Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 222
Filter
1.
Sci Rep ; 11(1): 4615, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33633298

ABSTRACT

V-ATPase is a large multi-subunit complex that regulates acidity of intracellular compartments and of extracellular environment. V-ATPase consists of several subunits that drive specific regulatory mechanisms. The V1G1 subunit, a component of the peripheral stalk of the pump, controls localization and activation of the pump on late endosomes and lysosomes by interacting with RILP and RAB7. Deregulation of some subunits of the pump has been related to tumor invasion and metastasis formation in breast cancer. We observed a decrease of V1G1 and RAB7 in highly invasive breast cancer cells, suggesting a key role of these proteins in controlling cancer progression. Moreover, in MDA-MB-231 cells, modulation of V1G1 affected cell migration and matrix metalloproteinase activation in vitro, processes important for tumor formation and dissemination. In these cells, characterized by high expression of EGFR, we demonstrated that V1G1 modulates EGFR stability and the EGFR downstream signaling pathways that control several factors required for cell motility, among which RAC1 and cofilin. In addition, we showed a key role of V1G1 in the biogenesis of endosomes and lysosomes. Altogether, our data describe a new molecular mechanism, controlled by V1G1, required for cell motility and that promotes breast cancer tumorigenesis.


Subject(s)
Breast Neoplasms/pathology , Cell Movement , Vacuolar Proton-Translocating ATPases/physiology , Breast Neoplasms/enzymology , Cell Line, Tumor , Female , Humans , Lysosomes/metabolism , Microscopy, Fluorescence , Neoplasm Invasiveness , Real-Time Polymerase Chain Reaction , Vacuolar Proton-Translocating ATPases/metabolism , rab7 GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein/metabolism
2.
Plant Physiol Biochem ; 160: 365-376, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33550177

ABSTRACT

Theoretical and experimental studies have demonstrated that temperature is an important environmental factor that affects the regional distribution of plants. However, how to modify the distribution pattern of plants in different regions is a focus of current research. Obtain the information of cold tolerance genes from cold tolerance species, cloning genes with real cold tolerance effects is one of the most important ways to find the genes related to cold tolerance. In this study, we investigated whether transferring the VHA-c gene from Antarctic notothenioid fishes into Arabidopsis enhances freezing tolerance of Arabidopsis. The physiological response and molecular changes of VHA-c overexpressing pedigree and wildtype Arabidopsis were studied at -20 °C. The results showed that the malondialdehyde (MDA) and membrane leakage rates of WT plants were significantly higher than those of VHA-c8 and VHA-c11 plants, but the soluble sugar, soluble protein, proline and ATP contents of WT plants were significantly lower than those of VHA-c8 and VHA-c11 plants under -20 °C freezing treatment. The survival rate, VHA-c gene expression level and VHA-c protein contents of WT plants were significantly lower than those of VHA-c8 and VHA-c11 plants under -20 °C freezing treatment. Correlation analysis showed that ATP content was significantly negatively correlated with MDA and membrane leakage rate, and positively correlated with soluble sugar, soluble protein and proline content under -20 °C freezing treatment. These results demonstrated that overexpression of the VHA-c gene provided strong freezing tolerance to Arabidopsis by increasing the synthesis of ATP and improved the adaptability of plants in low temperature environment.


Subject(s)
Arabidopsis/physiology , Fish Proteins/physiology , Fishes/genetics , Freezing , Vacuolar Proton-Translocating ATPases/physiology , Animals , Antarctic Regions , Arabidopsis/genetics , Cold Temperature , Fish Proteins/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified/physiology , Vacuolar Proton-Translocating ATPases/genetics
3.
Cell Calcium ; 94: 102360, 2021 03.
Article in English | MEDLINE | ID: mdl-33516131

ABSTRACT

Ion channels are necessary for correct lysosomal function including degradation of cargoes originating from endocytosis. Almost all enveloped viruses, including coronaviruses (CoVs), enter host cells via endocytosis, and do not escape endosomal compartments into the cytoplasm (via fusion with the endolysosomal membrane) unless the virus-encoded envelope proteins are cleaved by lysosomal proteases. With the ongoing outbreak of severe acute respiratory syndrome (SARS)-CoV-2, endolysosomal two-pore channels represent an exciting and emerging target for antiviral therapies. This review focuses on the latest knowledge of the effects of lysosomal ion channels on the cellular entry and uncoating of enveloped viruses, which may aid in development of novel therapies against emerging infectious diseases such as SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/virology , Ion Channels/physiology , Lysosomes/virology , SARS-CoV-2/physiology , Viral Envelope/physiology , Virus Internalization , Virus Uncoating , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Antiviral Agents/pharmacology , Drug Design , Endocytosis , Endosomes/metabolism , Endosomes/virology , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 3-Ring/therapeutic use , Humans , Hydrazones/pharmacology , Hydrazones/therapeutic use , Ion Channels/classification , Lysosomes/enzymology , Lysosomes/metabolism , Models, Biological , Morpholines/pharmacology , Morpholines/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Vacuolar Proton-Translocating ATPases/physiology , Virus Internalization/drug effects , Virus Uncoating/drug effects
4.
Plant Physiol Biochem ; 157: 370-378, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33190056

ABSTRACT

The plant vacuolar H+-ATPase (V-ATPase) is a multisubunit complex. In addition to performing basic housekeeping functions, this complex is also involved in abiotic stress resistance in plants. In this study, a V-ATPase c`` subunit gene (ThVHAc``1) from Tamarix hispida Willd was cloned with a 534-bp ORF. Sequence analysis showed that the ThVHAc``1 protein contains four transmembrane helices and lacks a signal peptide. qRT-PCR results showed that ThVHAc``1 was primarily induced by treatments of NaCl, NaHCO3, PEG6000, CdCl2 or ABA in roots, stems and leaves of T. hispida. The expression pattern of ThVHAc``1 was significantly different from that of ThVHAc1 (a V-ATPase c subunit in T. hispida). Furthermore, the cell survival rates and density (OD600) results showed that the transgenic yeast overexpressing ThVHAc``1 exhibited increased tolerance to the above-mentioned abiotic stresses. In addition, the overexpression of ThVHAc``1 confers salt tolerance to transgenic Arabidopsis plants by improving the ROS content and decreasing the accumulation of O2- and H2O2. Similarly, the homologous transformation of the ThVHAc``1 gene into T. hispida also improved salt tolerance. Our results suggest that the ThVHAc``1 gene plays an important role in plant stress tolerance.


Subject(s)
Plant Proteins/physiology , Salt Tolerance/genetics , Tamaricaceae/physiology , Vacuolar Proton-Translocating ATPases/physiology , Gene Expression Regulation, Plant , Hydrogen Peroxide , Plant Proteins/genetics , Plants, Genetically Modified/physiology , Tamaricaceae/genetics , Vacuolar Proton-Translocating ATPases/genetics
5.
Mol Cell ; 80(3): 501-511.e3, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33065002

ABSTRACT

Vesicular- or vacuolar-type adenosine triphosphatases (V-ATPases) are ATP-driven proton pumps comprised of a cytoplasmic V1 complex for ATP hydrolysis and a membrane-embedded Vo complex for proton transfer. They play important roles in acidification of intracellular vesicles, organelles, and the extracellular milieu in eukaryotes. Here, we report cryoelectron microscopy structures of human V-ATPase in three rotational states at up to 2.9-Å resolution. Aided by mass spectrometry, we build all known protein subunits with associated N-linked glycans and identify glycolipids and phospholipids in the Vo complex. We define ATP6AP1 as a structural hub for Vo complex assembly because it connects to multiple Vo subunits and phospholipids in the c-ring. The glycolipids and the glycosylated Vo subunits form a luminal glycan coat critical for V-ATPase folding, localization, and stability. This study identifies mechanisms of V-ATPase assembly and biogenesis that rely on the integrated roles of ATP6AP1, glycans, and lipids.


Subject(s)
Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/physiology , Vacuolar Proton-Translocating ATPases/ultrastructure , Cryoelectron Microscopy/methods , Cytoplasm/metabolism , Cytosol/metabolism , HEK293 Cells , Humans , Protein Subunits/metabolism , Structure-Activity Relationship
6.
Cells ; 9(5)2020 04 25.
Article in English | MEDLINE | ID: mdl-32344819

ABSTRACT

Pyridoxine, one of the vitamin B6 vitamers, plays a crucial role in amino acid metabolism and synthesis of monoamines as a cofactor. In the present study, we observed the effects of pyridoxine deficiency on novel object recognition memory. In addition, we examined the levels of 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), 3,4-dihydroxyphenethylamine (DA), 3,4-dihydroxyphenylacetic acid, and homovanillic acid and the number of proliferating cells and neuroblasts in the hippocampus. We also examined the effects of pyridoxine deficiency on protein profiles applying a proteomic study. Five-week-old mice fed pyridoxine-deficient diets for 8 weeks and showed a significant decrease in the serum and brain (cerebral cortex, hippocampus, and thalamus) levels of pyridoxal 5'-phosphate, a catalytically active form of vitamin-B6, and decline in 5-HT and DA levels in the hippocampus compared to controls fed a normal chow. In addition, pyridoxine deficiency significantly decreased Ki67-positive proliferating cells and differentiated neuroblasts in the dentate gyrus compared to controls. A proteomic study demonstrated that a total of 41 spots were increased or decreased more than two-fold. Among the detected proteins, V-type proton ATPase subunit B2 (ATP6V1B2) and heat shock cognate protein 70 (HSC70) showed coverage and matching peptide scores. Validation by Western blot analysis showed that ATP6V1B2 and HSC70 levels were significantly decreased and increased, respectively, in pyridoxine-deficient mice compared to controls. These results suggest that pyridoxine is an important element of novel object recognition memory, monoamine levels, and hippocampal neurogenesis. Pyridoxine deficiency causes cognitive impairments and reduction in 5-HT and DA levels, which may be associated with a reduction of ATP6V1B2 and elevation of HSC70 levels in the hippocampus.


Subject(s)
Hippocampus/physiology , Pyridoxine/deficiency , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Dopamine/analysis , HSC70 Heat-Shock Proteins/metabolism , Heat-Shock Response/drug effects , Male , Memory/physiology , Mice , Mice, Inbred C57BL , Neurogenesis/drug effects , Open Field Test/physiology , Proteomics , Pyridoxal Phosphate/analogs & derivatives , Pyridoxal Phosphate/analysis , Pyridoxal Phosphate/metabolism , Pyridoxine/metabolism , Serotonin/analysis , Vacuolar Proton-Translocating ATPases/physiology , Vitamin B 6 Deficiency/metabolism
7.
Cell Commun Signal ; 18(1): 39, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32143717

ABSTRACT

BACKGROUND: The (pro) renin receptor ((P)RR) plays important roles in various pathways, such as the Wnt/ß-catenin, renin-angiotensin system (RAS), MAPK/ERK and PI3K/AKT/mTOR pathways, that are involved in a wide range of physiological and pathological processes incorporating the tumorigenesis. However, our knowledge about (P) RR was mostly limited to its roles in cardiovascular and renal physiological functions and diseases. In the past 5 years, however, compelling evidence has revealed that (P) RR is aberrantly expressed in and contributes to the development of various cancers by different means. For instance, (P) RR was recently demonstrated to induce the oncogenesis of pancreatic, colorectal and brain cancers via the Wnt signaling, while promote the endometrial cancer and glioblastoma through the RAS. METHODS: Combining with the deep analysis of big data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, this review updates and summarizes the recent studies about the newly recognized roles of (P) RR in the pathophysiological processes of cancer development and its detailed functions through related pathways, as well as the novel research progress of (P) RR in related fields including the development and application of soluble (P) RR detection kit and monoclonal (P) RR antibody. RESULTS: This review provides an overview of the essential roles of (P) RR in the tumorigenesis and progression of various cancers and offers a translational outlook for the future research and clinical practices. CONCLUSION: (P) RR in the tumor tissues and/or body fluids of patients may be a novel and promising biomarker and potential therapeutic target for diagnosis, treatment and prognosis prediction in various cancers. Video Abstract.


Subject(s)
Neoplasms/metabolism , Receptors, Cell Surface/physiology , Vacuolar Proton-Translocating ATPases/physiology , Biomarkers, Tumor/physiology , Carcinogenesis/metabolism , Cell Line, Tumor , Female , Humans , Male , Middle Aged , Signal Transduction
8.
Exp Cell Res ; 389(2): 111901, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32045577

ABSTRACT

The a3 isoform of vacuolar-type proton-pumping ATPase (V-ATPase) is essential for bone resorption by osteoclasts. Although more than 90 mutations of the human a3 gene have been identified in patients with infantile malignant osteopetrosis, it is unclear whether they lead to osteoclast dysfunction. We have established an in vitro assay to induce osteoclasts from spleen macrophages derived from a3-knockout mice. Here, we examined the effects of these mutations in a3-knockout osteoclasts. We were interested in four mutations, two short deletions and two missense mutations, previously identified in the a3 cytosolic domain. a3 harboring either of the two short deletions was hardly expressed in osteoclasts and calcium phosphate resorption was impaired. On the other hand, osteoclasts expressing a3 with either of the two missense mutations exhibited no defects. Specifically, expression levels of the mutant proteins, V-ATPase assembly, and calcium phosphate resorption activity were similar to those of the wild type. Moreover, these missense mutants interacted with Rab7, a small GTPase that regulates lysosomal trafficking. These results suggest that the short deletions impair a3 expression and thus disrupt V-ATPase subunit assembly essential for bone resorption, while the missense mutations do not cause osteoclast dysfunction without an additional mutation(s) or impair resorption of bone, but not of calcium phosphate.


Subject(s)
Bone Resorption , Cytoplasm/metabolism , Lysosomes/pathology , Mutation, Missense , Osteoclasts/pathology , Osteopetrosis/pathology , Vacuolar Proton-Translocating ATPases/genetics , Amino Acid Sequence , Animals , Cell Differentiation , Humans , Lysosomes/metabolism , Mice , Mice, Knockout , Osteoclasts/metabolism , Osteopetrosis/genetics , Sequence Homology , Vacuolar Proton-Translocating ATPases/physiology
9.
Virology ; 541: 85-100, 2020 02.
Article in English | MEDLINE | ID: mdl-32056718

ABSTRACT

The endosomal sorting complex required for transport (ESCRT) pathway is required for efficient egress of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). In this study, we found that Ac93, a baculovirus core protein, contains a conserved MIM1-like motif. Alanine substitutions for six leucine residues in MIM1-like motif revealed that L142, L145, L146, and L149 are required for association of Ac93 with the MIT domain of Vps4. Mutations of these residues also blocked self-association and the association of Ac93 with ESCRT-III proteins or other viral core proteins Ac76 and Ac103, and resulted in a substantial reduction of infectious virus production, less efficient nuclear egress of progeny nucleocapsids, and the defect of intranuclear microvesicles formation. Combined with the localization of the association of Ac93 with ESCRT-III/Vps4 and other viral proteins at the nuclear membrane, we propose that the coordinated action of these viral proteins and ESCRT-III/Vps4 may be involved in remodeling the nuclear membrane.


Subject(s)
ATPases Associated with Diverse Cellular Activities/physiology , Cell Nucleus/metabolism , Endosomal Sorting Complexes Required for Transport/physiology , Nucleocapsid/physiology , Nucleopolyhedroviruses/physiology , Vacuolar Proton-Translocating ATPases/physiology , Viral Core Proteins/physiology , ATPases Associated with Diverse Cellular Activities/chemistry , Amino Acid Motifs , Animals , Endosomal Sorting Complexes Required for Transport/chemistry , Host Microbial Interactions , Nucleocapsid/chemistry , Protein Domains , Spodoptera , Vacuolar Proton-Translocating ATPases/chemistry
10.
J Mol Endocrinol ; 64(3): 145-154, 2020 04.
Article in English | MEDLINE | ID: mdl-31958319

ABSTRACT

Elevated soluble (pro)renin receptor (s(P)RR) concentration in maternal blood is associated with gestational hypertension and preeclampsia. Placenta has abundant expression of (P)RR, and the binding of (P)RR with pyruvate dehydrogenase E1 beta subunit (PDHB) is reported to maintain oxidative metabolism. Thus, we hypothesized that placental hypoxia may increase (P)RR, and the increased (P)RR may preserve PDHB expression. Expression and functional analyses were performed using human placental trophoblast cells, mainly JAR cells. (P)RR co-immunoprecipitated and showed co-immunofluorescence with PDHB mainly in the mitochondria. Hypoxia treatment significantly increased intracellular s(P)RR protein expression, but secreted s(P)RR in the culture medium was decreased by hypoxia. Hypoxia treatment did not alter PDHB expression or activity in the basal condition, but when (P)RR was knocked down by siRNA, PDHB protein and activity were reduced by hypoxia. Acetyl-CoA, the product of PDH activity, was significantly reduced by hypoxia treatment with (P)RR siRNA. S(P)RR is generated from full-length PRR when cleaved by specific proteases. Protease inhibitor experiments suggested furin and site 1 protease as the enzymes generating s(P)RR in JAR cells, and only when treated by site 1 protease inhibitor, PF429242, PDHB protein showed a significant trend to decrease with hypoxia. In JAR cells, hypoxia increased intracellular s(P)RR, and (P)RR preserved the expression and function of PDHB during hypoxia. (P)RR may help maintain oxidative metabolism and efficient energy production during placental ischemia in hypertensive disorders of pregnancy.


Subject(s)
Cell Hypoxia/genetics , Oxidative Stress/genetics , Receptors, Cell Surface/physiology , Trophoblasts/metabolism , Vacuolar Proton-Translocating ATPases/physiology , Cell Hypoxia/drug effects , Cell Respiration/drug effects , Cell Respiration/genetics , Cells, Cultured , Female , Humans , Oxidative Phosphorylation/drug effects , Oxidative Stress/drug effects , Oxygen/metabolism , Oxygen/pharmacology , Pregnancy , Pyruvate Dehydrogenase (Lipoamide)/genetics , Pyruvate Dehydrogenase (Lipoamide)/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Solubility , Trophoblasts/drug effects , Up-Regulation/drug effects , Up-Regulation/genetics , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism
11.
J Bone Joint Surg Am ; 101(21): 1939-1947, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31567691

ABSTRACT

BACKGROUND: Osteoclasts are hematopoietic stem cell-derived multinucleated cells necessary for bone remodeling and resorption. TCIRG1 encodes a protein that is an adenosine triphosphate (ATP)-dependent vacuolar proton pump required for this process. Recessive loss-of-function mutations in both copies of this gene lead to impairment of osteoclast function, with increased bone density, increased skeletal mass, and early mortality. METHODS: We isolated fibroblasts from a patient with the compound heterozygous TCIRG1 mutations c.1549G>A (p.517D>N) and c.2236C>T (p.746Q>X), and reprogrammed them into iPS (induced pluripotent stem) cells. The function of osteoclasts derived from these cells was then rescued by transgenic expression of TCIRG1 cDNA. RESULTS: In addition to the known effects of TCIRG1 loss of function, iPS cell-derived osteoclasts from this patient had reduced expression of the bone remodeling enzymes cathepsin K (CTSK) and tartrate-resistant acid phosphatase (TRAP), leading to reduced in vitro bone remodeling. Expression of both genes and pit formation were restored in iPS cell-derived osteoclasts following transgenic restoration of TCIRG1 expression. CONCLUSIONS: Transgenic overexpression of TCIRG1 was sufficient to restore osteoclast function in iPS cell-derived osteoclasts from a patient with infantile malignant autosomal-recessive osteopetrosis. CLINICAL RELEVANCE: This work provides a proof of concept for an autologous approach to treating osteopetrosis, potentially avoiding the risks associated with hematopoietic stem cell transplantation in a young patient population.


Subject(s)
Induced Pluripotent Stem Cells , Osteoclasts/physiology , Osteopetrosis/therapy , Vacuolar Proton-Translocating ATPases/physiology , Hematopoietic Stem Cell Transplantation/methods , Humans , Mutation , Osteopetrosis/genetics , Transplantation, Autologous , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism
12.
Cells ; 8(10)2019 09 24.
Article in English | MEDLINE | ID: mdl-31554233

ABSTRACT

The vacuolar H+-adenosine triphosphatase (ATPase) subunit V0C (ATP6V0C), a proton-conducting, pore-forming subunit of vacuolar ATPase, maintains pH homeostasis and induces organelle acidification. The intracellular and extracellular pH of cancer cells affects their growth; however, the role of ATP6V0C in highly invasive esophageal cancer cells (ECCs) remains unclear. In this study, we examined the role of ATP6V0C in glucose metabolism in ECCs. The ATP6V0C depletion attenuated ECC proliferation, invasion, and suppressed glucose metabolism, as indicated by reduced glucose uptake and decreased lactate and adenosine triphosphate (ATP) production in cells. Consistent with this, expression of glycolytic enzyme and the extracellular acidification rate (ECAR) were also decreased by ATP6V0C knockdown. Mechanistically, ATP6V0C interacted with pyruvate kinase isoform M2 (PKM2), a key regulator of glycolysis in ECCs. The ATP6V0C depletion reduced PKM2 phosphorylation at tyrosine residue 105 (Tyr105), leading to inhibition of nuclear translocation of PKM2. In addition, ATP6V0C was recruited at hypoxia response element (HRE) sites in the lactate dehydrogenase A (LDHA) gene for glycolysis. Thus, our data suggest that ATP6V0C enhances aerobic glycolysis and motility in ECCs.


Subject(s)
Carrier Proteins/metabolism , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Glycolysis/genetics , Membrane Proteins/metabolism , Thyroid Hormones/metabolism , Vacuolar Proton-Translocating ATPases/physiology , Aerobiosis/physiology , Cell Movement/genetics , Cell Proliferation/genetics , Cells, Cultured , Esophageal Neoplasms/genetics , HeLa Cells , Humans , Neoplasm Invasiveness , Phosphorylation , Protein Subunits/physiology , Protein Transport/genetics , Signal Transduction/genetics , Thyroid Hormone-Binding Proteins
13.
Front Immunol ; 10: 1911, 2019.
Article in English | MEDLINE | ID: mdl-31456807

ABSTRACT

Proper orchestration of T lymphocyte development is critical, as T cells underlie nearly all responses of the adaptive immune system. Developing thymocytes differentiate in response to environmental cues carried from cell surface receptors to the nucleus, shaping a distinct transcriptional program that defines their developmental outcome. Our recent work has identified a previously undescribed role for the vacuolar ATPase (V-ATPase) in facilitating the development of murine thymocytes progressing toward the CD4+ and CD8+ αß T cell lineages. Vav1Cre recombinase-mediated deletion of the a2 isoform of the V-ATPase (a2V) in mouse hematopoietic cells leads to a specific and profound loss of peripheral CD4+ and CD8+ αß T cells. Utilizing T cell-restricted LckCre and CD4Cre strains, we further traced this deficiency to the thymus and found that a2V plays a cell-intrinsic role throughout intrathymic development. Loss of a2V manifests as a partial obstruction in the double negative stage of T cell development, and later, a near complete failure of positive selection. These data deepen our understanding of the biological mechanisms that orchestrate T cell development and lend credence to the recent focus on V-ATPase as a potential chemotherapeutic target to combat proliferative potential in T cell lymphoblastic leukemias and autoimmune disease.


Subject(s)
Lymphopoiesis , T-Lymphocytes/physiology , Thymocytes/physiology , Thymus Gland/cytology , Thymus Gland/enzymology , Vacuolar Proton-Translocating ATPases/physiology , Animals , CD4-Positive T-Lymphocytes/physiology , CD8-Positive T-Lymphocytes/physiology , Female , Gene Deletion , Leukopenia/genetics , Male , Mice , Mice, Inbred C57BL , Receptor, Notch1/metabolism , Signal Transduction , Thymus Gland/immunology , Vacuolar Proton-Translocating ATPases/deficiency , Vacuolar Proton-Translocating ATPases/genetics
14.
Nat Rev Nephrol ; 15(11): 693-712, 2019 11.
Article in English | MEDLINE | ID: mdl-31164719

ABSTRACT

The (pro)renin receptor ((P)RR) was first identified as a single-transmembrane receptor in human kidneys and initially attracted attention owing to its potential role as a regulator of the tissue renin-angiotensin system (RAS). Subsequent studies found that the (P)RR is widely distributed in organs throughout the body, including the kidneys, heart, brain, eyes, placenta and the immune system, and has multifaceted functions in vivo. The (P)RR has roles in various physiological processes, such as the cell cycle, autophagy, acid-base balance, energy metabolism, embryonic development, T cell homeostasis, water balance, blood pressure regulation, cardiac remodelling and maintenance of podocyte structure. These roles of the (P)RR are mediated by its effects on important biological systems and pathways including the tissue RAS, vacuolar H+-ATPase, Wnt, partitioning defective homologue (Par) and tyrosine phosphorylation. In addition, the (P)RR has been reported to contribute to the pathogenesis of diseases such as fibrosis, hypertension, pre-eclampsia, diabetic microangiopathy, acute kidney injury, cardiovascular disease, cancer and obesity. Current evidence suggests that the (P)RR has key roles in the normal development and maintenance of vital organs and that dysfunction of the (P)RR is associated with diseases that are characterized by a disruption of the homeostasis of physiological functions.


Subject(s)
Receptors, Cell Surface/physiology , Vacuolar Proton-Translocating ATPases/physiology , Brain/physiology , Brain/physiopathology , Eye/physiopathology , Female , Heart/physiology , Heart/physiopathology , Homeostasis/physiology , Humans , Immune System/physiology , Immune System/physiopathology , Kidney/physiology , Kidney/physiopathology , Ocular Physiological Phenomena , Placenta/physiology , Placenta/physiopathology , Pregnancy , Renin-Angiotensin System/physiology
15.
Development ; 146(11)2019 06 05.
Article in English | MEDLINE | ID: mdl-31110027

ABSTRACT

Intestine function relies on the strong polarity of intestinal epithelial cells and the array of microvilli forming a brush border at their luminal pole. Combining a genetic RNA interference (RNAi) screen with in vivo super-resolution imaging in the Caenorhabditiselegans intestine, we found that the V0 sector of the vacuolar ATPase (V0-ATPase) controls a late apical trafficking step, involving Ras-related protein 11 (RAB-11)+ endosomes and the N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) synaptosome-associated protein 29 (SNAP-29), and is necessary to maintain the polarized localization of both apical polarity modules and brush border proteins. We show that the V0-ATPase pathway also genetically interacts with glycosphingolipids and clathrin in enterocyte polarity maintenance. Finally, we demonstrate that silencing of the V0-ATPase fully recapitulates the severe structural, polarity and trafficking defects observed in enterocytes from individuals with microvillus inclusion disease (MVID) and use this new in vivo MVID model to follow the dynamics of microvillus inclusions. Thus, we describe a new function for V0-ATPase in apical trafficking and epithelial polarity maintenance and the promising use of the C. elegans intestine as an in vivo model to better understand the molecular mechanisms of rare genetic enteropathies.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Cell Polarity/genetics , Enterocytes/physiology , Intestinal Mucosa/physiology , Proton-Translocating ATPases/physiology , Vacuolar Proton-Translocating ATPases/physiology , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Cell Membrane/metabolism , Cell Membrane/physiology , Intestinal Absorption/genetics , Intestinal Mucosa/metabolism , Protein Transport/genetics , Signal Transduction
17.
J Clin Invest ; 129(5): 2145-2162, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30985297

ABSTRACT

Vacuolar H+-ATPase-dependent (V-ATPase-dependent) functions are critical for neural proteostasis and are involved in neurodegeneration and brain tumorigenesis. We identified a patient with fulminant neurodegeneration of the developing brain carrying a de novo splice site variant in ATP6AP2 encoding an accessory protein of the V-ATPase. Functional studies of induced pluripotent stem cell-derived (iPSC-derived) neurons from this patient revealed reduced spontaneous activity and severe deficiency in lysosomal acidification and protein degradation leading to neuronal cell death. These deficiencies could be rescued by expression of full-length ATP6AP2. Conditional deletion of Atp6ap2 in developing mouse brain impaired V-ATPase-dependent functions, causing impaired neural stem cell self-renewal, premature neuronal differentiation, and apoptosis resulting in degeneration of nearly the entire cortex. In vitro studies revealed that ATP6AP2 deficiency decreases V-ATPase membrane assembly and increases endosomal-lysosomal fusion. We conclude that ATP6AP2 is a key mediator of V-ATPase-dependent signaling and protein degradation in the developing human central nervous system.


Subject(s)
Central Nervous System/physiopathology , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/genetics , Pluripotent Stem Cells/metabolism , Receptors, Cell Surface/genetics , Vacuolar Proton-Translocating ATPases/genetics , Adolescent , Alternative Splicing , Animals , Apoptosis , Brain/diagnostic imaging , Cell Death , Cell Differentiation , Cell Survival , Child, Preschool , Gene Deletion , Genetic Variation , HEK293 Cells , HeLa Cells , Humans , Lysosomes/metabolism , Male , Mice , Mice, Inbred C57BL , Neural Stem Cells/metabolism , Neurons/metabolism , Proton-Translocating ATPases/genetics , Proton-Translocating ATPases/physiology , Receptors, Cell Surface/physiology , Vacuolar Proton-Translocating ATPases/physiology
18.
Genet Test Mol Biomarkers ; 22(10): 599-606, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30256676

ABSTRACT

AIM: To analyze the variants of the potential causative genes in five Chinese patients with primary distal renal tubular acidosis (dRTA) from five unrelated families, and to explore their possible genotype-phenotype correlations, so as to raise the awareness of the disease. METHODS: Variants were identified by next generation sequencing. Clinical features and biochemical findings at the first presentation, as well as at follow-up visits were also investigated. One hundred unrelated healthy subjects were selected to evaluate each of the novel mutations found in this study. RESULTS: A total of seven different mutations in the ATP6V0A4, ATP6V1B1, and SLC4A1 genes, the three main causative genes of dRTA, were detected in 4/5 patients. In patient I a novel heterozygous intronic mutation (c.639 + 1G>A) in the ATP6V0A4 gene was identified along with a heterozygous nonsense variant (c.580C>T, p.Arg194*). Two novel heterozygous missense mutations of the ATP6V1B1 gene (c.409C>T, p.Pro137Ser; c.904C>T, p.Arg302Trp) were identified in patient II. In patient III 2 novel heterozygous duplications (c.1504dupT, p.Tyr502Leufs*22; c.2351dupT, p.Phe785Ilefs*28) were found. Thus, these three patients all were compound heterozygotes leading to dRTA. These findings are consistent with the known autosomal recessive inheritance pattern of this disease. Furthermore, a de novo heterozygous missense mutation previously reported (c.1765C>A, p.Arg589Ser) in the SLC4A1 gene was observed in patient IV. No mutations in any of the known dRTA-related causative genes were found in the patient V. CONCLUSIONS: In the present study we identified 7 mutations, including 5 novel variants, in the three genes previously correlated with dRTA, enriching the human gene mutation database (HGMD). In addition, our lack of findings in these three genes for patient V suggests that other genes may contribute to dRTA in some cases.


Subject(s)
Acidosis, Renal Tubular/genetics , Adolescent , Adult , Anion Exchange Protein 1, Erythrocyte/genetics , Anion Exchange Protein 1, Erythrocyte/physiology , Asian People/genetics , Child , Child, Preschool , China , DNA Mutational Analysis , Exons , Female , Genetic Association Studies/methods , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Middle Aged , Mutation , Mutation, Missense , Pedigree , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/physiology
19.
Cell Mol Life Sci ; 75(10): 1789-1802, 2018 05.
Article in English | MEDLINE | ID: mdl-29387903

ABSTRACT

Rotary ATPases are unique rotary molecular motors that function as energy conversion machines. Among all known rotary ATPases, F1-ATPase is the best characterized rotary molecular motor. There are many high-resolution crystal structures and the rotation dynamics have been investigated in detail by extensive single-molecule studies. In contrast, knowledge on the structure and rotation dynamics of V1-ATPase, another rotary ATPase, has been limited. However, recent high-resolution structural studies and single-molecule studies on V1-ATPase have provided new insights on how the catalytic sites in this molecular motor change its conformation during rotation driven by ATP hydrolysis. In this review, we summarize recent information on the structural features and rotary dynamics of V1-ATPase revealed from structural and single-molecule approaches and discuss the possible chemomechanical coupling scheme of V1-ATPase with a focus on differences between rotary molecular motors.


Subject(s)
Molecular Motor Proteins/metabolism , Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Animals , Crystallography, X-Ray , Humans , Hydrolysis , Models, Molecular , Molecular Motor Proteins/chemistry , Molecular Motor Proteins/physiology , Protein Conformation , Rotation , Vacuolar Proton-Translocating ATPases/physiology
20.
PLoS Pathog ; 14(1): e1006820, 2018 01.
Article in English | MEDLINE | ID: mdl-29352319

ABSTRACT

The cellular PI3K/Akt and/or MEK/ERK signaling pathways mediate the entry process or endosomal acidification during infection of many viruses. However, their roles in the early infection events of group A rotaviruses (RVAs) have remained elusive. Here, we show that late-penetration (L-P) human DS-1 and bovine NCDV RVA strains stimulate these signaling pathways very early in the infection. Inhibition of both signaling pathways significantly reduced production of viral progeny due to blockage of virus particles in the late endosome, indicating that neither of the two signaling pathways is involved in virus trafficking. However, immunoprecipitation assays using antibodies specific for pPI3K, pAkt, pERK and the subunit E of the V-ATPase co-immunoprecipitated the V-ATPase in complex with pPI3K, pAkt, and pERK. Moreover, Duolink proximity ligation assay revealed direct association of the subunit E of the V-ATPase with the molecules pPI3K, pAkt, and pERK, indicating that both signaling pathways are involved in V-ATPase-dependent endosomal acidification. Acidic replenishment of the medium restored uncoating of the RVA strains in cells pretreated with inhibitors specific for both signaling pathways, confirming the above results. Isolated components of the outer capsid proteins, expressed as VP4-VP8* and VP4-VP5* domains, and VP7, activated the PI3K/Akt and MEK/ERK pathways. Furthermore, psoralen-UV-inactivated RVA and CsCl-purified RVA triple-layered particles triggered activation of the PI3K/Akt and MEK/ERK pathways, confirming the above results. Our data demonstrate that multistep binding of outer capsid proteins of L-P RVA strains with cell surface receptors phosphorylates PI3K, Akt, and ERK, which in turn directly interact with the subunit E of the V-ATPase to acidify the late endosome for uncoating of RVAs. This study provides a better understanding of the RVA-host interaction during viral uncoating, which is of importance for the development of strategies aiming at controlling or preventing RVA infections.


Subject(s)
Capsid Proteins/metabolism , Endosomes/metabolism , Rotavirus Infections/metabolism , Vacuolar Proton-Translocating ATPases/physiology , Virus Uncoating , Acids/metabolism , Animals , Caco-2 Cells , Cattle , Cells, Cultured , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/metabolism , Haplorhini , Humans , Hydrogen-Ion Concentration , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rotavirus/metabolism , Rotavirus/physiology , Rotavirus Infections/enzymology , Rotavirus Infections/virology , Sf9 Cells , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...