Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.148
Filter
1.
CNS Neurosci Ther ; 30(5): e14738, 2024 05.
Article in English | MEDLINE | ID: mdl-38702933

ABSTRACT

INTRODUCTION: Microglia are the main phagocytes in the brain and can induce neuroinflammation. Moreover, they are critical to alpha-synuclein (α-syn) aggregation and propagation. Plasma exosomes derived from patients diagnosed with Parkinson's disease (PD-exo) reportedly evoked α-syn aggregation and inflammation in microglia. In turn, microglia internalized and released exosomal α-syn, enhancing α-syn propagation. However, the specific mechanism through which PD-exo influences α-syn degradation remains unknown. METHODS: Exosomes were extracted from the plasma of patients with PD by differential ultracentrifugation, analyzed using electron microscopy (EM) and nanoparticle flow cytometry, and stereotaxically injected into the unilateral striatum of the mice. Transmission EM was employed to visualize lysosomes and autophagosomes in BV2 cells, and lysosome pH was measured with LysoSensor Yellow/Blue DND-160. Cathepsin B and D, lysosomal-associated membrane protein 1 (LAMP1), ATP6V1G1, tumor susceptibility gene 101 protein, calnexin, α-syn, ionized calcium binding adaptor molecule 1, and NLR family pyrin domain containing 3 were evaluated using quantitative polymerase chain reaction or western blotting, and α-syn, LAMP1, and ATP6V1G1 were also observed by immunofluorescence. Small interfering ribonucleic acid against V1G1 was transfected into BV2 cells and primary microglia using Lipofectamine® 3000. A PD mouse model was established via injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into mice. A lentiviral-mediated strategy to overexpress ATP6V1G1 in the brain of MPTP-treated mice was employed. Motor coordination was assessed using rotarod and pole tests, and neurodegeneration in the mouse substantia nigra and striatum tissues was determined using immunofluorescence histochemical and western blotting of tyrosine hydroxylase. RESULTS: PD-exo decreased the expression of V1G1, responsible for the acidification of intra- and extracellular milieu. This impairment of lysosomal acidification resulted in the accumulation of abnormally swollen lysosomes and decreased lysosomal enzyme activities, impairing lysosomal protein degradation and causing α-syn accumulation. Additionally, V1G1 overexpression conferred the mice neuroprotection during MPTP exposure. CONCLUSION: Pathogenic protein accumulation is a key feature of PD, and compromised V-type ATPase dysfunction might participate in PD pathogenesis. Moreover, V1G1 overexpression protects against neuronal toxicity in an MPTP-based PD mouse model, which may provide opportunities to develop novel therapeutic interventions for PD treatment.


Subject(s)
Exosomes , Mice, Inbred C57BL , Microglia , Parkinson Disease , Vacuolar Proton-Translocating ATPases , alpha-Synuclein , Aged , Animals , Female , Humans , Male , Mice , Middle Aged , alpha-Synuclein/metabolism , Exosomes/metabolism , Lysosomes/metabolism , Microglia/metabolism , Microglia/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics
2.
J Agric Food Chem ; 72(20): 11381-11391, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728113

ABSTRACT

RNA interference (RNAi)-based biopesticides offer an attractive avenue for pest control. Previous studies revealed high RNAi sensitivity in Holotrichia parallela larvae, showcasing its potential for grub control. In this study, we aimed to develop an environmentally friendly RNAi method for H. parallela larvae. The double-stranded RNA (dsRNA) of the V-ATPase-a gene (HpVAA) was loaded onto layered double hydroxide (LDH). The dsRNA/LDH nanocomplex exhibited increased environmental stability, and we investigated the absorption rate and permeability of dsRNA-nanoparticle complexes and explored the RNAi controlling effect. Silencing the HpVAA gene was found to darken the epidermis of H. parallela larvae, with growth cessation or death or mortality, disrupting the epidermis and midgut structure. Quantitative reverse transcription-polymerase chain reaction and confocal microscopy confirmed the effective absorption of the dsRNA/LDH nanocomplex by peanut plants, with distribution in roots, stems, and leaves. Nanomaterial-mediated RNAi silenced the target genes, leading to the death of pests. Therefore, these findings indicate the successful application of the nanomaterial-mediated RNAi system for underground pests, thus establishing a theoretical foundation for developing a green, safe, and efficient pest control strategy.


Subject(s)
Larva , RNA Interference , RNA, Double-Stranded , Animals , Larva/growth & development , Larva/genetics , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Hydroxides/chemistry , Hydroxides/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/chemistry , Arachis/genetics , Arachis/chemistry , Arachis/growth & development , Arachis/metabolism , Pest Control, Biological , Coleoptera/genetics , Coleoptera/growth & development , Green Chemistry Technology , Biological Control Agents/chemistry , Biological Control Agents/metabolism , Nanoparticles/chemistry
3.
Biochem Biophys Res Commun ; 718: 149981, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38735134

ABSTRACT

In animal cells, vacuoles are absent, but can be induced by diseases and drugs. While phosphoinositides are critical for membrane trafficking, their role in the formation of these vacuoles remains unclear. The immunosuppressive KRP203/Mocravimod, which antagonizes sphingosine-1-phosphate receptors, has been identified as having novel multimodal activity against phosphoinositide kinases. However, the impact of this novel KRP203 activity is unknown. Here, we show that KRP203 disrupts the spatial organization of phosphoinositides and induces extensive vacuolization in tumor cells and immortalized fibroblasts. The KRP203-induced vacuoles are primarily from endosomes, and augmented by inhibition of PIKFYVE and VPS34. Conversely, overexpression of PTEN decreased KRP203-induced vacuole formation. Furthermore, V-ATPase inhibition completely blunted KRP203-induced vacuolization, pointing to a critical requirement of the endosomal maturation process. Importantly, nearly a half of KRP203-induced vacuoles are significantly decorated with PI4P, a phosphoinositide typically enriched at the plasma membrane and Golgi. These results suggest a model that noncanonical spatial reorganization of phosphoinositides by KRP203 alters the endosomal maturation process, leading to vacuolization. Taken together, this study reveals a previously unrecognized bioactivity of KRP203 as a vacuole-inducing agent and its unique mechanism of phosphoinositide modulation, providing a new insight of phosphoinositide regulation into vacuolization-associated diseases and their molecular pathologies.


Subject(s)
Endosomes , PTEN Phosphohydrolase , Phosphatidylinositols , Vacuoles , Vacuoles/metabolism , Vacuoles/drug effects , Endosomes/metabolism , Endosomes/drug effects , Humans , Phosphatidylinositols/metabolism , Animals , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism , Class III Phosphatidylinositol 3-Kinases/metabolism , Class III Phosphatidylinositol 3-Kinases/genetics , Mice , Morpholines/pharmacology , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors , Vacuolar Proton-Translocating ATPases/genetics , Cytoplasm/metabolism , HeLa Cells , Aminopyridines , Heterocyclic Compounds, 3-Ring
4.
Plant Physiol Biochem ; 210: 108663, 2024 May.
Article in English | MEDLINE | ID: mdl-38678947

ABSTRACT

The vacuolar H+-ATPase (V-ATPase) is a multi-subunit membrane protein complex, which plays pivotal roles in building up an electrochemical H+-gradient across tonoplast, energizing Na+ sequestration into the central vacuole, and enhancing salt stress tolerance in plants. In this study, a B subunit of V-ATPase gene, PbVHA-B1 was discovered and isolated from stress-induced P. betulaefolia combining with RT-PCR method. The RT-qPCR analysis revealed that the expression level of PbVHA-B1 was upregulated by salt, drought, cold, and exogenous ABA treatment. Subcellular localization analyses showed that PbVHA-B1 was located in the cytoplasm and nucleus. Moreover, overexpression of PbVHA-B1 gene noticeably increased the ATPase activity and the tolerance to salt in transgenic Arabidopsis plants. In contrast, knockdown of PbVHA-B1 gene in P.betulaefolia by virus-induced gene silencing had reduced resistance to salt stress. In addition, using yeast one-hybride (Y1H) and yeast two-hybride (Y2H) screens, PbbHLH62, a bHLH transcription factor, was identified as a partner of the PbVHA-B1 promoter and protein. Then, we also found that PbbHLH62 positively regulate the expression of PbVHA-B1 and the ATPase activity after salt stress treatment. These findings provide evidence that PbbHLH62 played a critical role in the salt response. Collectively, our results demonstrate that a PbbHLH62/PbVHA-B1 module plays a positive role in salt tolerance by maintain intracellular ion and ROS homeostasis in pear.


Subject(s)
Homeostasis , Plant Proteins , Pyrus , Reactive Oxygen Species , Salt Tolerance , Sodium , Salt Tolerance/genetics , Pyrus/metabolism , Pyrus/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Reactive Oxygen Species/metabolism , Sodium/metabolism , Plants, Genetically Modified , Potassium/metabolism , Gene Expression Regulation, Plant/drug effects , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Arabidopsis/genetics , Arabidopsis/metabolism
5.
J Cell Sci ; 137(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38578235

ABSTRACT

Endosomal-lysosomal trafficking is accompanied by the acidification of endosomal compartments by the H+-V-ATPase to reach low lysosomal pH. Disruption of the correct pH impairs lysosomal function and the balance of protein synthesis and degradation (proteostasis). Here, we treated mammalian cells with the small dipeptide LLOMe, which is known to permeabilize lysosomal membranes, and find that LLOMe also impacts late endosomes (LEs) by neutralizing their pH without causing membrane permeabilization. We show that LLOMe leads to hyperactivation of Rab7 (herein referring to Rab7a), and disruption of tubulation and mannose-6-phosphate receptor (CI-M6PR; also known as IGF2R) recycling on pH-neutralized LEs. pH neutralization (NH4Cl) and expression of Rab7 hyperactive mutants alone can both phenocopy the alterations in tubulation and CI-M6PR trafficking. Mechanistically, pH neutralization increases the assembly of the V1G1 subunit (encoded by ATP6V1G1) of the V-ATPase on endosomal membranes, which stabilizes GTP-bound Rab7 via RILP, a known interactor of Rab7 and V1G1. We propose a novel pathway by which V-ATPase and RILP modulate LE pH and Rab7 activation in concert. This pathway might broadly contribute to pH control during physiologic endosomal maturation or starvation and during pathologic pH neutralization, which occurs via lysosomotropic compounds and in disease states.


Subject(s)
Endosomes , Vacuolar Proton-Translocating ATPases , rab GTP-Binding Proteins , rab7 GTP-Binding Proteins , Endosomes/metabolism , Hydrogen-Ion Concentration , Humans , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Lysosomes/metabolism , HeLa Cells , Protein Transport , Receptor, IGF Type 2/metabolism , Receptor, IGF Type 2/genetics , Animals , Adaptor Proteins, Signal Transducing
6.
PLoS Biol ; 22(4): e3002327, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38687820

ABSTRACT

Mutations in the human AAA-ATPase VPS4 isoform, VPS4A, cause severe neurodevelopmental defects and congenital dyserythropoietic anemia (CDA). VPS4 is a crucial component of the endosomal sorting complex required for transport (ESCRT) system, which drives membrane remodeling in numerous cellular processes, including receptor degradation, cell division, and neural pruning. Notably, while most organisms encode for a single VPS4 gene, human cells have 2 VPS4 paralogs, namely VPS4A and VPS4B, but the functional differences between these paralogs is mostly unknown. Here, we set out to investigate the role of the human VPS4 paralogs in cytokinetic abscission using a series of knockout cell lines. We found that VPS4A and VPS4B hold both overlapping and distinct roles in abscission. VPS4A depletion resulted in a more severe abscission delay than VPS4B and was found to be involved in earlier stages of abscission. Moreover, VPS4A and a monomeric-locked VPS4A mutant bound the abscission checkpoint proteins CHMP4C and ANCHR, while VPS4B did not, indicating a regulatory role for the VPS4A isoform in abscission. Depletion of VTA1, a co-factor of VPS4, disrupted VPS4A-ANCHR interactions and accelerated abscission, suggesting that VTA1 is also involved in the abscission regulation. Our findings reveal a dual role for VPS4A in abscission, one that is canonical and can be compensated by VPS4B, and another that is regulatory and may be delivered by its monomeric form. These observations provide a potential mechanistic explanation for the neurodevelopmental defects and other related disorders reported in VPS4A-mutated patients with a fully functional VPS4B paralog.


Subject(s)
ATPases Associated with Diverse Cellular Activities , Cytokinesis , Endosomal Sorting Complexes Required for Transport , Vacuolar Proton-Translocating ATPases , Humans , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics , HeLa Cells , Protein Isoforms/metabolism , Protein Isoforms/genetics
7.
EMBO J ; 43(9): 1870-1897, 2024 May.
Article in English | MEDLINE | ID: mdl-38589611

ABSTRACT

Yeast vacuoles perform crucial cellular functions as acidic degradative organelles, storage compartments, and signaling hubs. These functions are mediated by important protein complexes, including the vacuolar-type H+-ATPase (V-ATPase), responsible for organelle acidification. To gain a more detailed understanding of vacuole function, we performed cross-linking mass spectrometry on isolated vacuoles, detecting many known as well as novel protein-protein interactions. Among these, we identified the uncharacterized TLDc-domain-containing protein Rtc5 as a novel interactor of the V-ATPase. We further analyzed the influence of Rtc5 and of Oxr1, the only other yeast TLDc-domain-containing protein, on V-ATPase function. We find that both Rtc5 and Oxr1 promote the disassembly of the vacuolar V-ATPase in vivo, counteracting the role of the RAVE complex, a V-ATPase assembly chaperone. Furthermore, Oxr1 is necessary for the retention of a Golgi-specific subunit of the V-ATPase in this compartment. Collectively, our results shed light on the in vivo roles of yeast TLDc-domain proteins as regulators of the V-ATPase, highlighting the multifaceted regulation of this crucial protein complex.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Vacuolar Proton-Translocating ATPases , Vacuoles , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Vacuoles/metabolism , Protein Domains
8.
Plant Sci ; 344: 112105, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663481

ABSTRACT

As the most prominent proton pumps in plants, vacuolar H+-ATPases (VHAs) comprise multiple subunits that are important for physiological processes and stress tolerance in plants. However, few studies on the roles of subunit genes of VHAs in chrysanthemum have been reported to date. In this study, the gene of A subunit of V-ATPase in chrysanthemum (CmVHA-A) was cloned and identified. CmVHA-A was conserved with VHA-A proteins from other plants. Expression analysis showed that CmVHA-A was highly expressed in most tissues of chrysanthemum except for the flower bud, and was readily induced by polyethylene glycol (PEG) treatment. Functional analysis demonstrated that CmVHA-A exerted a negative influence on the growth and development of shoot and root of chrysanthemum under normal conditions. RNA-sequencing (RNA-seq) analysis revealed the possible explanations for phenotypic differences between transgenic and wild-type (WT) plants. Under drought conditions, CmVHA-A positively affected the drought tolerance of chrysanthemum by enhancing antioxidase activity and alleviating photosynthetic disruption. Overall, CmVHA-A plays opposite roles in plant growth and drought tolerance of chrysanthemums under different growing conditions.


Subject(s)
Chrysanthemum , Plant Proteins , Vacuolar Proton-Translocating ATPases , Chrysanthemum/genetics , Chrysanthemum/physiology , Chrysanthemum/growth & development , Chrysanthemum/enzymology , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Droughts , Gene Expression Regulation, Plant , Phylogeny , Plants, Genetically Modified/genetics , Stress, Physiological/genetics , Drought Resistance
9.
EMBO Rep ; 25(5): 2323-2347, 2024 May.
Article in English | MEDLINE | ID: mdl-38565737

ABSTRACT

The eukaryotic vacuolar H+-ATPase (V-ATPase) is regulated by reversible disassembly into autoinhibited V1-ATPase and Vo proton channel subcomplexes. We recently reported that the TLDc protein Oxr1p induces V-ATPase disassembly in vitro. Whether and how Oxr1p is involved in enzyme disassembly in vivo, however, is not known. Here, using yeast genetics and fluorescence microscopy, we show that Oxr1p is essential for efficient V-ATPase disassembly in the cell. Supporting biochemical and biophysical in vitro experiments show that whereas Oxr1p-driven holoenzyme disassembly can occur in the absence of nucleotides, the presence of ATP greatly accelerates the process. ATP hydrolysis is needed, however, for subsequent release of Oxr1p so that the free V1 can adopt the autoinhibited conformation. Overall, our study unravels the molecular mechanism of Oxr1p-induced disassembly that occurs in vivo as part of the canonical V-ATPase regulation by reversible disassembly.


Subject(s)
Adenosine Triphosphate , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Vacuolar Proton-Translocating ATPases , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Adenosine Triphosphate/metabolism , Hydrolysis
10.
Ecotoxicol Environ Saf ; 276: 116322, 2024 May.
Article in English | MEDLINE | ID: mdl-38636258

ABSTRACT

Lead is a widespread environmental pollutant with serious adverse effects on human health, but the mechanism underlying its toxicity remains elusive. This study aimed to investigate the role of miR-584-5p / Ykt6 axis in the toxic effect of lead on HK-2 cells and the related mechanism. Our data suggested that lead exposure caused significant cytotoxicity, DNA and chromosome damage to HK-2 cells. Mechanistically, lead exposure down-regulated miR-584-5p and up-regulated Ykt6 expression, consequently, autophagosomal number and autophagic flux increased, lysosomal number and activity decreased, exosomal secretion increased. Interestingly, when miR-584-5p level was enhanced with mimic, autophagosomal number and autophagic flux decreased, lysosomal number and activity increased, ultimately, exosomal secretion was down-regulated, which resulted in significant aggravated toxic effects of lead. Further, directly blocking exosomal secretion with inhibitor GW4869 also resulted in exacerbated toxic effects of lead. Herein, we conclude that miR-584-5p / Ykt6 - mediated autophagy - lysosome - exosome pathway may be a critical route affecting the toxic effects of lead on HK-2 cells. We provide a novel insight into the mechanism underlying the toxicity of lead on human cells.


Subject(s)
Autophagy , Exosomes , Lead , Lysosomes , MicroRNAs , Humans , Autophagy/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/drug effects , Exosomes/metabolism , Lysosomes/drug effects , Cell Line , Lead/toxicity , Environmental Pollutants/toxicity , Vacuolar Proton-Translocating ATPases/genetics , DNA Damage
11.
Article in English | MEDLINE | ID: mdl-38670480

ABSTRACT

The role of the mosquito excretory organs (Malpighian tubules, MT and hindgut, HG) in ammonia transport as well as expression and function of the Rhesus (Rh protein) ammonia transporters within these organs was examined in Aedes aegypti larvae and adult females. Immunohistological examination revealed that the Rh proteins are co-localized with V-type H+-ATPase (VA) to the apical membranes of MT and HG epithelia of both larvae and adult females. Of the two Rh transporter genes present in A. aegypti, AeRh50-1 and AeRh50-2, we show using quantitative real-time PCR (qPCR) and an RNA in-situ hybridization (ISH) assay that AeRh50-1 is the predominant Rh protein expressed in the excretory organs of larvae and adult females. Further assessment of AeRh50-1 function in larvae and adults using RNAi (i.e. dsRNA-mediated knockdown) revealed significantly decreased [NH4+] (mmol l-1) levels in the secreted fluid of larval MT which does not affect overall NH4+ transport rates, as well as significantly decreased NH4+ flux rates across the HG (haemolymph to lumen) of adult females. We also used RNA sequencing to identify the expression of ion transporters and enzymes within the rectum of larvae, of which limited information currently exists for this important osmoregulatory organ. Of the ammonia transporters in A. aegypti, AeRh50-1 transcript is most abundant in the rectum thus validating our immunohistochemical and RNA ISH findings. In addition to enriched VA transcript (subunits A and d1) in the rectum, we also identified high Na+-K+-ATPase transcript (α subunit) expression which becomes significantly elevated in response to HEA, and we also found enriched carbonic anhydrase 9, inwardly rectifying K+ channel Kir2a, and Na+-coupled cation-chloride (Cl-) co-transporter CCC2 transcripts. Finally, the modulation in excretory organ function and/or Rh protein expression was examined in relation to high ammonia challenge, specifically high environmental ammonia (HEA) rearing of larvae. NH4+ flux measurements using the scanning-ion selective electrode (SIET) technique revealed no significant differences in NH4+ transport across organs comprising the alimentary canal of larvae reared in HEA vs freshwater. Further, significantly increased VA activity, but not NKA, was observed in the MT of HEA-reared larvae. Relatively high Rh protein immunostaining persists within the hindgut epithelium, as well as the ovary, of females at 24-48 h post blood meal corresponding with previously demonstrated peak levels of ammonia formation. These data provide new insight into the role of the excretory organs in ammonia transport physiology and the contribution of Rh proteins in mediating ammonia movement across the epithelia of the MT and HG, and the first comprehensive examination of ion transporter and channel expression in the mosquito rectum.


Subject(s)
Aedes , Ammonia , Insect Proteins , Larva , Rectum , Transcriptome , Animals , Aedes/metabolism , Aedes/genetics , Larva/metabolism , Larva/genetics , Ammonia/metabolism , Rectum/metabolism , Female , Insect Proteins/metabolism , Insect Proteins/genetics , Biological Transport , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Malpighian Tubules/metabolism
13.
Am J Physiol Renal Physiol ; 326(4): F611-F621, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38385173

ABSTRACT

Soluble prorenin receptor (sPRR), a component of the renin-angiotensin system (RAS), has been identified as a plasma biomarker for hypertension and cardiovascular diseases in humans. Despite studies showing that sPRR in the kidney is produced by tubular cells in the renal collecting duct (CD), its biological actions modulating cardiorenal function in physiological conditions remain unknown. Therefore, the objective of our study was to investigate whether CD-derived human sPRR (HsPRR) expression influences cardiorenal function and examine sex and circadian differences. Thus, we investigated the status of the intrarenal RAS, water and electrolyte balance, renal filtration capacity, and blood pressure (BP) regulation in CD-HsPRR and control (CTL) mice. CD-HsPRR mice were generated by breeding human sPRR-Myc-tag mice with Hoxb7/Cre mice. Renal sPRR expression increased in CD-HsPRR mice, but circulating sPRR and RAS levels were unchanged compared with CTL mice. Only female littermates expressing CD-HsPRR showed 1) increased 24-h BP, 2) an impaired BP response to an acute dose of losartan and attenuated angiotensin II (ANG II)-induced hypertension, 3) reduced angiotensin-converting enzyme activity and ANG II content in the renal cortex, and 4) decreased glomerular filtration rate, with no changes in natriuresis and kaliuresis despite upregulation of the ß-subunit of the epithelial Na+ channel in the renal cortex. These cardiorenal alterations were displayed only during the active phase of the day. Taken together, these data suggest that HsPRR could interact with ANG II type 1 receptors mediating sex-specific, ANG II-independent renal dysfunction and a prohypertensive phenotype in a sex-specific manner.NEW & NOTEWORTHY We successfully generated a humanized mouse model that expresses human sPRR in the collecting duct. Collecting duct-derived human sPRR did not change circulating sPRR and RAS levels but increased daytime BP in female mice while showing an attenuated angiotensin II-dependent pressor response. These findings may aid in elucidating the mechanisms by which women show uncontrolled BP in response to antihypertensive treatments targeting the RAS, improving approaches to reduce uncontrolled BP and chronic kidney disease incidences in women.


Subject(s)
Hypertension , Vacuolar Proton-Translocating ATPases , Male , Humans , Female , Mice , Animals , Angiotensin II/pharmacology , Prorenin Receptor , Kidney/metabolism , Renin-Angiotensin System , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Renin/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism
14.
Sci Rep ; 14(1): 4018, 2024 02 18.
Article in English | MEDLINE | ID: mdl-38369634

ABSTRACT

The role of ATP6AP1 in colorectal cancer (CRC) remains elusive despite its observed upregulation in pan-cancer. Therefore, the current study aimed to assess the clinical significance of ATP6AP1 and its relationship with the immune infiltration in CRC. Transcriptome data of CRC were obtained from The Cancer Genome Atlas (TCGA) database and analyzed using the combination of R packages and tumor-related databases, including TIMER2, TISIDB, cBioPortal, and MethSurv. The tissue arrays and immunohistochemical staining were performed to verify the expression and clinical characteristics of ATP6AP1. The results revealed that ATP6AP1 expression was significantly elevated in CRC and associated with poor clinicopathological characteristics and prognosis. Furthermore, the analysis demonstrated ATP6AP1 expression was correlated with the infiltration of immune cells and cancer-associated fibroblasts in the microenvironment of CRC. Moreover, ATP6AP1 was found to be linked to various immune checkpoints and chemokines, with enrichment of cytoplasmic vesicle lumen, endopeptidase regulator activity, and endopeptidase inhibitor activity observed in the high ATP6AP1 expressional group. In conclusion, the findings of this study suggest that ATP6AP1 upregulation may serve as a biomarker for poor diagnosis in CRC and offer a potential target for immunotherapy in CRC.


Subject(s)
Cancer-Associated Fibroblasts , Colorectal Neoplasms , Vacuolar Proton-Translocating ATPases , Humans , Colorectal Neoplasms/genetics , Cytoplasmic Vesicles , Prognosis , Tumor Microenvironment , Vacuolar Proton-Translocating ATPases/genetics
15.
Stem Cell Res ; 76: 103330, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38335662

ABSTRACT

Infantile Malignant Osteopetrosis (IMO) is a rare, severe autosomal recessive form of osteopetrosis. Here, the peripheral blood mononuclear cells (PBMCs) extracted from a patient with IMO carrying a compound heterozygous mutation in T cell immune regulator 1, ATPase H + transporting V0 subunit a3 (TCIRG1) gene (c.242delC; c.1114C > T) were successfully reprogrammed using Sendai virus encoding the four Yamanaka factors. The generated hiPSCs, IMO-hiPSCs, displayed typical embryonic stem cell-like morphology and were verified by expression of pluripotency markers such as OCT4, SOX2, NANOG, TRA-1-60 and SSEA4, as well as in vivo and in vitro differentiation into derivatives of three germ layers.


Subject(s)
Induced Pluripotent Stem Cells , Osteopetrosis , Vacuolar Proton-Translocating ATPases , Humans , Induced Pluripotent Stem Cells/metabolism , Osteopetrosis/metabolism , Leukocytes, Mononuclear/metabolism , Mutation , Genes, Homeobox , Cell Differentiation , Vacuolar Proton-Translocating ATPases/genetics
16.
Int J Mol Sci ; 25(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38203808

ABSTRACT

The microgravity conditions in outer space are widely acknowledged to induce significant bone loss. Recent studies have implicated the close relationship between Atp6v1h gene and bone loss. Despite this, the role of Atp6v1h in bone remodeling and its molecular mechanisms in microgravity have not been fully elucidated. To address this, we used a mouse tail suspension model to simulate microgravity. We categorized both wild-type and Atp6v1h knockout (Atp6v1h+/-) mice into two groups: regular feeding and tail-suspension feeding, ensuring uniform feeding conditions across all cohorts. Analysis via micro-CT scanning, hematoxylin-eosin staining, and tartrate-resistant acid phosphatase assays indicated that wild-type mice underwent bone loss under simulated microgravity. Atp6v1h+/- mice exhibited bone loss due to Atp6v1h deficiency but did not present aggravated bone loss under the same simulated microgravity. Transcriptomic sequencing revealed the upregulation of genes, such as Fos, Src, Jun, and various integrin subunits in the context of simulated microgravity and Atp6v1h knockout. Real-time quantitative polymerase chain reaction (RT-qPCR) further validated the modulation of downstream osteoclast-related genes in response to interactions with ATP6V1H overexpression cell lines. Co-immunoprecipitation indicated potential interactions between ATP6V1H and integrin beta 1, beta 3, beta 5, alpha 2b, and alpha 5. Our results indicate that Atp6v1h level influences bone loss in simulated microgravity by modulating the Fos-Jun-Src-Integrin pathway, which, in turn, affects osteoclast activity and bone resorption, with implications for osteoporosis. Therefore, modulating Atp6v1h expression could mitigate bone loss in microgravity conditions. This study elucidates the molecular mechanism of Atp6v1h's role in osteoporosis and positions it as a potential therapeutic target against environmental bone loss. These findings open new possibilities for the treatment of multifactorial osteoporosis.


Subject(s)
Bone Diseases, Metabolic , Osteoporosis , Vacuolar Proton-Translocating ATPases , Weightlessness , Animals , Mice , Disease Models, Animal , Integrins , Osteoporosis/genetics , Weightlessness/adverse effects , Vacuolar Proton-Translocating ATPases/genetics
17.
Microb Cell Fact ; 23(1): 4, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172917

ABSTRACT

BACKGROUND: The supply of ATP is a limiting factor for cellular metabolism. Therefore, cell factories require a sufficient ATP supply to drive metabolism for efficient bioproduction. In the current study, a light-driven proton pump in the vacuolar membrane was constructed in yeast to reduce the ATP consumption required by V-ATPase to maintain the acidification of the vacuoles and increase the intracellular ATP supply for bioproduction. RESULTS: Delta rhodopsin (dR), a microbial light-driven proton-pumping rhodopsin from Haloterrigena turkmenica, was expressed and localized in the vacuolar membrane of Saccharomyces cerevisiae by conjugation with a vacuolar membrane-localized protein. Vacuoles with dR were isolated from S. cerevisiae, and the light-driven proton pumping activity was evaluated based on the pH change outside the vacuoles. A light-induced increase in the intracellular ATP content was observed in yeast harboring vacuoles with dR. CONCLUSIONS: Yeast harboring the light-driven proton pump in the vacuolar membrane developed in this study are a potential optoenergetic cell factory suitable for various bioproduction applications.


Subject(s)
Saccharomyces cerevisiae , Vacuolar Proton-Translocating ATPases , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Vacuoles , Protons , Rhodopsin/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/metabolism , Adenosine Triphosphate/metabolism
18.
Biochem Biophys Res Commun ; 699: 149551, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38277730

ABSTRACT

V-ATPase is an ATP hydrolysis-driven proton pump involved in the acidification of intracellular organelles and systemic acid-base homeostasis through H+ secretion in the renal collecting ducts. V-ATPase dysfunction is associated with hereditary distal renal tubular acidosis (dRTA). ATP6V1B1 encodes the B1 subunit of V-ATPase that is integral to ATP hydrolysis and subsequent H+ transport. Patients with pathogenic ATP6V1B1 mutations often exhibit an early onset of sensorineural hearing loss. However, the mechanisms underlying this association remain unclear. We employed morpholino oligonucleotide-mediated knockdown and CRISPR/Cas9 gene editing to generate Atp6v1ba-deficient (atp6v1ba-/-) zebrafish as an ortholog model for ATP6V1B1. The atp6v1ba-/- zebrafish exhibited systemic acidosis and significantly smaller otoliths compared to wild-type siblings. Moreover, deficiency in Atp6v1ba led to degeneration of inner ear hair cells, with ultrastructural changes indicative of autophagy. Our findings indicate a critical role of ATP6V1B1 in regulating lysosomal pH and autophagy in hair cells, and the results provide insights into the pathophysiology of sensorineural hearing loss in dRTA. Furthermore, this study demonstrates that the atp6v1ba-/- zebrafish model is a valuable tool for further investigation into disease mechanisms and potential therapies for acidosis-related hearing impairment.


Subject(s)
Acidosis, Renal Tubular , Acidosis , Hearing Loss, Sensorineural , Organometallic Compounds , Vacuolar Proton-Translocating ATPases , Animals , Humans , Zebrafish/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Mutation , Acidosis, Renal Tubular/genetics , Hair Cells, Auditory/pathology , Hydrogen-Ion Concentration , Hair/metabolism , Adenosine Triphosphate
19.
CEN Case Rep ; 13(2): 93-97, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37415038

ABSTRACT

A 11-year-old girl was referred to the pediatric nephrology services of our hospital for evaluation of vitamin-D-refractory rickets. She was born to second-degree consanguineous parents. On examination, she had wrist widening and bilateral genu varum. She had normal anion gap metabolic acidosis, hypokalemia, and hyperchloremia. The fractional excretion of bicarbonate was 3% and the urine anion gap was positive. She also had hypercalciuria, but no phosphaturia, glucosuria or aminoaciduria. In view of a family history of an elder sister having rigidity with cognitive and speech impairment, an ophthalmic evaluation by slit lamp examination was performed in the index case that revealed bilateral Kayser-Fleischer rings. Serum ceruloplasmin was low and 24-h urine copper was elevated in the index case. Whole exome sequencing unveiled a novel pathogenic variant in exon 2 of the ATP7B gene (chr13: c.470del; Depth: 142x) (homozygous) that resulted in a frameshift and premature truncation of the protein, 15 amino acids downstream to codon 157 (p. Cys157LeufsTer15; NM_000053.4) confirming Wilson disease. There were no mutations in the ATP6V0A4, ATP6V1B1, SLC4A1, FOXI1, WDR72 genes or other genes that are known to cause distal RTA. Therapy with D-penicillamine and zinc supplements was initiated. A low dose of 2.5 mEq/kg/day of potassium citrate supplementation normalized the serum bicarbonate levels. This case was notable for the absence of hepatic or neurological involvement at admission. Wilson disease is well known to cause proximal renal tubular acidosis and Fanconi syndrome, with relatively lesser involvement of the distal renal tubules in the literature. However, isolated distal renal tubular involvement as presenting manifestation of Wilson disease (without hepatic or neurological involvement) is rare and can lead to diagnostic confusion.


Subject(s)
Acidosis, Renal Tubular , Hepatolenticular Degeneration , Vacuolar Proton-Translocating ATPases , Aged , Child , Female , Humans , Acidosis, Renal Tubular/etiology , Acidosis, Renal Tubular/genetics , Bicarbonates/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Hepatolenticular Degeneration/complications , Hepatolenticular Degeneration/diagnosis , Mutation , Potassium Citrate/therapeutic use , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism
20.
Seizure ; 116: 81-86, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37574426

ABSTRACT

PURPOSE: ATP6V1A variants have been identified in patients with highly variable phenotypes such as autosomal dominant epileptic encephalopathy and autosomal recessive cutis laxa. However, the mechanism underlying phenotype variation is unknown. We screened ATP6V1A variants in patients with epilepsy and analyzed the genotype-phenotype correlation to explain the mechanism underlying phenotypic variations. METHODS: We performed trio-based whole-exome sequencing in people with epilepsy without acquired causes. All previously reported ATP6V1A variants were systematically retrieved from the HGMD and PubMed databases. RESULTS: Three novel de novo ATP6V1A variants, including c.749G>C/p.Gly250Ala, c.782A>G/p.Gln261Arg, and c.1103T>C/p.Met368Thr, were identified in three unrelated cases with childhood focal (partial) epilepsy. None of the variants were listed in any public population database and evaluated as likely pathogenic according to the criteria of the American College of Medical Genetics and Genomics (ACMG). All persons showed good responses to anti-seizure medication and psychomotor development was normal. Further analysis showed that monoallelic missense variants were associated with epilepsy with variable severity, whereas biallelic variants resulted in developmental abnormalities of multisystem that may result in early lethality. CONCLUSION: Childhood focal epilepsy with favorable outcome was probably a novel phenotype of ATP6V1A. ATP6V1A variants are associated with a range of phenotypes that correlate with genotypes. The relationship between phenotype severity and the genotype (genetic impairment) of ATP6V1A variants helps explain the phenotypic variations.


Subject(s)
Epilepsies, Partial , Epilepsy , Vacuolar Proton-Translocating ATPases , Child , Humans , Epilepsy/genetics , Genotype , Phenotype , Genetic Association Studies , Mutation, Missense , Vacuolar Proton-Translocating ATPases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...