Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.072
Filter
1.
Nat Commun ; 15(1): 3856, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719852

ABSTRACT

The Modified Vaccinia Ankara vaccine developed by Bavarian Nordic (MVA-BN) was widely deployed to prevent mpox during the 2022 global outbreak. This vaccine was initially approved for mpox based on its reported immunogenicity (from phase I/II trials) and effectiveness in animal models, rather than evidence of clinical efficacy. However, no validated correlate of protection after vaccination has been identified. Here we performed a systematic search and meta-analysis of the available data to test whether vaccinia-binding ELISA endpoint titer is predictive of vaccine effectiveness against mpox. We observe a significant correlation between vaccine effectiveness and vaccinia-binding antibody titers, consistent with the existing assumption that antibody levels may be a correlate of protection. Combining this data with analysis of antibody kinetics after vaccination, we predict the durability of protection after vaccination and the impact of dose spacing. We find that delaying the second dose of MVA-BN vaccination will provide more durable protection and may be optimal in an outbreak with limited vaccine stock. Although further work is required to validate this correlate, this study provides a quantitative evidence-based approach for using antibody measurements to predict the effectiveness of mpox vaccination.


Subject(s)
Antibodies, Viral , Vaccine Efficacy , Vaccinia virus , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Vaccinia virus/immunology , Vaccination/methods , Enzyme-Linked Immunosorbent Assay , Vaccinia/immunology , Vaccinia/prevention & control , Smallpox Vaccine/immunology , Smallpox Vaccine/administration & dosage , Animals
2.
Viral Immunol ; 37(4): 216-219, 2024 05.
Article in English | MEDLINE | ID: mdl-38717823

ABSTRACT

In May 2022, mpox began to spread worldwide, posing a serious threat to human public health. Modified Vaccinia Ankara-Bavaria Nordic (MVA-BN) is a live attenuated orthopoxvirus vaccine that has been authorized by the U.S. Food and Drug Administration as the vaccine of choice for the prevention of mpox. In this study, we conducted a meta-analysis of all currently published literature on the efficacy and safety of the MVA-BN vaccine in the real world, showing that the MVA-BN vaccine is effective and safe, with efficacy of up to 75% with a single dose and up to 80% with a two-dose vaccine. Meanwhile, we found that subcutaneous injection has lower local and systemic adverse events than intradermal injection, regardless of single- or two-dose vaccination, and subcutaneous injection is better tolerated in children, the elderly, or people with underlying medical conditions. These results have important reference value for clinical practice.


Subject(s)
Vaccine Efficacy , Vaccines, Attenuated , Humans , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Poxviridae Infections/prevention & control , Poxviridae Infections/immunology , Vaccinia virus/immunology , Vaccinia virus/genetics , Vaccination , Injections, Subcutaneous , Injections, Intradermal , Viral Vaccines/adverse effects , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Orthopoxvirus/immunology , Orthopoxvirus/genetics , Child
3.
BMC Infect Dis ; 24(1): 483, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730352

ABSTRACT

BACKGROUND: Monkeypox (Mpox) is an important human pathogen without etiological treatment. A viral-host interactome study may advance our understanding of molecular pathogenesis and lead to the discovery of suitable therapeutic targets. METHODS: GEO Expression datasets characterizing mRNA profile changes in different host responses to poxviruses were analyzed for shared pathway identification, and then, the Protein-protein interaction (PPI) maps were built. The viral gene expression datasets of Monkeypox virus (MPXV) and Vaccinia virus (VACV) were used to identify the significant viral genes and further investigated for their binding to the library of targeting molecules. RESULTS: Infection with MPXV interferes with various cellular pathways, including interleukin and MAPK signaling. While most host differentially expressed genes (DEGs) are predominantly downregulated upon infection, marked enrichments in histone modifiers and immune-related genes were observed. PPI analysis revealed a set of novel virus-specific protein interactions for the genes in the above functional clusters. The viral DEGs exhibited variable expression patterns in three studied cell types: primary human monocytes, primary human fibroblast, and HeLa, resulting in 118 commonly deregulated proteins. Poxvirus proteins C6R derived protein K7 and K7R of MPXV and VACV were prioritized as targets for potential therapeutic interventions based on their histone-regulating and immunosuppressive properties. In the computational docking and Molecular Dynamics (MD) experiments, these proteins were shown to bind the candidate small molecule S3I-201, which was further prioritized for lead development. RESULTS: MPXV circumvents cellular antiviral defenses by engaging histone modification and immune evasion strategies. C6R-derived protein K7 binding candidate molecule S3I-201 is a priority promising candidate for treating Mpox.


Subject(s)
Host-Pathogen Interactions , Monkeypox virus , Vaccinia virus , Viral Proteins , Humans , Viral Proteins/genetics , Viral Proteins/metabolism , Vaccinia virus/genetics , Vaccinia virus/metabolism , HeLa Cells , Monkeypox virus/genetics , Mpox (monkeypox)/virology , Protein Interaction Maps , Gene Expression Profiling , Molecular Docking Simulation , Poxviridae/genetics , Poxviridae/metabolism , Fibroblasts/virology , Fibroblasts/metabolism
4.
Front Immunol ; 15: 1372584, 2024.
Article in English | MEDLINE | ID: mdl-38745665

ABSTRACT

Among Plasmodium spp. responsible for human malaria, Plasmodium vivax ranks as the second most prevalent and has the widest geographical range; however, vaccine development has lagged behind that of Plasmodium falciparum, the deadliest Plasmodium species. Recently, we developed a multistage vaccine for P. falciparum based on a heterologous prime-boost immunization regimen utilizing the attenuated vaccinia virus strain LC16m8Δ (m8Δ)-prime and adeno-associated virus type 1 (AAV1)-boost, and demonstrated 100% protection and more than 95% transmission-blocking (TB) activity in the mouse model. In this study, we report the feasibility and versatility of this vaccine platform as a P. vivax multistage vaccine, which can provide 100% sterile protection against sporozoite challenge and >95% TB efficacy in the mouse model. Our vaccine comprises m8Δ and AAV1 viral vectors, both harboring the gene encoding two P. vivax circumsporozoite (PvCSP) protein alleles (VK210; PvCSP-Sal and VK247; -PNG) and P25 (Pvs25) expressed as a Pvs25-PvCSP fusion protein. For protective efficacy, the heterologous m8Δ-prime/AAV1-boost immunization regimen showed 100% (short-term; Day 28) and 60% (long-term; Day 242) protection against PvCSP VK210 transgenic Plasmodium berghei sporozoites. For TB efficacy, mouse sera immunized with the vaccine formulation showed >75% TB activity and >95% transmission reduction activity by a direct membrane feeding assay using P. vivax isolates in blood from an infected patient from the Brazilian Amazon region. These findings provide proof-of-concept that the m8Δ/AAV1 vaccine platform is sufficiently versatile for P. vivax vaccine development. Future studies are needed to evaluate the safety, immunogenicity, vaccine efficacy, and synergistic effects on protection and transmission blockade in a non-human primate model for Phase I trials.


Subject(s)
Dependovirus , Genetic Vectors , Malaria Vaccines , Malaria, Vivax , Plasmodium vivax , Animals , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Plasmodium vivax/immunology , Plasmodium vivax/genetics , Malaria, Vivax/prevention & control , Malaria, Vivax/transmission , Malaria, Vivax/immunology , Mice , Dependovirus/genetics , Dependovirus/immunology , Female , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Disease Models, Animal , Vaccinia virus/genetics , Vaccinia virus/immunology , Humans , Mice, Inbred BALB C , Immunization, Secondary , Vaccine Efficacy
5.
J Cell Biol ; 223(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38709216

ABSTRACT

Autophagy is an essential degradation program required for cell homeostasis. Among its functions is the engulfment and destruction of cytosolic pathogens, termed xenophagy. Not surprisingly, many pathogens use various strategies to circumvent or co-opt autophagic degradation. For poxviruses, it is known that infection activates autophagy, which however is not required for successful replication. Even though these complex viruses replicate exclusively in the cytoplasm, autophagy-mediated control of poxvirus infection has not been extensively explored. Using the prototypic poxvirus, vaccinia virus (VACV), we show that overexpression of the xenophagy receptors p62, NDP52, and Tax1Bp1 restricts poxvirus infection. While NDP52 and Tax1Bp1 were degraded, p62 initially targeted cytoplasmic virions before being shunted to the nucleus. Nuclear translocation of p62 was dependent upon p62 NLS2 and correlated with VACV kinase mediated phosphorylation of p62 T269/S272. This suggests that VACV targets p62 during the early stages of infection to avoid destruction and further implies that poxviruses exhibit multi-layered control of autophagy to facilitate cytoplasmic replication.


Subject(s)
Autophagy , Cell Nucleus , Sequestosome-1 Protein , Vaccinia virus , Humans , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Cell Nucleus/virology , HEK293 Cells , HeLa Cells , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Phosphorylation , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Vaccinia/metabolism , Vaccinia/virology , Vaccinia/genetics , Vaccinia virus/metabolism , Vaccinia virus/genetics , Virus Replication
6.
Front Immunol ; 15: 1360140, 2024.
Article in English | MEDLINE | ID: mdl-38711513

ABSTRACT

Introduction: Modified Vaccinia Virus Ankara (MVA) is a safe vaccine vector inducing long- lasting and potent immune responses. MVA-mediated CD8+T cell responses are optimally induced, if both, direct- and cross-presentation of viral or recombinant antigens by dendritic cells are contributing. Methods: To improve the adaptive immune responses, we investigated the role of the purinergic receptor P2X7 (P2RX7) in MVA-infected feeder cells as a modulator of cross-presentation by non-infected dendritic cells. The infected feeder cells serve as source of antigen and provide signals that help to attract dendritic cells for antigen take up and to license these cells for cross-presentation. Results: We demonstrate that presence of an active P2RX7 in major histocompatibility complex (MHC) class I (MHCI) mismatched feeder cells significantly enhanced MVA-mediated antigen cross-presentation. This was partly regulated by P2RX7-specific processes, such as the increased availability of extracellular particles as well as the altered cellular energy metabolism by mitochondria in the feeder cells. Furthermore, functional P2RX7 in feeder cells resulted in a delayed but also prolonged antigen expression after infection. Discussion: We conclude that a combination of the above mentioned P2RX7-depending processes leads to significantly increased T cell activation via cross- presentation of MVA-derived antigens. To this day, P2RX7 has been mostly investigated in regards to neuroinflammatory diseases and cancer progression. However, we report for the first time the crucial role of P2RX7 for antigen- specific T cell immunity in a viral infection model.


Subject(s)
CD8-Positive T-Lymphocytes , Cross-Priming , Dendritic Cells , Receptors, Purinergic P2X7 , Vaccinia virus , Receptors, Purinergic P2X7/immunology , Receptors, Purinergic P2X7/metabolism , Cross-Priming/immunology , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Vaccinia virus/immunology , Mice , CD8-Positive T-Lymphocytes/immunology , Genetic Vectors , Mice, Inbred C57BL , Antigen Presentation/immunology , Antigens, Viral/immunology , Humans , Viral Vaccines/immunology
7.
Eur J Med Chem ; 271: 116412, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38643669

ABSTRACT

New acyclic pyrimidine nucleoside phosphonate prodrugs with a 4-(2,4-diaminopyrimidin-6-yl)oxy-but-2-enyl]phosphonic acid skeleton (O-DAPy nucleobase) were prepared through a convergent synthesis by olefin cross-metathesis as the key step. Several acyclic nucleoside 4-(2,4-diaminopyrimidin-6-yl)oxy-but-2-enyl]phosphonic acid prodrug exhibited in vitro antiviral activity in submicromolar or nanomolar range against varicella zoster virus (VZV), human cytomegalovirus (HCMV), human herpes virus type 1 (HSV-1) and type 2 (HSV-2), and vaccinia virus (VV), with good selective index (SI). Among them, the analogue 9c (LAVR-289) proved markedly inhibitory against VZV wild-type (TK+) (EC50 0.0035 µM, SI 740) and for thymidine kinase VZV deficient strains (EC50 0.018 µM, SI 145), with a low morphological toxicity in cell culture at 100 µM and acceptable cytostatic activity resulting in excellent selectivity. Compound 9c exhibited antiviral activity against HCMV (EC50 0.021 µM) and VV (EC50 0.050 µM), as well as against HSV-1 (TK-) (EC50 0.0085 µM). Finally, LAVR-289 (9c) deserves further (pre)clinical investigations as a potent candidate broad-spectrum anti-herpesvirus drug.


Subject(s)
Antiviral Agents , DNA Viruses , Microbial Sensitivity Tests , Prodrugs , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Prodrugs/pharmacology , Prodrugs/chemical synthesis , Prodrugs/chemistry , Humans , DNA Viruses/drug effects , Structure-Activity Relationship , Herpesvirus 1, Human/drug effects , Molecular Structure , Herpesvirus 3, Human/drug effects , Organophosphonates/pharmacology , Organophosphonates/chemistry , Organophosphonates/chemical synthesis , Cytomegalovirus/drug effects , Dose-Response Relationship, Drug , Vaccinia virus/drug effects , Herpesvirus 2, Human/drug effects
8.
Front Immunol ; 15: 1277447, 2024.
Article in English | MEDLINE | ID: mdl-38633245

ABSTRACT

Modified vaccinia virus Ankara (MVA) has been widely tested in clinical trials as recombinant vector vaccine against infectious diseases and cancers in humans and animals. However, one biosafety concern about the use of MVA vectored vaccine is the potential for MVA to recombine with naturally occurring orthopoxviruses in cells and hosts in which it multiplies poorly and, therefore, producing viruses with mosaic genomes with altered genetic and phenotypic properties. We previously conducted co-infection and superinfection experiments with MVA vectored influenza vaccine (MVA-HANP) and a feline Cowpox virus (CPXV-No-F1) in Vero cells (that were semi-permissive to MVA infection) and showed that recombination occurred in both co-infected and superinfected cells. In this study, we selected the putative recombinant viruses and performed genomic characterization of these viruses. Some putative recombinant viruses displayed plaque morphology distinct of that of the parental viruses. Our analysis demonstrated that they had mosaic genomes of different lengths. The recombinant viruses, with a genome more similar to MVA-HANP (>50%), rescued deleted and/or fragmented genes in MVA and gained new host ranges genes. Our analysis also revealed that some MVA-HANP contained a partially deleted transgene expression cassette and one recombinant virus contained part of the transgene expression cassette similar to that incomplete MVA-HANP. The recombination in co-infected and superinfected Vero cells resulted in recombinant viruses with unpredictable biological and genetic properties as well as recovery of delete/fragmented genes in MVA and transfer of the transgene into replication competent CPXV. These results are relevant to hazard characterization and risk assessment of MVA vectored biologicals.


Subject(s)
Coinfection , Influenza Vaccines , Superinfection , Chlorocebus aethiops , Animals , Cats , Humans , Influenza Vaccines/genetics , Cowpox virus/genetics , Vero Cells , Vaccinia virus , Vaccines, Synthetic/genetics , Whole Genome Sequencing
9.
Nat Commun ; 15(1): 3265, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627363

ABSTRACT

The eradication of smallpox was officially declared by the WHO in 1980, leading to discontinuation of the vaccination campaign against the virus. Consequently, immunity against smallpox and related orthopoxviruses like Monkeypox virus gradually declines, highlighting the need for efficient countermeasures not only for the prevention, but also for the treatment of already exposed individuals. We have recently developed human-like monoclonal antibodies (mAbs) from vaccinia virus-immunized non-human primates. Two mAbs, MV33 and EV42, targeting the two infectious forms of the virus, were selected for in vivo evaluation, based on their in vitro neutralization potency. A single dose of either MV33 or EV42 administered three days post-infection (dpi) to BALB/c female mice provides full protection against lethal ectromelia virus challenge. Importantly, a combination of both mAbs confers full protection even when provided five dpi. Whole-body bioimaging and viral load analysis reveal that combination of the two mAbs allows for faster and more efficient clearance of the virus from target organs compared to either MV33 or EV42 separately. The combined mAbs treatment further confers post-exposure protection against the currently circulating Monkeypox virus in Cast/EiJ female mice, highlighting their therapeutic potential against other orthopoxviruses.


Subject(s)
Orthopoxvirus , Poxviridae Infections , Smallpox , Vaccinia , Humans , Female , Animals , Mice , Antibodies, Monoclonal , Poxviridae Infections/prevention & control , Vaccinia virus , Antibodies, Viral
10.
Front Immunol ; 15: 1272351, 2024.
Article in English | MEDLINE | ID: mdl-38558795

ABSTRACT

In recent years, oncolytic viruses have emerged as promising agents for treating various cancers. An oncolytic virus is a non-pathogenic virus that, due to genetic manipulation, tends to replicate in and cause lysis of cancerous cells while leaving healthy cells unaffected. Among these viruses, vaccinia virus is an attractive platform for use as an oncolytic platform due to its 190 Kb genome with a high capacity for encoding therapeutic payloads. Combining oncolytic VV therapy with other conventional cancer treatments has been shown to be synergistic and more effective than monotherapies. Additionally, OVV can be used as a vector to deliver therapeutic payloads, alone or in combination with other treatments, to increase overall efficacy. Here, we present a comprehensive analysis of preclinical and clinical studies that have evaluated the efficacy of oncolytic vaccinia viruses in cancer immunotherapy. We discuss the outcomes of these studies, including tumor regression rates, overall survival benefits, and long-term responses. Moreover, we provide insights into the challenges and limitations associated with oncolytic vaccinia virus- based therapies, including immune evasion mechanisms, potential toxicities, and the development of resistance.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Viruses/genetics , Vaccinia virus/genetics , Neoplasms/therapy , Neoplasms/genetics , Immunotherapy
11.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673835

ABSTRACT

Virotherapy is one of the perspective technologies in the treatment of malignant neoplasms. Previously, we have developed oncolytic vaccinia virus VV-GMCSF-Lact and its high cytotoxic activity and antitumor efficacy against glioma was shown. In this work, using immortalized and patient-derived cells with different sensitivity to VV-GMCSF-Lact, we evaluated the cytotoxic effect of chemotherapy agents. Additionally, we studied the combination of VV-GMCSF-Lact with temozolomide which is the most preferred drug for glioma treatment. Experimental results indicate that first adding temozolomide and then the virus to the cells is inherently more efficient than dosing it in the reverse order. Testing these regimens in the U87 MG xenograft glioblastoma model confirmed this effect, as assessed by tumor growth inhibition index and histological analysis. Moreover, VV-GMCSF-Lact as monotherapy is more effective against U87 MG glioblastoma xenografts comparing temozolomide.


Subject(s)
Glioma , Granulocyte-Macrophage Colony-Stimulating Factor , Oncolytic Virotherapy , Oncolytic Viruses , Temozolomide , Vaccinia virus , Xenograft Model Antitumor Assays , Humans , Animals , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Temozolomide/pharmacology , Temozolomide/therapeutic use , Cell Line, Tumor , Mice , Glioma/therapy , Glioma/drug therapy , Glioma/pathology , Vaccinia virus/genetics , Vaccinia virus/physiology , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Mice, Nude , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Glioblastoma/therapy , Glioblastoma/drug therapy , Glioblastoma/pathology , Combined Modality Therapy
12.
Viruses ; 16(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675961

ABSTRACT

AIMS: To evaluate whether antibodies specific for the vaccinia virus (VV) are still detectable after at least 45 years from immunization. To confirm that VV-specific antibodies are endowed with the capacity to neutralize Mpox virus (MPXV) in vitro. To test a possible role of polyclonal non-specific activation in the maintenance of immunologic memory. METHODS: Sera were collected from the following groups: smallpox-vaccinated individuals with or without latent tuberculosis infection (LTBI), unvaccinated donors, and convalescent individuals after MPXV infection. Supernatant of VV- or MPXV-infected Vero cells were inactivated and used as antigens in ELISA or in Western blot (WB) analyses. An MPXV plaque reduction neutralization test (PRNT) was optimized and performed on study samples. VV- and PPD-specific memory T cells were measured by flow cytometry. RESULTS: None of the smallpox unvaccinated donors tested positive in ELISA or WB analysis and their sera were unable to neutralize MPXV in vitro. Sera from all the individuals convalescing from an MPXV infection tested positive for anti-VV or MPXV IgG with high titers and showed MPXV in vitro neutralization capacity. Sera from most of the vaccinated individuals showed IgG anti-VV and anti-MPXV at high titers. WB analyses showed that positive sera from vaccinated or convalescent individuals recognized both VV and MPXV antigens. Higher VV-specific IgG titer and specific T cells were observed in LTBI individuals. CONCLUSIONS: ELISA and WB performed using supernatant of VV- or MPXV-infected cells are suitable to identify individuals vaccinated against smallpox at more than 45 years from immunization and individuals convalescing from a recent MPXV infection. ELISA and WB results show a good correlation with PRNT. Data confirm that a smallpox vaccination induces a long-lasting memory in terms of specific IgG and that antibodies raised against VV may neutralize MPXV in vitro. Finally, higher titers of VV-specific antibodies and higher frequency of VV-specific memory T cells in LTBI individuals suggest a role of polyclonal non-specific activation in the maintenance of immunologic memory.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , B-Lymphocytes , Cross Reactions , Smallpox Vaccine , Vaccinia virus , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Smallpox Vaccine/immunology , B-Lymphocytes/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Cross Reactions/immunology , Vaccinia virus/immunology , Middle Aged , Immunologic Memory , Neutralization Tests , Smallpox/immunology , Smallpox/prevention & control , Animals , Male , T-Lymphocytes/immunology , Female , Enzyme-Linked Immunosorbent Assay , Orthopoxvirus/immunology , Vaccination , Chlorocebus aethiops , Adult , Lymphocyte Activation , Vero Cells
13.
Cell Rep ; 43(4): 114050, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38564336

ABSTRACT

Seo et al.1 shed light on virus-host interactions as they reveal how poxvirus A51R stabilizes microtubules in infected cells, which impacts vaccinia virus virulence in mice by potentially inhibiting reactive-oxygen-species-dependent antiviral responses in macrophages.


Subject(s)
Microtubules , Vaccinia virus , Microtubules/metabolism , Animals , Virulence , Vaccinia virus/pathogenicity , Vaccinia virus/physiology , Humans , Mice , Macrophages/virology , Macrophages/metabolism , Poxviridae/pathogenicity , Poxviridae/genetics , Poxviridae/physiology
14.
Viruses ; 16(3)2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38543790

ABSTRACT

Infection at barrier sites, e.g., skin, activates local immune defenses that limit pathogen spread, while preserving tissue integrity. Phenotypically distinct γδ T cell populations reside in skin, where they shape immunity to cutaneous infection prior to onset of an adaptive immune response by conventional αß CD4+ (TCD4+) and CD8+ (TCD8+) T cells. To examine the mechanisms used by γδ T cells to control cutaneous virus replication and tissue pathology, we examined γδ T cells after infection with vaccinia virus (VACV). Resident γδ T cells expanded and combined with recruited γδ T cells to control pathology after VACV infection. However, γδ T cells did not play a role in control of local virus replication or blockade of systemic virus spread. We identified a unique wound healing signature that has features common to, but also features that antagonize, the sterile cutaneous wound healing response. Tissue repair generally occurs after clearance of a pathogen, but viral wound healing started prior to the peak of virus replication in the skin. γδ T cells contributed to wound healing through induction of multiple cytokines/growth factors required for efficient wound closure. Therefore, γδ T cells modulate the wound healing response following cutaneous virus infection, maintaining skin barrier function to prevent secondary bacterial infection.


Subject(s)
Poxviridae Infections , Skin , Humans , Animals , Mice , Skin/pathology , Administration, Cutaneous , Poxviridae Infections/pathology , Vaccinia virus , Wound Healing , Mice, Inbred C57BL
15.
Signal Transduct Target Ther ; 9(1): 69, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38531869

ABSTRACT

The Orthopoxvirus genus, especially variola virus (VARV), monkeypox virus (MPXV), remains a significant public health threat worldwide. The development of therapeutic antibodies against orthopoxviruses is largely hampered by the high cost of antibody engineering and manufacturing processes. mRNA-encoded antibodies have emerged as a powerful and universal platform for rapid antibody production. Herein, by using the established lipid nanoparticle (LNP)-encapsulated mRNA platform, we constructed four mRNA combinations that encode monoclonal antibodies with broad neutralization activities against orthopoxviruses. In vivo characterization demonstrated that a single intravenous injection of each LNP-encapsulated mRNA antibody in mice resulted in the rapid production of neutralizing antibodies. More importantly, mRNA antibody treatments showed significant protection from weight loss and mortality in the vaccinia virus (VACV) lethal challenge mouse model, and a unique mRNA antibody cocktail, Mix2a, exhibited superior in vivo protection by targeting both intracellular mature virus (IMV)-form and extracellular enveloped virus (EEV)-form viruses. In summary, our results demonstrate the proof-of-concept production of orthopoxvirus antibodies via the LNP-mRNA platform, highlighting the great potential of tailored mRNA antibody combinations as a universal strategy to combat orthopoxvirus as well as other emerging viruses.


Subject(s)
Orthopoxvirus , Vaccinia , Animals , Mice , Combined Antibody Therapeutics , Vaccinia/prevention & control , Antibodies, Viral , Vaccinia virus/genetics
16.
Sci Transl Med ; 16(740): eadl4317, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536937

ABSTRACT

The 2022-2023 mpox outbreak triggered vaccination efforts using smallpox vaccines that were approved for mpox, including modified vaccinia Ankara (MVA; JYNNEOS), which is a safer alternative to live replicating vaccinia virus (ACAM2000). Here, we compare the immunogenicity and protective efficacy of JYNNEOS by the subcutaneous or intradermal routes, ACAM2000 by the percutaneous route, and subunit Ad35 vector-based L1R/B5R or L1R/B5R/A27L/A33R vaccines by the intramuscular route in rhesus macaques. All vaccines provided robust protection against high-dose intravenous mpox virus challenge with the current outbreak strain, with ACAM2000 providing near complete protection and JYNNEOS and Ad35 vaccines providing robust but incomplete protection. Protection correlated with neutralizing antibody responses as well as L1R/M1R- and B5R/B6R-specific binding antibody responses, although additional immune responses likely also contributed to protection. This study demonstrates the protective efficacy of multiple vaccine platforms against mpox virus challenge, including both current clinical vaccines and vectored subunit vaccines.


Subject(s)
Mpox (monkeypox) , Smallpox Vaccine , Animals , Vaccinia virus/genetics , Macaca mulatta , Antibodies, Viral , Vaccines, Subunit
17.
Cell Rep ; 43(3): 113788, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38461415

ABSTRACT

Histone deacetylases (HDACs) regulate gene expression and innate immunity. Previously, we showed that HDAC5 is degraded during Vaccinia virus (VACV) infection and is a restriction factor for VACV and herpes simplex virus type 1. Here, we report that HDAC5 promotes interferon regulatory factor 3 (IRF3) activation downstream of Toll-IL-1 receptor (TIR) domain-containing adaptor molecule-1 or Sendai virus-mediated stimulation without requiring HDAC activity. Loss of HDAC5-mediated IRF3 activation is restored by re-introduction of HDAC5 but not HDAC1 or HDAC4. The antiviral activity of HDAC5 is antagonized by VACV protein C6 and orthologs from the orthopoxviruses cowpox, rabbitpox, camelpox, monkeypox, and variola. Infection by many of these viruses induces proteasomal degradation of HDAC5, and expression of C6 alone can induce HDAC5 degradation. Mechanistically, C6 binds to the dimerization domain of HDAC5 and prevents homodimerization and heterodimerization with HDAC4. Overall, this study describes HDAC5 as a positive regulator of IRF3 activation and provides mechanistic insight into how the poxviral protein C6 binds to HDAC5 to antagonize its function.


Subject(s)
Orthopoxvirus , Variola virus , Monkeypox virus/metabolism , Variola virus/metabolism , Orthopoxvirus/metabolism , Interferon Regulatory Factor-3/metabolism , Vaccinia virus/physiology , Histone Deacetylases/metabolism
18.
Cell Rep ; 43(3): 113882, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38457341

ABSTRACT

Numerous viruses alter host microtubule (MT) networks during infection, but how and why they induce these changes is unclear in many cases. We show that the vaccinia virus (VV)-encoded A51R protein is a MT-associated protein (MAP) that directly binds MTs and stabilizes them by both promoting their growth and preventing their depolymerization. Furthermore, we demonstrate that A51R-MT interactions are conserved across A51R proteins from multiple poxvirus genera, and highly conserved, positively charged residues in A51R proteins mediate these interactions. Strikingly, we find that viruses encoding MT interaction-deficient A51R proteins fail to suppress a reactive oxygen species (ROS)-dependent antiviral response in macrophages that leads to a block in virion morphogenesis. Moreover, A51R-MT interactions are required for VV virulence in mice. Collectively, our data show that poxviral MAP-MT interactions overcome a cell-intrinsic antiviral ROS response in macrophages that would otherwise block virus morphogenesis and replication in animals.


Subject(s)
Poxviridae , Virus Replication , Animals , Mice , Reactive Oxygen Species/metabolism , Poxviridae/genetics , Vaccinia virus/physiology , Viral Proteins/metabolism , Microtubules/metabolism , Antiviral Agents/metabolism
19.
PLoS One ; 19(3): e0298437, 2024.
Article in English | MEDLINE | ID: mdl-38498459

ABSTRACT

Ionizing radiation (IR) and oncolytic viruses are both used to treat cancer, and the effectiveness of both agents depends upon stimulating an immune response against the tumor. In this study we tested whether combining image guided ionizing radiation (IG-IR) with an oncolytic vaccinia virus (VACV) could yield a better therapeutic response than either treatment alone. ΔF4LΔJ2R VACV grew well on irradiated human and mouse breast cancer cells, and the virus can be combined with 4 or 8 Gy of IR to kill cells in an additive or weakly synergistic manner. To test efficacy in vivo we used immune competent mice bearing orthotopic TUBO mammary tumors. IG-IR worked well with 10 Gy producing 80% complete responses, but this was halved when the tumors were treated with VACV starting 2 days after IG-IR. VACV monotherapy was ineffective in this model. The antagonism was time dependent as waiting for 21 days after IG-IR eliminated the inhibitory effect but without yielding any further benefits over IR alone. In irradiated tumors, VACV replication was also lower, suggesting that irradiation created an environment that did not support infection as well in vivo as in vitro. A study of how four different treatment regimens affected the immune composition of the tumor microenvironment showed that treating irradiated tumors with VACV altered the immunological profiles in tumors exposed to IR or VACV alone. We detected more PD-1 and PD-L1 expression in tumors exposed to IR+VACV but adding an αPD-1 antibody to the protocol did not change the way VACV interferes with IG-IR therapy. VACV encodes many immunosuppressive gene products that may interfere with the ability of radiotherapy to induce an effective anti-tumor immune response through the release of danger-associated molecular patterns. These data suggest that infecting irradiated tumors with VACV, too soon after exposure, may interfere in the innate and linked adaptive immune responses that are triggered by radiotherapy to achieve a beneficial impact.


Subject(s)
Mammary Neoplasms, Animal , Oncolytic Virotherapy , Oncolytic Viruses , Radiotherapy, Image-Guided , Vaccinia , Humans , Animals , Mice , Vaccinia virus/genetics , Oncolytic Viruses/genetics , Mammary Neoplasms, Animal/radiotherapy , Immunotherapy , Oncolytic Virotherapy/methods , Tumor Microenvironment
20.
J Gen Virol ; 105(3)2024 03.
Article in English | MEDLINE | ID: mdl-38546099

ABSTRACT

Cardiac glycosides (CGs) are natural steroid glycosides, which act as inhibitors of the cellular sodium-potassium ATPase pump. Although traditionally considered toxic to human cells, CGs are widely used as drugs for the treatment of cardiovascular-related medical conditions. More recently, CGs have been explored as potential anti-viral drugs and inhibit replication of a range of RNA and DNA viruses. Previously, a compound screen identified CGs that inhibited vaccinia virus (VACV) infection. However, no further investigation of the inhibitory potential of these compounds was performed, nor was there investigation of the stage(s) of the poxvirus lifecycle they impacted. Here, we investigated the anti-poxvirus activity of a broad panel of CGs. We found that all CGs tested were potent inhibitors of VACV replication. Our virological experiments showed that CGs did not impact virus infectivity, binding, or entry. Rather, experiments using recombinant viruses expressing reporter proteins controlled by VACV promoters and arabinoside release assays demonstrated that CGs inhibited early and late VACV protein expression at different concentrations. Lack of virus assembly in the presence of CGs was confirmed using electron microscopy. Thus, we expand our understanding of compounds with anti-poxvirus activity and highlight a yet unrecognized mechanism by which poxvirus replication can be inhibited.


Subject(s)
Cardiac Glycosides , Poxviridae , Vaccinia , Humans , Vaccinia virus/genetics , Cardiac Glycosides/pharmacology , Cardiac Glycosides/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...