Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 1566, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30952952

ABSTRACT

The class 3 phosphoinositide 3-kinase (PI3K) is required for lysosomal degradation by autophagy and vesicular trafficking, assuring nutrient availability. Mitochondrial lipid catabolism is another energy source. Autophagy and mitochondrial metabolism are transcriptionally controlled by nutrient sensing nuclear receptors. However, the class 3 PI3K contribution to this regulation is unknown. We show that liver-specific inactivation of Vps15, the essential regulatory subunit of the class 3 PI3K, elicits mitochondrial depletion and failure to oxidize fatty acids. Mechanistically, transcriptional activity of Peroxisome Proliferator Activated Receptor alpha (PPARα), a nuclear receptor orchestrating lipid catabolism, is blunted in Vps15-deficient livers. We find PPARα repressors Histone Deacetylase 3 (Hdac3) and Nuclear receptor co-repressor 1 (NCoR1) accumulated in Vps15-deficient livers due to defective autophagy. Activation of PPARα or inhibition of Hdac3 restored mitochondrial biogenesis and lipid oxidation in Vps15-deficient hepatocytes. These findings reveal roles for the class 3 PI3K and autophagy in transcriptional coordination of mitochondrial metabolism.


Subject(s)
Autophagy/physiology , Lipid Metabolism , Mitochondria/metabolism , PPAR alpha/metabolism , Phosphatidylinositol 3-Kinases/physiology , Animals , Autophagy/drug effects , Autophagy/genetics , Fenofibrate/pharmacology , Gene Expression Regulation/drug effects , HEK293 Cells , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histone Deacetylases/physiology , Humans , Lipid Metabolism/drug effects , Male , Mice , Mice, Knockout , Nuclear Receptor Co-Repressor 1/genetics , Nuclear Receptor Co-Repressor 1/metabolism , Nuclear Receptor Co-Repressor 1/physiology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Transcription, Genetic/drug effects , Vacuolar Sorting Protein VPS15/genetics , Vacuolar Sorting Protein VPS15/metabolism , Vacuolar Sorting Protein VPS15/physiology
2.
J Eukaryot Microbiol ; 64(3): 308-321, 2017 05.
Article in English | MEDLINE | ID: mdl-27603757

ABSTRACT

Autophagy is a degradative process by which eukaryotic cells digest their own components to provide aminoacids that may function as energy source under nutritional stress conditions. There is experimental evidence for autophagy in parasitic protists belonging to the family Trypanosomatidae. However, few proteins implicated in this process have been characterized so far in these parasites. Moreover, it has been shown that autophagy is involved in Trypanosoma cruzi differentiation and thus might have a role in pathogenicity. Here, we report the cloning and biochemical characterization of TcVps15. In addition, we demonstrate that TcVps15 interact with the PI3K TcVps34 and that both proteins associate with cellular membranes. Under nutritional stress conditions, TcVps15 and TcVps34 modify their subcellular distribution showing a partial co-localization in autophagosomes with TcAtg8.1 and using an active site TcVps15-mutated version (TcVps15-K219D-HA) we demonstrated that this relocalization depends on the TcVps15 catalytic activity. Overexpression of TcVps15-HA and TcVps15-K219D-HA also leads to increased accumulation of monodansylcadaverine (MDC) in autophagic vacuoles under nutritional stress conditions compared to wild-type cells. In addition, the MDC-specific activity shows to be significantly higher in TcVps15-HA overexpressing cells when compared with TcVps15-K219D-HA. Our results reveal for the first time a role of TcVps15 as a key regulator of TcVps34 enzymatic activity and implicate the TcVps15-Vps34 complex in autophagy in T. cruzi, exposing a new key pathway to explore novel chemotherapeutic targets.


Subject(s)
Autophagy , Class III Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/metabolism , Vacuolar Sorting Protein VPS15/metabolism , Animals , Cadaverine/analogs & derivatives , Cadaverine/metabolism , Cell Culture Techniques , Cell Membrane/metabolism , Class III Phosphatidylinositol 3-Kinases/genetics , Class III Phosphatidylinositol 3-Kinases/physiology , Cloning, Molecular , DNA, Protozoan , Enzyme Assays , Gene Expression Regulation, Enzymologic , Life Cycle Stages , Mutagenesis, Site-Directed , Phagosomes/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/physiology , Protozoan Proteins/biosynthesis , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Sequence Analysis , Transfection , Trypanosoma cruzi/cytology , Trypanosoma cruzi/genetics , Two-Hybrid System Techniques , Vacuolar Sorting Protein VPS15/genetics , Vacuolar Sorting Protein VPS15/physiology , Vacuoles/metabolism
3.
Cell Death Differ ; 22(3): 457-64, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25342466

ABSTRACT

Autophagy is a catabolic process used to deliver cellular material to the lysosome for degradation. The core Vps34/class III phosphatidylinositol 3-kinase (PI3K) complex, consisting of Atg6, Vps15, and Vps34, is highly conserved throughout evolution, critical for recruiting autophagy-related proteins to the preautophagosomal structure and for other vesicular trafficking processes, including vacuolar protein sorting. Atg6 and Vps34 have been well characterized, but the Vps15 kinase remains poorly characterized with most studies focusing on nutrient deprivation-induced autophagy. Here, we investigate the function of Vps15 in different cellular contexts and find that it is necessary for both stress-induced and developmentally programmed autophagy in various tissues in Drosophila melanogaster. Vps15 is required for autophagy that is induced by multiple forms of stress, including nutrient deprivation, hypoxia, and oxidative stress. Furthermore, autophagy that is triggered by physiological stimuli during development in the fat body, intestine, and salivary gland also require the function of Vps15. In addition, we show that Vps15 is necessary for efficient salivary gland protein secretion. These data illustrate the broad importance of Vps15 in multiple forms of autophagy in different animal cells, and also highlight the pleiotropic function of this kinase in multiple vesicle-trafficking pathways.


Subject(s)
Autophagy/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Salivary Glands/metabolism , Salivary Proteins and Peptides/metabolism , Stress, Physiological/physiology , Vacuolar Sorting Protein VPS15/physiology , Animals , Cells, Cultured , Female , Male , Protein Transport , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...