Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 911
Filter
1.
Luminescence ; 39(8): e4850, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39129387

ABSTRACT

Silver vanadate nanorods were synthesized for the first time via co-precipitation, followed by ambient drying. X-ray diffraction (XRD), energy dispersive X-ray (EDX), and scanning electron microscope (SEM) analyses were utilized to investigate the structure and morphology of the nanorods. The results of these analyses confirmed the fabrication of silver vanadate nanorods. Then, to check the ability of these nanostructures to be used in the smart window, their optical properties, including the visible-ultraviolet absorption spectrum and photoluminescence (PL), were studied. The results showed that this nanostructure has maximum absorption and emission at wavelengths of 530 and 670 nm, respectively. Next, the new smart window was made with a layer of silver vanadate nanorods, and wheat, barley, millet, and beet were placed under this smart window to perform phytochemical tests. It was observed that silver vanadate nanorods could shift the green wavelength to higher wavelengths and efficiently improve the phytochemical properties of the mentioned plants.


Subject(s)
Nanotubes , Silver , Vanadates , Nanotubes/chemistry , Vanadates/chemistry , Silver/chemistry , Sunlight , Luminescence , Phytochemicals/chemistry , Triticum/chemistry , Beta vulgaris/chemistry , Silver Compounds/chemistry
2.
J Inorg Biochem ; 258: 112619, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38823066

ABSTRACT

The present study describes a novel antimicrobial mechanism based on Sodium Orthovanadate (SOV), an alkaline phosphatase inhibitor. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM) were employed to examine the surface morphologies of the test organism, Escherichia coli (E. coli), during various antibacterial phases. Our results indicated that SOV kills bacteria by attacking cell wall growth and development, leaving E. coli's outer membrane intact. Our antimicrobial test indicated that the MIC of SOV for both E. coli and Lactococcus lactis (L. lactis) is 40 µM. A combination of quantum mechanical calculations and vibrational spectroscopy revealed that divanadate from SOV strongly coordinates with Ca2+ and Mg2+, which are the activity centers for the phosphatase that regulates bacterial cell wall synthesis. The current study is the first to propose the antibacterial mechanism caused by SOV attacking cell wall.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Vanadates , Vanadates/chemistry , Vanadates/pharmacology , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Lactococcus lactis , Microbial Sensitivity Tests , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Cell Wall/drug effects , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/antagonists & inhibitors
3.
J Colloid Interface Sci ; 674: 29-38, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38909592

ABSTRACT

Persistent inflammation and bacterial infection commonly occur during the wound healing process, necessitating urgent development of effective strategies for treating drug-resistant bacterial infections. In this study, bismuth vanadate (BiVO4) was successfully synthesized as an antibacterial agent that promotes wound healing. Through In vitro antibacterial experiments, it was observed that the prepared BiVO4 exhibited excellent performance in catalyzing H2O2 to produce hydroxyl radicals (OH) at a lower concentration (0.2 mg mL-1), resulting in significant antibacterial effects against Gram-negative Extended-Spectrum ß-Lactamases-Producing Escherichia coli (ESBL-E. coli) strains. Furthermore, biosafety tests, cell scratch experiments, and ESBL-E. coli infected wound rat model experiments demonstrated high biocompatibility of BiVO4 with a cell survival rate exceeding 85 %. Additionally, BiVO4 promoted the production of vascular endothelial growth factors and fibroblasts migration while contributing to collagen production, effectively facilitating immune reconstruction at the wound site. By integrating peroxidase (POD)-like under acidic conditions (pH 4) and catalase (CAT)-like catalytic activities at under neutral conditions (pH 7), BiVO4 exhibited the ability to activate free radical sterilization and accelerate wound healing by activating O2. Therefore, our findings provide evidence for a dual enzyme regulatory mechanism involving antibacterial properties and promotion of wound tissue reconstruction for potential application in both antibacterial treatment and wound healing.


Subject(s)
Anti-Bacterial Agents , Bismuth , Escherichia coli , Vanadates , Wound Healing , Vanadates/chemistry , Vanadates/pharmacology , Bismuth/chemistry , Bismuth/pharmacology , Wound Healing/drug effects , Animals , Hydrogen-Ion Concentration , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Rats , Catalysis , Escherichia coli/drug effects , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Microbial Sensitivity Tests , Humans , Cell Survival/drug effects , Rats, Sprague-Dawley , Particle Size , Surface Properties
4.
Angew Chem Int Ed Engl ; 63(31): e202406669, 2024 07 29.
Article in English | MEDLINE | ID: mdl-38842919

ABSTRACT

The high-resolution X-ray structures of the model protein lysozyme in the presence of the potential drug [VIVO(acetylacetonato)2] from crystals grown in 1.1 M NaCl, 0.1 M sodium acetate at pH 4.0 reveal the binding to the protein of different and unexpected mixed-valence cage-like polyoxidovanadates (POVs): [V15O36(OH2)]5-, which non-covalently interacts with the lysozyme surface, [V15O33(OH2)]+ and [V20O51(OH2)]n- (this latter based on an unusual {V18O43} cage) which covalently bind the protein. EPR spectroscopy confirms the partial oxidation of VIV to VV and the formation of mixed-valence species. The results indicate that the interaction with proteins can stabilize the structure of unexpected - both for dimension and architecture - POVs, not observed in aqueous solution.


Subject(s)
Muramidase , Vanadates , Muramidase/chemistry , Muramidase/metabolism , Vanadates/chemistry , Models, Molecular , Crystallography, X-Ray
5.
Environ Sci Technol ; 58(21): 9456-9465, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38745405

ABSTRACT

The elimination of uranium from radioactive wastewater is crucial for the safe management and operation of environmental remediation. Here, we present a layered vanadate with high acid/base stability, [Me2NH2]V3O7, as an excellent ion exchanger capturing uranyl from highly complex aqueous solutions. The material possesses an indirect band gap, ferromagnetic characteristic and a flower-like morphology comprising parallel nanosheets. The layered structure of [Me2NH2]V3O7 is predominantly upheld by the H-bond interaction between anionic framework [V3O7]nn- and intercalated [Me2NH2]+. The [Me2NH2]+ within [Me2NH2]V3O7 can be readily exchanged with UO22+. [Me2NH2]V3O7 exhibits high exchange capacity (qm = 176.19 mg/g), fast kinetics (within 15 min), high removal efficiencies (>99%), and good selectivity against an excess of interfering ions. It also displays activity for UO22+ ion exchange over a wide pH range (2.00-7.12). More importantly, [Me2NH2]V3O7 has the capability to effectively remove low-concentration uranium, yielding a residual U concentration of 13 ppb, which falls below the EPA-defined acceptable limit of 30 ppb in typical drinking water. [Me2NH2]V3O7 can also efficiently separate UO22+ from Cs+ or Sr2+ achieving the highest separation factors (SFU/Cs of 589 and SFU/Sr of 227) to date. The BOMD and DFT calculations reveal that the driving force of ion exchange is dominated by the interaction between UO22+ and [V3O7]nn-, whereas the ion exchange rate is influenced by the mobility of UO22+ and [Me2NH2]+. Our experimental findings indicate that [Me2NH2]V3O7 can be considered as a promising uranium scavenger for environmental remediation. Additionally, the simulation results provide valuable mechanistic interpretations for ion exchange and serve as a reference for designing novel ion exchangers.


Subject(s)
Uranium , Vanadates , Uranium/chemistry , Vanadates/chemistry , Ion Exchange , Water Pollutants, Radioactive/chemistry , Kinetics
6.
Nature ; 630(8016): 509-515, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750366

ABSTRACT

Temperature profoundly affects macromolecular function, particularly in proteins with temperature sensitivity1,2. However, its impact is often overlooked in biophysical studies that are typically performed at non-physiological temperatures, potentially leading to inaccurate mechanistic and pharmacological insights. Here we demonstrate temperature-dependent changes in the structure and function of TRPM4, a temperature-sensitive Ca2+-activated ion channel3-7. By studying TRPM4 prepared at physiological temperature using single-particle cryo-electron microscopy, we identified a 'warm' conformation that is distinct from those observed at lower temperatures. This conformation is driven by a temperature-dependent Ca2+-binding site in the intracellular domain, and is essential for TRPM4 function in physiological contexts. We demonstrated that ligands, exemplified by decavanadate (a positive modulator)8 and ATP (an inhibitor)9, bind to different locations of TRPM4 at physiological temperatures than at lower temperatures10,11, and that these sites have bona fide functional relevance. We elucidated the TRPM4 gating mechanism by capturing structural snapshots of its different functional states at physiological temperatures, revealing the channel opening that is not observed at lower temperatures. Our study provides an example of temperature-dependent ligand recognition and modulation of an ion channel, underscoring the importance of studying macromolecules at physiological temperatures. It also provides a potential molecular framework for deciphering how thermosensitive TRPM channels perceive temperature changes.


Subject(s)
Ion Channel Gating , TRPM Cation Channels , Temperature , Humans , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Binding Sites , Calcium/metabolism , Cryoelectron Microscopy , HEK293 Cells , Ion Channel Gating/drug effects , Ligands , Models, Molecular , Protein Binding , Protein Domains , Substrate Specificity , TRPM Cation Channels/agonists , TRPM Cation Channels/antagonists & inhibitors , TRPM Cation Channels/chemistry , TRPM Cation Channels/metabolism , Vanadates/chemistry , Vanadates/pharmacology , Vanadates/metabolism
7.
J Inorg Biochem ; 257: 112610, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38761580

ABSTRACT

Drug resistance has been a major problem for cancer chemotherapy, especially for glioblastoma multiforme that is aggressive, heterogeneous and recurrent with <3% of a five-year survival and limited methods of clinical treatment. To overcome the problem, great efforts have recently been put in searching for agents inducing death of tumor cells via various non-apoptotic pathways. In the present work, we report for the first time that vanadyl complexes, i.e. bis(acetylacetonato)oxidovanadium (IV) (VO(acac)2), can cause mitotic catastrophe and methuotic death featured by catastrophic macropinocytic vacuole accumulation particularly in glioblastoma cells (GCs). Hence, VO(acac)2 strongly suppressed growth of GCs with both in vitro (IC50 = 4-6 µM) and in vivo models, and is much more potent than the current standard-of-care drug Temozolomide. The selective index is as high as ∼10 or more on GCs over normal neural cells. Importantly, GCs respond well to vanadium treatment regardless whether they are carrying IDH1 wild type gene that causes drug resistance. VO(acac)2 may induce methuosis via the Rac-Mitogen-activated protein kinase kinase 4 (MKK4)-c-Jun N-terminal kinase (JNK) signaling pathway. Furthermore, VO(acac)2-induced methuosis is not through a immunogenicity mechanism, making vanadyl complexes safe for interventional therapy. Overall, our results may encourage development of novel vanadium complexes promising for treatment of neural malignant tumor cells.


Subject(s)
Coordination Complexes , Glioblastoma , Mitosis , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/metabolism , Humans , Mitosis/drug effects , Animals , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice , Vanadates/pharmacology , Vanadates/chemistry , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Mice, Nude
8.
Biotechnol Bioeng ; 121(9): 2780-2792, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38711263

ABSTRACT

Pretreatment is crucial for effective enzymatic saccharification of lignocellulose such as sugarcane bagasse (SCB). In the present study, SCB was pretreated with five kinds of heterogeneous Fenton-like systems (HFSs), respectively, in which α-FeOOH, α-Fe2O3, Fe3O4, and FeS2 worked as four traditional heterogeneous Fenton-like catalysts (HFCs), while FeVO4 worked as a novel HFC. The enzymatic reducing sugar conversion rate was then compared among SCB after different heterogeneous Fenton-like pretreatments (HFPs), and the optimal HFS and pretreatment conditions were determined. The mechanism underlying the difference in saccharification efficiency was elucidated by analyzing the composition and morphology of SCB. Moreover, the ion dissolution characteristics, variation of pH and Eh values, H2O2 and hydroxyl radical (·OH) concentration of FeVO4 and α-Fe2O3 HFSs were compared. The results revealed that the sugar conversion rate of SCB pretreated with FeVO4 HFS reached up to 58.25%, which was obviously higher than that under other HFPs. In addition, the surface morphology and composition of the pretreated SCB with FeVO4 HFS were more conducive to enzymatic saccharification. Compared with α-Fe2O3, FeVO4 could utilize H2O2 more efficiently, since the dissolved Fe3+ and V5+ can both react with H2O2 to produce more ·OH, resulting in a higher hemicellulose and lignin removal rate and a higher enzymatic sugar conversion rate. It can be concluded that FeVO4 HFP is a promising approach for lignocellulose pretreatment.


Subject(s)
Cellulose , Hydrogen Peroxide , Iron , Saccharum , Vanadates , Saccharum/chemistry , Saccharum/metabolism , Cellulose/chemistry , Cellulose/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/chemistry , Iron/chemistry , Iron/metabolism , Vanadates/chemistry , Cellulase/chemistry , Cellulase/metabolism , Lignin/chemistry , Lignin/metabolism
9.
ACS Appl Mater Interfaces ; 16(17): 21975-21986, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38626357

ABSTRACT

The development of high-performance biosensors is a key focus in the nanozyme field, but the current limitations in biocompatibility and recyclability hinder their broader applications. Herein, we address these challenges by constructing core-shell nanohybrids with biocompatible poly(ethylene glycol) (PEG) modification using a galvanic replacement reaction between orthovanadate ions and liquid metal (LM) (VOx@EGaIn-PEG). By leveraging the excellent charge transfer properties and the low band gap of the LM surface oxide, the VOx@EGaIn-PEG heterojunction can effectively convert hydrogen peroxide into hydroxyl radicals, demonstrating excellent peroxidase-like activity and stability (Km = 490 µM, vmax = 1.206 µM/s). The unique self-healing characteristics of LM further enable the recovery and regeneration of VOx@EGaIn-PEG nanozymes, thereby significantly reducing the cost of biological detection. Building upon this, we developed a nanozyme colorimetric sensor suitable for biological systems and integrated it with a smartphone to create an efficient quantitative detection platform. This platform allows for the convenient and sensitive detection of glucose in serum samples, exhibiting a good linear relationship in the range of 10-500 µM and a detection limit of 2.35 µM. The remarkable catalytic potential of LM, combined with its biocompatibility and regenerative properties, offers valuable insights for applications in catalysis and biomedical fields.


Subject(s)
Biosensing Techniques , Polyethylene Glycols , Polyethylene Glycols/chemistry , Biosensing Techniques/methods , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Peroxidase/chemistry , Peroxidase/metabolism , Catalysis , Humans , Vanadates/chemistry , Blood Glucose/analysis , Biomimetic Materials/chemistry , Limit of Detection , Vanadium Compounds/chemistry
11.
Environ Sci Pollut Res Int ; 31(20): 30085-30098, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598155

ABSTRACT

Formaldehyde (HCHO) is one of the primary indoor air pollutants, and efficiently eliminating it, especially at low concentrations, remains challenging. In this study, BiVO4-TiO2 catalyst was developed using ultrasonic blending technology for the photocatalytic oxidation of low-level indoor HCHO. The crystal structure, surface morphology, element distribution, and active oxidation species of the catalyst were examined using XRD, SEM, TEM, UV-Vis, EDS, and ESR techniques. Our results demonstrated that the BiVO4-TiO2 catalyst, prepared by ultrasonic blending, exhibited good oxidation performance and stability. The HCHO concentration reduced from 1.050 to 0.030 mg/m3 within 48 h, achieving a removal rate of 97.1%. The synergy between BiVO4 and TiO2 enhanced the efficiency of separating photogenerated carriers and minimized the likelihood of recombination between photogenerated electrons and holes. Additionally, this synergy significantly enhanced the presence of hydroxyl radicals (·OH) on the catalyst, resulting in an oxidation performance superior to that of either BiVO4 or TiO2. Our research offers valuable insights for the development of new photocatalysts to address HCHO pollution.


Subject(s)
Bismuth , Formaldehyde , Oxidation-Reduction , Titanium , Vanadates , Formaldehyde/chemistry , Titanium/chemistry , Vanadates/chemistry , Bismuth/chemistry , Catalysis , Light , Ultrasonics
12.
Langmuir ; 40(17): 9155-9169, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38641555

ABSTRACT

A lack of eco-friendly, highly active photocatalyst for peroxymonosulfate (PMS) activation and unclear environmental risks are significant challenges. Herein, we developed a double S-scheme Fe2O3/BiVO4(110)/BiVO4(010)/Fe2O3 photocatalyst to activate PMS and investigated its impact on wheat seed germination. We observed an improvement in charge separation by depositing Fe2O3 on the (010) and (110) surfaces of BiVO4. This enhancement is attributed to the formation of a dual S-scheme charge transfer mechanism at the interfaces of Fe2O3/BiVO4(110) and BiVO4(010)/Fe2O3. By introducing PMS into the system, photogenerated electrons effectively activate PMS, generating reactive oxygen species (ROS) such as hydroxyl radicals (·OH) and sulfate radicals (SO4·-). Among the tested systems, the 20% Fe2O3/BiVO4/Vis/PMS system exhibits the highest catalytic efficiency for norfloxacin (NOR) removal, reaching 95% in 40 min. This is twice the catalytic efficiency of the Fe2O3/BiVO4/PMS system, 1.8 times that of the Fe2O3/BiVO4 system, and 5 times that of the BiVO4 system. Seed germination experiments revealed that Fe2O3/BiVO4 heterojunction was beneficial for wheat seed germination, while PMS had a significant negative effect. This study provides valuable insights into the development of efficient and sustainable photocatalytic systems for the removal of organic pollutants from wastewater.


Subject(s)
Bismuth , Ferric Compounds , Light , Norfloxacin , Peroxides , Vanadates , Vanadates/chemistry , Vanadates/radiation effects , Bismuth/chemistry , Norfloxacin/chemistry , Norfloxacin/radiation effects , Catalysis/radiation effects , Ferric Compounds/chemistry , Peroxides/chemistry , Photochemical Processes , Triticum/chemistry , Triticum/radiation effects
13.
J Dent ; 145: 104984, 2024 06.
Article in English | MEDLINE | ID: mdl-38583645

ABSTRACT

OBJECTIVES: To incorporate the nanostructured silver vanadate decorated with silver nanoparticles (AgVO3) into denture base materials: heat-cured (HC) and 3D printed (3DP) resins, at concentrations of 2.5 %, 5 %, and 10 %; and to evaluate the antimicrobial activity in two multi-species biofilm: (1) Candida albicans, Candida glabrata, and Streptococcus mutans, (2) Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus, and the wettability. METHODS: The AgVO3 was added to the HC powder, and printed samples were coated with 3DP with AgVO3 incorporated. After biofilm formation, the antimicrobial activity was evaluated by colony forming units per milliliter (CFU/mL), metabolic activity, and epifluorescence microscopy. Wettability was assessed by the contact angles with water and artificial saliva. RESULTS: In biofilm (1), HC-5 % and HC-10 % showed activity against S. mutans, HC-10 % against C. glabrata, and HC-10 % and 3DP-10 % had higher CFU/mL of C. albicans. 3DP-5 % had lower metabolic activity than the 3DP control. In biofilm (2), HC-10 % reduced S. aureus and P. aeruginosa, and HC-5 %, 3DP-2.5 %, and 3DP-5 % reduced S. aureus. 3DP incorporated with AgVO3, HC-5 %, and HC-10 % reduced biofilm (2) metabolic activity. 3DP-5 % and 3DP-10 % increased wettability with water and saliva. CONCLUSION: HC-10 % was effective against C. glabrata, S. mutans, P. aeruginosa, and S. aureus, and HC-5 % reduced S. mutans and S. aureus. For 3DP, 2.5 % and 5 % reduced S. aureus. The incorporation of AgVO3 into both resins reduced the metabolic activity of biofilms but had no effect on C. albicans. The wettability of the 3DP with water and saliva increased with the addition of AgVO3. CLINICAL SIGNIFICANCE: The incorporation of silver vanadate into the denture base materials provides antimicrobial efficacy and can prevent the aggravation of oral and systemic diseases. The incorporation of nanomaterials into printed resins is challenging and the coating is an alternative to obtain the inner denture base with antimicrobial effect.


Subject(s)
Biofilms , Candida albicans , Denture Bases , Metal Nanoparticles , Pseudomonas aeruginosa , Silver , Staphylococcus aureus , Streptococcus mutans , Vanadates , Wettability , Biofilms/drug effects , Streptococcus mutans/drug effects , Candida albicans/drug effects , Staphylococcus aureus/drug effects , Vanadates/pharmacology , Vanadates/chemistry , Pseudomonas aeruginosa/drug effects , Silver/pharmacology , Silver/chemistry , Denture Bases/microbiology , Metal Nanoparticles/chemistry , Anti-Infective Agents/pharmacology , Candida glabrata/drug effects , Printing, Three-Dimensional , Materials Testing , Humans , Nanostructures , Silver Compounds/pharmacology , Silver Compounds/chemistry , Dental Materials/chemistry , Dental Materials/pharmacology
14.
J Inorg Biochem ; 255: 112533, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547784

ABSTRACT

Two bases-decavanadates coordination compounds [(C6H13N4)2][Mg(H2O)6]2[O28V10].6H2O (1) and [(C7H11N2)4][Mg(H2O)6][O28V10].4H2O (2) have been synthesized and well characterized using vibrational spectroscopy (infrared), UV-Visible analysis and single crystal X-ray diffraction technique. The formula unit, for both compounds, is composed by the decavanadate [V10O28]6-, hydrated magnesium ion, a counter anion and free water molecules. The transition metal adopts octahedral geometries in both compound (1) and (2). The existence of a multitude of hydrogen bonding interactions for both compounds provides a stable three-dimensional supramolecular structure. Optical absorption reveals a band gap energy indicating the semi-conductive nature of the compound. In this study, the cytotoxic and the anti-proliferative activities of compounds (1) and (2) on human cancer cells (U87 and MDA-MB-231) were investigated. Both compounds demonstrated dose-dependent anti-proliferative activity on U87 and MDA-MB-231 with respective IC50 values of 0.82 and 0.31 µM and 1.4 and 1.75 µM. These data provide evidence on the potential anticancer activity of [(C6H13N4)2][Mg(H2O)6]2[O28V10].6H2O and [(C7H11N2)4][Mg(H2O)2][O28V10].4H2O. Molecular docking of the compounds was also examined. Molecular docking studies were performed for both compounds against four target receptors and revealed better binding affinity with these targets in comparison to Cisplatin. Moreover, molecular docking investigations suggest that these compounds may function as potential inhibitors of proteins in brain and breast cells, exhibiting greater efficiency compared to Cisplatin.


Subject(s)
Antineoplastic Agents , Vanadates , Humans , Molecular Docking Simulation , Vanadates/chemistry , Cisplatin/pharmacology , Crystallography, X-Ray , Molecular Structure , Antineoplastic Agents/chemistry , Cell Proliferation
15.
Eur J Prosthodont Restor Dent ; 32(2): 203-211, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38373220

ABSTRACT

Alternatives have been sought to add an antimicrobial property to denture adhesives. This study evaluated the antimicrobial potential of adhesives associated with nanostructured silver vanadate decorated with silver nanoparticles (ß-AgVO3). Specimens in acrylic resin were treated with the adhesives associated with ß-AgVO3 (1%, 2.5%, 5% and 10%). As control, specimens treated only with Ultra Corega Cream (UCC) or Ultra Corega Powder (UCP) adhesive were used. Multispecies biofilm of Candida albicans, Candida glabrata, Streptococcus mutans and Staphylococcus aureus was evaluated by counting colony forming units per milliliter (CFU/mL), colorimetric assay and fluorescence microscopy. The data were analyzed using the two-way analysis of variance (ANOVA) and Bonferroni multiple comparisons test (α=0.05). For both adhesives, a small amount of ß-AgVO3 (1%) completely inhibited S. mutans (P⟨0.05). For the other microorganisms, there was a reduction in metabolic activity and complete inhibition in the groups with intermediate or greater amounts of nanomaterial (P⟨0.05), except for C. albicans, which was reduced (P⟨0.05) but not completely inhibited in UCP. Microscopy that showed less biofilm in the groups with ß-AgVO3 and in the UCC than UCP. Denture adhesives in powder and cream form with ß-AgVO3 showed potential antimicrobial activity against multispecies biofilm. Powder adhesive showed higher biofilm formation.


Subject(s)
Acrylic Resins , Biofilms , Candida albicans , Silver , Streptococcus mutans , Vanadates , Biofilms/drug effects , Vanadates/pharmacology , Vanadates/chemistry , Streptococcus mutans/drug effects , Candida albicans/drug effects , Silver/pharmacology , Silver/chemistry , Staphylococcus aureus/drug effects , Anti-Infective Agents/pharmacology , Metal Nanoparticles , Surface Properties , Dental Cements/pharmacology , Silver Compounds/pharmacology , Candida glabrata/drug effects
16.
J Trace Elem Med Biol ; 83: 127381, 2024 May.
Article in English | MEDLINE | ID: mdl-38211406

ABSTRACT

BACKGROUND: Fungi absorb and solubilize a broad spectrum of heavy metals such as vanadium (V), which makes them a main route of its entry into the biosphere. V as vanadate (V5+) is a potential medical agent due to its many metabolic actions such as interaction with phosphates in the cell, and especially its insulin-mimetic activity. Antidiabetic activity of V-enriched fungi has been studied in recent years, but the biological and chemical bases of vanadium action and status in fungi in general are poorly understood, with almost no information on edible fungi. METHODS: This manuscript gives a deeper insight into the interaction of V5+ with Coprinellus truncorum, an edible autochthonous species widely distributed in Europe and North America. Vanadium uptake and accumulation as V5+ was studied by 51V NMR, while the reducing abilities of the mycelium were determined by EPR. 31P NMR was used to determine its effects on the metabolism of phosphate compounds, with particular focus on phosphate sugars identified using HPLC. RESULTS: Vanadate enters the mycelium in monomeric form and shows no immediate detrimental effects on intracellular pH or polyphosphate (PPc) levels, even when applied at physiologically high concentrations (20 mM Na3VO4). Once absorbed, it is partially reduced to less toxic vanadyl (V4+) with notable unreduced portion, which leads to a large increase in phosphorylated sugar levels, especially glucose-1-phosphate (G1P) and fructose-6-phosphate (F6P). CONCLUSIONS: Preservation of pH and especially PPc reflects maintenance of the energy status of the mycelium, i.e., its tolerance to high V5+ concentrations. Rise in G1P and F6P levels implies that the main targets of V5+ are most likely phosphoglucomutase and phosphoglucokinase(s), enzymes involved in early stages of G6P transformation in glycolysis and glycogen metabolism. This study recommends C. truncorum for further investigation as a potential antidiabetic agent.


Subject(s)
Agaricales , Vanadates , Vanadium , Vanadium/analysis , Vanadates/chemistry , Biomass , Phosphates/analysis , Mycelium/metabolism
17.
J Dent ; 145: 104836, 2024 06.
Article in English | MEDLINE | ID: mdl-38199325

ABSTRACT

OBJECTIVE: To investigate the impact of incorporating the antimicrobial nanomaterial ß-AgVO3 into orthodontic resin, focusing on degree of conversion, surface characteristics, microhardness, adhesion properties, and antimicrobial activity. METHODS: The 3 M Transbond XT resin underwent modification, resulting in three groups (Control, 2.5% addition, 5% addition) with 20 specimens each. Fourier transform infrared spectroscopy assessed monomer conversion. Laser confocal microscopy examined surface roughness, and microhardness was evaluated using Knoop protocols. Shear strength was measured before and after artificial aging on 36 premolar teeth. Microbiological analysis against S. mutans and S. sanguinis was conducted using the agar diffusion method. RESULTS: Degree of conversion remained unaffected by time (P = 0.797), concentration (P = 0.438), or their interaction (P = 0.187). The 5% group exhibited the lowest surface roughness, differing significantly from the control group (P = 0.045). Microhardness showed no significant differences between concentrations (P = 0.740). Shear strength was highest in the control group (P < 0.001). No significant differences were observed in the samples with or without thermocycling (P = 0.759). Microbial analysis revealed concentration-dependent variations, with the 5% group exhibiting the largest inhibition halo (P < 0.001). CONCLUSIONS: Incorporating ß-AgVO3 at 2.5% and 5% concentrations led to significant differences in surface roughness, adhesion, and antimicrobial activity. Overall, resin modification positively impacted degree of conversion, surface characteristics, microhardness, and antimicrobial activity. Further research is warranted to determine clinically optimal concentrations that maximize antimicrobial benefits while minimizing adverse effects on adhesion properties. CLINICAL SIGNIFICANCE: Incorporating ß-AgVO3 into orthodontic resin could improve patient quality of life by prolonging intervention durability and reducing the impact of cariogenic microorganisms. The study's findings also hold promise for the industry, paving the way for the development of new materials with antimicrobial properties for potential applications in the health sector.


Subject(s)
Materials Testing , Metal Nanoparticles , Shear Strength , Silver , Streptococcus mutans , Surface Properties , Vanadates , Streptococcus mutans/drug effects , Humans , Silver/chemistry , Silver/pharmacology , Vanadates/chemistry , Vanadates/pharmacology , Metal Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , Hardness , Resin Cements/chemistry , Streptococcus sanguis/drug effects , Orthodontic Brackets/microbiology , Microscopy, Confocal , Nanostructures/chemistry , Bacterial Adhesion/drug effects , Silver Compounds/pharmacology , Silver Compounds/chemistry
18.
Food Chem ; 441: 138405, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38218142

ABSTRACT

Flavonoids or phenolic compounds are part of the daily intake of every human being. Though they are positive traders for metabolism, excessive intakes bring about detrimental impacts on human health. Herein, the anti-cancer capacitive nature quercetin (Qc) was electrochemically detected through the rare earth metal-based sphere like praseodymium vanadate (PrVO4) entrapped graphitic carbon nitride (g-CN) as electrode modifiers. The nanocomposite was prepared by the one-pot hydrothermal method and characterized by phase compositional and morphology-based techniques. The existing synergistic nature between the PrV@g-CN (praseodymium vanadate@graphitic carbon nitride) makes them have an enhanced electrochemical response towards the Qc than the individual material. The obtained cyclic voltammogram and differential pulse voltammogram profile show one major oxidation peak which is attributed to the conversion of quercetin to quercetin-o-quinone. The PrV@g-CN/GCE (GCE- glassy carbon electrode) shows a good electrochemical active surface area (A = 110 cm2) and linear range between 0.05 and 252.00 µM with a LOD (limit of detection) of 0.002 µM. Moreover, the PrV@g-CN/GCE exhibits good current retention (94.76 %) around 14 days and appreciable repeatability (RSD- 0.5 %) and reproducibility (RSD- 1.3 %) towards the Qc. The real-time implementation of the proposed sensor exhibits a good recovery range towards the black tea (95.00-98.10 %) and green tea (97.80-99.60 %).


Subject(s)
Graphite , Nanocomposites , Nitrogen Compounds , Quercetin , Humans , Flavonoids , Praseodymium , Vanadates/chemistry , Reproducibility of Results , Limit of Detection , Electrochemical Techniques/methods , Carbon/chemistry , Electrodes , Nanocomposites/chemistry
19.
Sci Rep ; 14(1): 1591, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38238361

ABSTRACT

Since quinolone is a kind of synthetic broad-spectrum antibacterial drugs, with the widespread use of this class of antibiotics, the risk and harm to human health have been attendant to the sewage containing quinolones which are discharged into the environment. Photocatalysis is considered as a promising technology for antibiotic degradation for its strong redox properties and reaction rate. As a metal oxidizing substance, Bismuth vanadate (BiVO4) is such a popular and hot material for the degradation of organic pollutants recently due to its good photocatalytic activity and chemical stability. Numerous studies have confirmed that BiVO4 composites can overcome the shortcomings of pure BiVO4 and cleave the main structure of quinolone under photocatalytic conditions. This paper mainly outlines the research progress on the preparation of BiVO4 composites and the degradation of quinolone antibiotics from the perspective of improving the catalysis and degrading the efficiency mechanism of BiVO4 composites.


Subject(s)
Anti-Bacterial Agents , Quinolones , Humans , Anti-Bacterial Agents/chemistry , Bismuth/chemistry , Vanadates/chemistry , Catalysis , Light
20.
Biometals ; 37(2): 357-369, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37945804

ABSTRACT

Drug-protein interactions are essential since most administered drugs bind abundantly and reversibly to serum albumin and are delivered mainly as a complex with protein. The nature and strength of drug-protein interactions have a big impact on how a drug works biologically. The binding parameters are useful in studying the pharmacological response of drugs and the designing of dosage forms. Serum albumin is regarded as optimal model for in vitro research on drug-protein interaction since it is the main protein that binds medicines and other physiological components. In this perspective, binary complex have been synthesized and characterized, from vanadium metal and acetylacetone(4,4,4-trifluoro-1-(2-theonyl)-1,3-butanedione). Imidazole, 2-Methyl-imidazole, and 2-Ethyl-imidazole auxiliary ligands were employed for the synthesis of ternary complexes. Additionally, UV absorption and fluorescence emission spectroscopy were used to examine the binding interactions between vanadium complexes and Bovine Serum Albumin. The outcomes of the binding studies and spectral approaches were in strong agreement with one another. These complexes upon inoculation into diabetes-induced Wistar rats stabilized their serum glucose levels within 3 days. From various studies, it was discovered that the ordering of glucose-lowering actions of these metal complexes were equivalent. The vanadium ternary metal complex derived from (4,4,4-trifluoro-1-(2-theonyl)-1,3-butanedione) and imidazole as ligands is the best among the other metal vanadium complexes.


Subject(s)
Coordination Complexes , Diabetes Mellitus , Rats , Animals , Vanadates/chemistry , Serum Albumin, Bovine/chemistry , Vanadium/pharmacology , Vanadium/chemistry , Rats, Wistar , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Serum Albumin , Spectrometry, Fluorescence , Glucose , Imidazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL