACT

There is growing interest in the development of new vaccines based on live-attenuated viruses (LAVs) and virus-like particles. The large size of these vaccines, typically 100-400 nm, significantly complicates the use of sterile filtration. The objectives of this study are to examine the performance of several commercial sterile filters for filtration of a cytomegalovirus vaccine candidate (referred to as the LAV) and to develop and evaluate the use of a model nanoparticle suspension to perform a more quantitative assessment. Data obtained with a mixture of 200- and 300-nm fluorescent particles provided yield and pressure profiles that captured the behavior of the viral vaccine. This included the excellent performance of the Sartorius Sartobran P filter, which provided greater than 80% yield of both the vaccine and model particles even though the average particle size was more than 250 nm. The particle yield for the Sartobran P was independent of filtrate flux above 200 L/m2 /h, but increased with increasing particle concentration, varying from less than 10% at concentrations around 107 particles/ml to more than 80% at concentrations above 1010 particles/ml due to saturation of particle capture/binding sites within the filter. These results provide important insights into the factors controlling transmission and fouling during sterile filtration of large vaccine products.


Subject(s)
Nanoparticles/chemistry , Viral Vaccines , Viruses , Particle Size , Ultrafiltration , Vaccines, Attenuated/chemistry , Vaccines, Attenuated/isolation & purification , Viral Vaccines/chemistry , Viral Vaccines/isolation & purification , Viruses/chemistry , Viruses/isolation & purification
8.
Vet Parasitol ; 283: 109171, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32623187

ABSTRACT

To date, there is no effective vaccine to prevent abortion or vertical transmission associated with neosporosis in cattle. In the present study, the efficacy of a live experimental vaccine of Neospora caninum attenuated (NCa) by long-term serial passages on a murine macrophage cell line was evaluated in the prevention of vertical transmission and abortion in the mouse model. Forty non-pregnant mice were randomly divided into four equal groups including non-immunized/challenged (injected with PBS); positive control (inoculated with un-attenuated NC-1 tachyzoites); immunized/challenged (inoculated with NCa attenuated strain) and immunized/non-challenged or vaccinated (inoculated with NCa) groups. Following pregnancy synchronization, both the immunized and control mice were challenged with virulent live NC-1 tachyzoites (2.5 × 106) in the mid-pregnancy stage. The number of abortions and post-natal pup mortalities was recorded. Serological, molecular, and histopathologic examinations were employed to evaluate the efficacy of the vaccine and the vertical transmission rates. Results indicated that the live attenuated N. caninum strain (NCa) could significantly reduce the risk of abnormal parturitions and fetal mortality in the vaccinated group (20 %) compared to the non-immunized/challenged group (80 %). Also, the NCa strain reduced the lesion score in the brain of the offspring (0.3 vs 1.9) compared to the non-immunized/challenged group (P < 0.05). The molecular assay showed a decrease in the parasite DNA detection rates from 83 % and 77 % in the non-immunized/challenged group to 27 % and 0 % in the vaccine group in the brain and liver tissues, respectively. While in the immunized/non-challenged group no parasite DNA was detected in the brain tissue samples of the pups. Serological analyses showed that NCa strain was able to stimulate the humoral immunity and create effective protection against neosporosis with a moderate systemic IFN-γ response. In conclusion, the NCa strain could significantly (P < 0.05) reduce the risk of vertical transmission and proved to be a safe vaccine while conferring significant levels of protection in the laboratory mice.


Subject(s)
Coccidiosis/veterinary , Fungal Vaccines/chemistry , Infectious Disease Transmission, Vertical/veterinary , Macrophages/immunology , Neospora/immunology , Animals , Cell Line , Coccidiosis/parasitology , Coccidiosis/prevention & control , Female , Fungal Vaccines/administration & dosage , Infectious Disease Transmission, Vertical/prevention & control , Mice , Mice, Inbred BALB C , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/chemistry
9.
Poult Sci ; 99(7): 3437-3444, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32616237

ABSTRACT

Newcastle disease, which is a highly contagious and fatal disease caused by the Newcastle disease virus (NDV), has harmed the poultry industry for decades. The administration of effective vaccines can control most outbreaks and epidemics of Newcastle disease in the world. However, vaccination failures of live attenuated vaccines becasue of storage and transportation problems have been reported. Hence, thermostable live vaccine strains, such as V4 and I-2 strains, are being used and welcomed in tropical regions such as Africa and Southeast Asia. In this study, a thermostable, attenuated vaccine candidate strain NDV/rHR09 was generated using the genotype VIII heat-resistant virulent NDV strain HR09 by the reverse genetics system. The results of the determination of the mean death time and intracerebral pathogenicity index indicated that NDV/rHR09 is lentogenic even after 15 serial passages in embryonated chicken eggs. The thermostability assessment showed that the NDV/rHR09 strain exhibited hemagglutination activity and infectivity when exposed to 56°C for 60 min. Compared with the commercially available La Sota and V4 vaccines, the NDV/rHR09 induced higher antibody titers in specific pathogen-free chickens. In addition, NDV/rHR09 conferred complete protection against virulent genotype VII NDV challenge and virus shedding from vaccinated chickens. These results suggest that NDV/rHR09 is a promising thermostable vaccine candidate strain.


Subject(s)
Chickens , Newcastle Disease/prevention & control , Newcastle disease virus/immunology , Poultry Diseases/prevention & control , Viral Vaccines/immunology , Animals , Genotype , Newcastle disease virus/genetics , Vaccines, Attenuated/chemistry , Vaccines, Attenuated/immunology , Viral Vaccines/chemistry
10.
J Infect Dis ; 221(12): 2050-2059, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32006006

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is the leading viral cause of severe pediatric respiratory illness, and vaccines are needed. Live RSV vaccine D46/NS2/N/ΔM2-2-HindIII, attenuated by deletion of the RSV RNA regulatory protein M2-2, is based on previous candidate LID/ΔM2-2 but incorporates prominent differences from MEDI/ΔM2-2, which was more restricted in replication in phase 1. METHODS: RSV-seronegative children aged 6-24 months received 1 intranasal dose (105 plaque-forming units [PFUs] of D46/NS2/N/ΔM2-2-HindIII [n = 21] or placebo [n = 11]) and were monitored for vaccine shedding, reactogenicity, RSV-antibody responses and RSV-associated medically attended acute respiratory illness (RSV-MAARI) and antibody responses during the following RSV season. RESULTS: All 21 vaccinees were infected with vaccine; 20 (95%) shed vaccine (median peak titer, 3.5 log10 PFUs/mL with immunoplaque assay and 6.1 log10 copies/mL with polymerase chain reaction). Serum RSV-neutralizing antibodies and anti-RSV fusion immunoglobulin G increased ≥4-fold in 95% and 100% of vaccines, respectively. Mild upper respiratory tract symptoms and/or fever occurred in vaccinees (76%) and placebo recipients (18%). Over the RSV season, RSV-MAARI occurred in 2 vaccinees and 4 placebo recipients. Three vaccinees had ≥4-fold increases in serum RSV-neutralizing antibody titers after the RSV season without RSV-MAARI. CONCLUSIONS: D46/NS2/N/ΔM2-2-HindIII had excellent infectivity and immunogenicity and primed vaccine recipients for anamnestic responses, encouraging further evaluation of this attenuation strategy. CLINICAL TRIALS REGISTRATION: NCT03102034 and NCT03099291.


Subject(s)
Antibodies, Viral/blood , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Viral Proteins/genetics , Adolescent , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Child , Gene Deletion , Humans , Hydrophobic and Hydrophilic Interactions , RNA, Small Untranslated/chemistry , RNA, Small Untranslated/genetics , RNA, Small Untranslated/immunology , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/chemistry , Respiratory Syncytial Virus Vaccines/genetics , Respiratory Syncytial Virus, Human/genetics , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/chemistry , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology
11.
Microb Pathog ; 138: 103857, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31705999

ABSTRACT

In the present study, the importance of sodium bicarbonate antacid as an agent for an orally delivered attenuated Salmonella strain secreting Brucella antigens Cu-Zn superoxide dismutase (SodC) and outer membrane protein 19 (Omp19) as a live vaccine candidate against Brucella infection was investigated. First, Brucella antigens SodC and Omp19 were cloned into a prokaryotic constitutive expression vector, pJHL65. Then secretion of proteins was verified after transformation into an attenuated Salmonella typhimurium (ST) strain, JOL1800 (Δlon, ΔcpxR, Δasd, ΔrfaL), using western blot analysis. Mice were orally inoculated with phosphate-buffered saline (PBS) or with a co-mixture Salmonella secreting each antigens at a 1:1 ratio, each containing 1 × 108 CFU/mouse with and without sodium bicarbonate treatment. For antacid treatment, 1.3% w/v sodium bicarbonate was orally administered 30 min before and immediately after immunization with the Salmonella formulation. Humoral and cell-mediated immune responses were evaluated to investigate the efficacy of sodium bicarbonate in an oral formulation. The results indicated that addition of sodium bicarbonate to the vaccine significantly increased (P < 0.05) levels of anti-Brucella-specific systemic IgG responses, lymphocyte proliferation, and CD4+ T cell responses, indicating induction of a mixed Th1-Th2 response. Immunohistochemical assays and bacterial enumeration in intestinal samples also indicated that administration of sodium bicarbonate enhanced colonization of Salmonella. These results indicate that ingestion of the Salmonella formulation with sodium bicarbonate can enhance colonization of Salmonella and induce a significant protective immune response against Brucella compared with a formulation without sodium bicarbonate. Thus, incorporation of sodium bicarbonate as an antacid buffer is highly recommended for this oral live vaccine.


Subject(s)
Brucella Vaccine , Sodium Bicarbonate , Vaccines, Attenuated , Administration, Oral , Animals , Antigens, Bacterial/immunology , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/biosynthesis , Bacterial Vaccines/chemistry , Brucella Vaccine/administration & dosage , Brucella Vaccine/biosynthesis , Brucella Vaccine/chemistry , Immunity, Cellular , Immunity, Humoral , Intestines/immunology , Intestines/microbiology , Mice , Microorganisms, Genetically-Modified , Salmonella typhimurium/genetics , Salmonella typhimurium/immunology , Sodium Bicarbonate/administration & dosage , Transformation, Bacterial , Vaccination/methods , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/biosynthesis , Vaccines, Attenuated/chemistry
12.
Eur J Pharm Biopharm ; 142: 334-343, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31306751

ABSTRACT

The stability of live-attenuated viruses is very challenging due to thermal sensitivity; therefore, solid form is usually required (often freeze-dried products). Micropellet technology is a lyophilization technology that has the potential to provide greater flexibility in the presentation of a given vaccine particularly in multi-dose format or in combination of different vaccines. As a novel vaccine alternative process, this spray freeze-dried (SFD) micropellet technology was evaluated using as a model a yellow fever virus produced in Vero cells (vYF). Screening of excipients was performed in order to optimize physico-chemical properties of the micropellets. Sugar/polymer-based formulations induced high glass transition temperature (Tg), adequate breaking force and attrition resistance of the SFD micropellets. These mechanical parameters and their stability are of considerable importance for the storage, the transport but also the filling process of the SFD micropellets. By adding excipients required to best preserve virus infectivity, an optimal sugar/polymer-based formulation was selected to build micropellets containing vYF. Monodisperse and dried micropellets with a diameter of about 530 µm were obtained, exhibiting similar potency to conventional freeze-dried product in terms of vYF infectious titer when both solid forms were kept under refrigerated conditions (2-8 °C). Comparable kinetics of degradation were observed for vYF formulated in micropellets or as conventional freeze-dried product during an accelerated stability study using incubations at 25 °C and 37 °C over several weeks. The results from this investigation demonstrate the ability to formulate live-attenuated viruses in micropellets. Pharmaceutical applications of this novel vaccine solid form are discussed.


Subject(s)
Yellow Fever Vaccine/chemistry , Animals , Chemistry, Pharmaceutical/methods , Chlorocebus aethiops , Drug Stability , Excipients/chemistry , Freeze Drying/methods , Vaccines, Attenuated/chemistry , Vero Cells
13.
Sci Rep ; 9(1): 6783, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31043646

ABSTRACT

Oral vaccines aid immunization of hard to reach animal populations but often contain live-attenuated viruses that pose risks of reversion to virulence or residual pathogenicity. Human risk assessment is crucial prior to vaccine field distribution but there is currently no standardized approach. We mapped exposure pathways by which distribution of oral vaccines may result in inoculation into people and applied a Markov chain to estimate the number of severe adverse events. We simulated three oral rabies vaccination (ORV) campaigns: (1) first generation ORV (SAD-B19) in foxes, (2) SAD-B19 in dogs, and (3) third generation ORV (SPBN GASGAS) in dogs. The risk of SAD-B19-associated human deaths was predicted to be low (0.18 per 10 million baits, 95% CI: 0.08, 0.36) when distributed to foxes, but, consistent with international concern, 19 times greater (3.35 per 10 million baits, 95% CI: 2.83, 3.98) when distributed to dogs. We simulated no deaths from SPBN GAS-GAS. Human deaths during dog campaigns were particularly sensitive to dog bite rate, and during wildlife campaigns to animal consumption rate and human contact rate with unconsumed baits. This model highlights the safety of third generation rabies vaccines and serves as a platform for standardized approaches to inform risk assessments.


Subject(s)
Rabies Vaccines/administration & dosage , Rabies virus/immunology , Rabies/veterinary , Vaccination/veterinary , Vaccines, Attenuated/administration & dosage , Zoonoses/prevention & control , Administration, Oral , Animals , Dogs , Foxes , Rabies/immunology , Rabies/prevention & control , Rabies Vaccines/immunology , Vaccines, Attenuated/chemistry , Vaccines, Attenuated/immunology , Zoonoses/immunology , Zoonoses/virology
14.
Bull Exp Biol Med ; 166(5): 631-636, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30903496

ABSTRACT

We compared three cold-adapted live attenuated influenza vaccine strains prepared by reverse genetics methods on the basis of master donor virus A/Leningrad/134/17/57 and influenza H7N9 strains A/Anhui/1/2013 and A/Shanghai/1/2013. Two strains based on A/Anhui/1/2013 differed by amino acid positions 123 and 149 in HA1 (123N/149N; 123D/149D). All strains efficiently replicated in developing chicken embryos; A/Shanghai/1/2013-based strain and A/Anhui/1/2013-123N/149N variant were characterized by reduced replication in MDCK cells. Strains based on A/Anhui/1/2013 virus agglutinated erythrocytes with α2,3- and α2,6-linked sialic acid residues, whereas strain A/Shanghai/1/2013 only α2,3. In experiments with BALB/c mice, Anhui-123D/149D strain was most immunogenic and induced high crossreactive humoral immune response, therefore it can be recommended as the model virus for the construction of recombinant vector vaccines based on live attenuated influenza vaccine.


Subject(s)
Influenza A Virus, H7N9 Subtype/immunology , Amino Acid Substitution , Animals , Hemagglutinins/chemistry , Hemagglutinins/immunology , Humans , Immunity, Humoral , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Mice , Mice, Inbred BALB C , Vaccines, Attenuated/chemistry , Vaccines, Attenuated/immunology
15.
J Pharm Sci ; 108(7): 2315-2322, 2019 07.
Article in English | MEDLINE | ID: mdl-30826350

ABSTRACT

Live attenuated influenza vaccine (LAIV) is considered one of the most effective vaccines and can be manufactured quickly and inexpensively to counter seasonal or pandemic influenza. Lyophilization is widely used in vaccine production. However, it requires a longer production cycle and large-scale equipment, thus posing a considerable financial burden for developing countries. A potential solution is the development of liquid LAIV, which can increase the yield and reduce the cost of production. In this study, influential factors of LAIV, such as potential stabilizing excipients and pH, were optimized by an orthogonal design. We found that pH is the most critical factor for the stability of LAIV; salt concentration and initial virus titer are also important for LAIV stability. With these data, we developed a liquid formulation consisting of 2.5% sucrose, 0.1% monosodium glutamate, 1% arginine, and 0.5% human serum albumin, with pH ranging from 6.2 to 6.9 (optimum pH 6.5-6.7), for optimal production of monovalent or trivalent LAIVs. This liquid formulation has the potential to considerably improve vaccine production capacity to compensate for the immense shortfall in influenza vaccines globally.


Subject(s)
Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Influenza, Human/immunology , Vaccines, Attenuated/chemistry , Vaccines, Attenuated/immunology , Animals , Cell Line , Chemistry, Pharmaceutical/methods , Dogs , Excipients/chemistry , Humans , Hydrogen-Ion Concentration , Influenza A Virus, H1N1 Subtype , Influenza, Human/prevention & control , Madin Darby Canine Kidney Cells , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control
16.
J Virol Methods ; 264: 18-22, 2019 02.
Article in English | MEDLINE | ID: mdl-30144493

ABSTRACT

Live attenuated viral vaccines are difficult to handle and often sensitive to temperature. The viral titer may drop during the processing and storing stage, especially at high temperatures. Using live attenuated viral vaccines successfully depends on keeping the sufficient potency required for an immune response. Although freeze-drying makes the vaccine more stable, in the absence of appropriate stabilizer the process may affect the structure and viability of the viruses. Therefore, the formulation of vaccine by means of an appropriate stabilizer plays a crucial role in the stability of viral structure and potency of the vaccine. This study aimed to evaluate the effect of two new stabilizers, including a Trehalose-based stabilizer (T) and a stabilizer containing sucrose, human serum albumin and sorbitol (S) on the thermal stability of lyophilized live-attenuated Rubella virus (Takahashi strain). Two Rubella vaccines were formulated using different stabilizers and were lyophilized. The potency of produced vaccines was investigated using accelerated stability test. To determine the pattern of thermal stability of reconstituted vaccines in 24 h, incubating at three different temperatures and continuous sampling was also included in this study. The viral titer was calculated by TCID50 method. The regression analysis revealed that T vaccine found the sufficient stability compared to commercial Rubella vaccine containing a gelatin-based (G) stabilizer.


Subject(s)
Excipients/chemistry , Freeze Drying , Rubella Vaccine/chemistry , Temperature , Vaccines, Attenuated/chemistry , Gelatin/chemistry , Regression Analysis , Rubella/prevention & control , Trehalose/chemistry , Viral Load
17.
Viruses ; 10(10)2018 10 15.
Article in English | MEDLINE | ID: mdl-30326610

ABSTRACT

Live attenuated influenza vaccines (LAIV) have prevented morbidity and mortality associated with influenza viral infections for many years and represent the best therapeutic option to protect against influenza viral infections in humans. However, the development of LAIV has traditionally relied on empirical methods, such as the adaptation of viruses to replicate at low temperatures. These approaches require an extensive investment of time and resources before identifying potential vaccine candidates that can be safely implemented as LAIV to protect humans. In addition, the mechanism of attenuation of these vaccines is poorly understood in some cases. Importantly, LAIV are more efficacious than inactivated vaccines because their ability to mount efficient innate and adaptive humoral and cellular immune responses. Therefore, the design of potential LAIV based on known properties of viral proteins appears to be a highly appropriate option for the treatment of influenza viral infections. For that, the viral RNA synthesis machinery has been a research focus to identify key amino acid substitutions that can lead to viral attenuation and their use in safe, immunogenic, and protective LAIV. In this review, we discuss the potential to manipulate the influenza viral RNA-dependent RNA polymerase (RdRp) complex to generate attenuated forms of the virus that can be used as LAIV for the treatment of influenza viral infections, one of the current and most effective prophylactic options for the control of influenza in humans.


Subject(s)
Influenza A virus/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Ribonucleoproteins/immunology , Vaccines, Attenuated/immunology , Viral Proteins/immunology , Animals , Humans , Influenza A virus/chemistry , Influenza A virus/genetics , Influenza Vaccines/chemistry , Influenza Vaccines/genetics , Influenza, Human/immunology , Influenza, Human/virology , Mutation , Ribonucleoproteins/administration & dosage , Ribonucleoproteins/chemistry , Ribonucleoproteins/genetics , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/chemistry , Vaccines, Attenuated/genetics , Viral Proteins/administration & dosage , Viral Proteins/chemistry , Viral Proteins/genetics
18.
Bull Exp Biol Med ; 165(2): 239-242, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29923000

ABSTRACT

The dynamics of LPO marker malondialdehyde formation and peroxidase-destroying activity was studied in homogenized organs of guinea pigs, immunized with thermoextracts from S and L forms Brucella abortus I-206. The L form brucella thermoextract exhibited a lower reactogenicity and adequately activated the antioxidant system, due to which the destructive effects of ROS could be partially neutralized during the vaccinal process.


Subject(s)
Animal Structures/drug effects , Antioxidants/metabolism , Brucella Vaccine/pharmacology , Brucella abortus/chemistry , Lipid Peroxidation/drug effects , Vaccines, Attenuated/pharmacology , Animal Structures/metabolism , Animals , Animals, Laboratory , Brucella Vaccine/chemistry , Brucella abortus/immunology , Brucella abortus/pathogenicity , Female , Guinea Pigs , L Forms/physiology , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Oxidative Stress/drug effects , Spheroplasts/physiology , Temperature , Vaccines, Attenuated/chemistry
19.
Microbes Infect ; 20(9-10): 455-460, 2018.
Article in English | MEDLINE | ID: mdl-29233768

ABSTRACT

Vaccines are one of the most important methods for preventing infectious disease. Structural modification of lipopolysaccharide (LPS) provides a strategy for the development of live attenuated vaccines, either by altering the immunogenicity or by attenuating virulence of the bacteria. This review summarizes various approaches that utilize LPS mutants as whole-cell vaccines.


Subject(s)
Bacterial Vaccines/chemistry , Bacterial Vaccines/immunology , Gram-Negative Bacteria/immunology , Lipopolysaccharides/chemistry , Lipopolysaccharides/immunology , Animals , Bacterial Vaccines/genetics , Humans , Lipid A/chemistry , Lipid A/immunology , Lipopolysaccharides/genetics , Mutation , O Antigens/chemistry , O Antigens/immunology , Oligosaccharides/chemistry , Oligosaccharides/immunology , Vaccines, Attenuated/chemistry , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology
20.
Vaccine ; 36(22): 3169-3179, 2018 05 24.
Article in English | MEDLINE | ID: mdl-28506515

ABSTRACT

A combination experimental approach, utilizing semi-empirical excipient screening followed by statistical modeling using design of experiments (DOE), was undertaken to identify stabilizing candidate formulations for a lyophilized live attenuated Flavivirus vaccine candidate. Various potential pharmaceutical compounds used in either marketed or investigative live attenuated viral vaccine formulations were first identified. The ability of additives from different categories of excipients, either alone or in combination, were then evaluated for their ability to stabilize virus against freeze-thaw, freeze-drying, and accelerated storage (25°C) stresses by measuring infectious virus titer. An exploratory data analysis and predictive DOE modeling approach was subsequently undertaken to gain a better understanding of the interplay between the key excipients and stability of virus as well as to determine which combinations were interacting to improve virus stability. The lead excipient combinations were identified and tested for stabilizing effects using a tetravalent mixture of viruses in accelerated and real time (2-8°C) stability studies. This work demonstrates the utility of combining semi-empirical excipient screening and DOE experimental design strategies in the formulation development of lyophilized live attenuated viral vaccine candidates.


Subject(s)
Excipients/chemistry , Vaccines, Attenuated/chemistry , Viral Vaccines/chemistry , Flavivirus , Freeze Drying
SELECTION OF CITATIONS
SEARCH DETAIL