Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.219
Filter
1.
Dalton Trans ; 53(19): 8315-8327, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38666341

ABSTRACT

The development of coordination compounds with antineoplastic therapeutic properties is currently focused on non-covalent interactions with deoxyribonucleic acid (DNA). Additionally, the interaction profiles of these compounds with globular plasma proteins, particularly serum albumin, warrant thorough evaluation. In this study, we report on the interactions between biomolecules and complexes featuring hydrazone-type imine ligands coordinated with vanadium. The potential to enhance the therapeutic efficiency of these compounds through mitochondrial targeting is explored. This targeting is facilitated by the derivatization of ligands with triphenylphosphonium groups. Thus, this work presents the synthesis, characterization, interactions, and cytotoxicity of dioxidovanadium(V) complexes (C1-C5) with a triphenylphosphonium moiety. These VV-species are coordinated to hydrazone-type iminic ligands derived from (3-formyl-4-hydroxybenzyl)triphenylphosphonium chloride ([AH]Cl) and aromatic hydrazides ([H2L1]Cl-[H2L5]Cl). The structures of the five complexes were elucidated through single-crystal X-ray diffraction and vibrational spectroscopies, confirming the presence of dioxidovanadium(V) species in various geometries with degrees of distortion (τ = 0.03-0.50) and highlighting their zwitterionic characteristics. The molecular structural stability of C1-C5 in solution was ascertained using 1H, 19F, 31P, and 51V-nuclear magnetic resonance. Moreover, their interactions with biomolecules were evaluated using diverse spectroscopic methodologies and molecular docking, indicating moderate interactions (Kb ≈ 104 M-1) with calf thymus DNA in the minor groove and with human serum albumin, predominantly in the superficial IB subdomain. Lastly, the cytotoxic potentials of these complexes were assessed in keratinocytes of the HaCaT lineage, revealing that C1-C5 induce a reduction in metabolic activity and cell viability through apoptotic pathways.


Subject(s)
Antineoplastic Agents , Coordination Complexes , DNA , Organophosphorus Compounds , Vanadium , Humans , Vanadium/chemistry , Vanadium/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , DNA/metabolism , DNA/chemistry , Cell Survival/drug effects , Hydrazines/chemistry , Hydrazines/pharmacology , Animals , Molecular Docking Simulation , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Molecular Structure , Ligands , Cell Line, Tumor , Drug Screening Assays, Antitumor
2.
Int J Biol Macromol ; 268(Pt 1): 131768, 2024 May.
Article in English | MEDLINE | ID: mdl-38663706

ABSTRACT

Copper(L2Cu) and vanadium(L2VOCl) complexes of N-p-tolylbenzohydroxamic acid (LH) ligand have been investigated for DNA binding efficacy by multiple analytical, spectral, and computational techniques. The results revealed that complexes as groove binders as evidenced by UV absorption. Fluorescence studies including displacement assay using classical intercalator ethidium bromide as fluorescent probe also confirmed as groove binders. The viscometric analysis too supports the inferences as strong groove binders for both the complexes. Molecular docking too exposed DNA as a target to the complexes which precisely binds L2Cu, in the minor groove region while L2VOCl in major groove region. Molecular dynamic simulation performed on L2Cu complex revealing the interaction of complex with DNA within 20 ns time. The complex stacked into the nitrogen bases of oligonucleotides and the bonding features were intrinsically preserved for longer simulation times. In-vitro cytotoxicity study was undertaken employing MTT assay against the breast cancer cell line (MCF-7). Potential cytotoxic activities were observed for L2Cu and L2VOCl complexes with IC50 values of showing 71 % and 74 % of inhibition respectively.


Subject(s)
Antineoplastic Agents , Copper , DNA , Hydroxamic Acids , Molecular Docking Simulation , Vanadium , Humans , Copper/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , MCF-7 Cells , DNA/chemistry , DNA/metabolism , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Vanadium/chemistry , Vanadium/pharmacology , Molecular Dynamics Simulation , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Ligands
3.
Molecules ; 29(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38338467

ABSTRACT

The reaction of the vanadyl ion (VO2+) with imidazole-4-carboxylic acid (Im4COOH), imidazole-2-carboxylic acid (Im2COOH) and methylimidazole-2-carboxylic acid (MeIm2COOH), respectively, in the presence of small bioligands (bL) [oxalate (Ox), lactate (Lact), citrate (Cit) and phosphate (Phos)] and high-molecular-weight (HMW) human serum proteins [albumin (HSA) and transferrin (hTf)] were studied in aqueous solution using potentiometric acid-base titrations. The species distribution diagrams for the high-molecular-mass (HMM) proteins with oxidovanadium(IV) under physiological pH were dominated by VO(HMM)2, VOL(HMM) for unsubstituted ligands (L- = Im4COO- and Im2COO-). However, for the N-substituted MeIm2COOH, the species distribution diagrams under physiological pH were dominated by VOL2, VO(HMM)2 and VO2L2(HMM). These species were further confirmed by LC-MS, MALDI-TOF-MS and EPR studies. The glucose-stimulated insulin secretion (GSIS) action of the complexes was investigated using INS-1E cells at a 1 µM concentration, which was established through cytotoxicity studies via the MTT assay. The neutral complexes, especially VO(MeIm2COO)2, showed promising results in the stimulation of insulin secretion than the cationic [VO(MeIm2CH2OH)2]2+ complex and the vanadium salt. Oxidovanadium(IV) complexes reduced insulin stimulation significantly under normoglycaemic levels but showed positive effects on insulin secretion under hyperglycaemic conditions (33.3 mM glucose media). The islets exposed to oxidovanadium(IV) complexes under hyperglycaemic conditions displayed a significant increase in the stimulatory index with 1.19, 1.75, 1.53, 1.85, 2.20 and 1.29 observed for the positive control (sulfonylurea:gliclazide), VOSO4, VO(Im4COO)2, VO(Im2COO)2, VO(MeIm2COO)2 and VO(MeIm2CH2OH)22+, respectively. This observation showed a potential further effect of vanadium complexes towards type 2 diabetes and has been demonstrated for the first time in this study.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Humans , Insulin Secretion , Vanadium/pharmacology , Vanadium/chemistry , Glucose , Insulin/metabolism , Citric Acid , Imidazoles/chemistry
4.
J Biol Inorg Chem ; 29(1): 139-158, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38175299

ABSTRACT

The aim to access linked tetravanadate [V4O12]4- anion with mixed copper(II) complexes, using α-amino acids and phenanthroline-derived ligands, resulted in the formation of four copper(II) complexes [Cu(dmb)(Gly)(OH2)]2[Cu(dmb)(Gly)]2[V4O12]·9H2O (1) [Cu(dmb)(Lys)]2[V4O12]·8H2O (2), [Cu(dmp)2][V4O12]·C2H5OH·11H2O (3), and [Cu(dmp)(Gly)Cl]·2H2O (4), where dmb = 4,4'-dimethioxy-2,2'-bipyridine; Gly = glycine; Lys = lysine; and dmp = 2,9-dimethyl-1,10-phenanthroline. The [V4O12]4- anion is functionalized with mixed copper(II) units in 1 and 2; while in 3, it acts as a counterion of two [Cu(dmp)]2+ units. Compound 4 crystallized as a unit that did not incorporate the vanadium cluster. All compounds present magnetic couplings arising from Cu⋯O/Cu⋯Cu bridges. Stability studies of water-soluble 3 and 4 by UV-Vis spectroscopy in cell culture medium confirmed the robustness of 3, while 4 appears to undergo ligand scrambling over time, resulting partially in the stable species [Cu(dmp)2]+ that was also identified by electrospray ionization mass spectrometry at m/z = 479. The in vitro cytotoxicity activity of 3 and 4 was determined in six cancer cell lines; the healthy cell line COS-7 was also included for comparative purposes. MCF-7 cells were more sensitive to compound 3 with an IC50 value of 12 ± 1.2 nmol. The tested compounds did not show lipid peroxidation in the TBARS assay, ruling out a mechanism of action via reactive oxygen species formation. Both compounds inhibited cell migration at 5 µM in wound-healing assays using MCF-7, PC-3, and SKLU-1 cell lines, opening a new window to study the anti-metastatic effect of mixed vanadium-copper(II) systems.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Humans , Copper/pharmacology , Copper/chemistry , Antineoplastic Agents/chemistry , Phenanthrolines/chemistry , Vanadium/pharmacology , DNA/chemistry , MCF-7 Cells , Anions , Magnetic Phenomena , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Ligands
5.
J Nanobiotechnology ; 22(1): 31, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38229126

ABSTRACT

BACKGROUND: Most bone defects caused by bone disease or trauma are accompanied by infection, and there is a high risk of infection spread and defect expansion. Traditional clinical treatment plans often fail due to issues like antibiotic resistance and non-union of bones. Therefore, the treatment of infected bone defects requires a strategy that simultaneously achieves high antibacterial efficiency and promotes bone regeneration. RESULTS: In this study, an ultrasound responsive vanadium tetrasulfide-loaded MXene (VSM) Schottky junction is constructed for rapid methicillin-resistant staphylococcus aureus (MRSA) clearance and bone regeneration. Due to the peroxidase (POD)-like activity of VS4 and the abundant Schottky junctions, VSM has high electron-hole separation efficiency and a decreased band gap, exhibiting a strong chemodynamic and sonodynamic antibacterial efficiency of 94.03%. Under the stimulation of medical dose ultrasound, the steady release of vanadium element promotes the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). The in vivo application of VSM in infected tibial plateau bone defects of rats also has a great therapeutic effect, eliminating MRSA infection, then inhibiting inflammation and improving bone regeneration. CONCLUSION: The present work successfully develops an ultrasound responsive VS4-based versatile sonosensitizer for robust effective antibacterial and osteogenic therapy of infected bone defects.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Osteogenesis , Humans , Rats , Animals , Vanadium/pharmacology , Bone Regeneration , Anti-Bacterial Agents/pharmacology
6.
Biometals ; 37(2): 357-369, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37945804

ABSTRACT

Drug-protein interactions are essential since most administered drugs bind abundantly and reversibly to serum albumin and are delivered mainly as a complex with protein. The nature and strength of drug-protein interactions have a big impact on how a drug works biologically. The binding parameters are useful in studying the pharmacological response of drugs and the designing of dosage forms. Serum albumin is regarded as optimal model for in vitro research on drug-protein interaction since it is the main protein that binds medicines and other physiological components. In this perspective, binary complex have been synthesized and characterized, from vanadium metal and acetylacetone(4,4,4-trifluoro-1-(2-theonyl)-1,3-butanedione). Imidazole, 2-Methyl-imidazole, and 2-Ethyl-imidazole auxiliary ligands were employed for the synthesis of ternary complexes. Additionally, UV absorption and fluorescence emission spectroscopy were used to examine the binding interactions between vanadium complexes and Bovine Serum Albumin. The outcomes of the binding studies and spectral approaches were in strong agreement with one another. These complexes upon inoculation into diabetes-induced Wistar rats stabilized their serum glucose levels within 3 days. From various studies, it was discovered that the ordering of glucose-lowering actions of these metal complexes were equivalent. The vanadium ternary metal complex derived from (4,4,4-trifluoro-1-(2-theonyl)-1,3-butanedione) and imidazole as ligands is the best among the other metal vanadium complexes.


Subject(s)
Coordination Complexes , Diabetes Mellitus , Rats , Animals , Vanadates/chemistry , Serum Albumin, Bovine/chemistry , Vanadium/pharmacology , Vanadium/chemistry , Rats, Wistar , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Serum Albumin , Spectrometry, Fluorescence , Glucose , Imidazoles/pharmacology
7.
Int J Biol Macromol ; 253(Pt 5): 127875, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37924912

ABSTRACT

In this article, the implications of binding competition of vanadates(V) with dodecyl sulfates for bovine serum albumin on cytotoxicity of vanadium(V) species against prostate cancer cells have been investigated. The pH- and SDS-dependent vanadate(V)-BSA interactions were observed. At pH 5, there is only one site capable of binding ten vanadates(V) ions (logK(ITC)1 = 4.96 ± 0.06; ΔH(ITC)1 = -1.04 ± 0.03 kcal mol-1), whereas at pH 7 two distinctive binding sites on protein were found, saturated with two and seven V(V) ions, respectively (logK(ITC)1 = 6.11 ± 0.06; ΔH(ITC)1 = 0.78 ± 0.12 kcal mol-1; logK(ITC)2 = 4.80 ± 0.02; ΔH(ITC)2 = - 4.95 ± 0.14 kcal mol-1). SDS influences the stoichiometry and the stability of the resulting V(V)-BSA complexes. Finally, the cytotoxicity of vanadates(V) against prostate cancer cells (PC3 line) was examined in the presence and absence of SDS in the culture medium. In the case of a 24-h incubation with 100 µM vanadate(V), a ca. 20 % reduction in viability of PC3 cells was observed in the presence of SDS. However, in other considered cases (various concentrations and time of incubation) SDS does not affect the dose-dependent action of vanadates(V) on the investigated prostate cancer cells.


Subject(s)
Prostatic Neoplasms , Vanadates , Humans , Male , Vanadates/pharmacology , Vanadates/chemistry , Vanadium/pharmacology , Vanadium/metabolism , Serum Albumin, Bovine , Cell Culture Techniques
8.
Inorg Chem ; 62(43): 17804-17817, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37858311

ABSTRACT

Limited stability of most transition-metal complexes in biological media has hampered their medicinal applications but also created a potential for novel cancer treatments, such as intratumoral injections of cytotoxic but short-lived anticancer drugs. Two related V(V) complexes, [VO(Hshed)(dtb)] (1) and [VO(Hshed)(cat)] (2), where H2shed = N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine, H2dtb = 3,5-di-tert-butylcatechol, and H2cat = 1,2-catechol, decomposed within minutes in cell culture medium at 310 K (t1/2 = 43 and 9 s for 1 and 2, respectively). Despite this, both complexes showed high antiproliferative activities in triple-negative human breast cancer (MDA-MB-231) cells, but the mechanisms of their activities were radically different. Complex 1 formed noncovalent adducts with human serum albumin, rapidly entered cells via passive diffusion, and was nearly as active in a short-term treatment (IC50 = 1.9 ± 0.2 µM at 30 min) compared with a long-term treatment (IC50 = 1.3 ± 0.2 µM at 72 h). The activity of 1 decreased about 20-fold after its decomposition in cell culture medium for 30 min at 310 K. Complex 2 showed similar activities (IC50 ≈ 12 µM at 72 h) in both fresh and decomposed solutions and was inactive in a short-term treatment. The activity of 2 was mainly due to the reactions among V(V) decomposition products, free catechol, and O2 in cell culture medium. As a result, the activity of 1 was less sensitive than that of 2 to the effects of hypoxic conditions that are characteristic of solid tumors and to the presence of apo-transferrin that acts as a scavenger of V(V/IV) decomposition products in blood serum. In summary, complex 1, but not 2, is a suitable candidate for further development as an anticancer drug delivered via intratumoral injections. These results demonstrate the importance of fine-tuning the ligand properties for the optimization of biological activities of metal complexes.


Subject(s)
Coordination Complexes , Organometallic Compounds , Humans , Coordination Complexes/pharmacology , Vanadium/pharmacology , Organometallic Compounds/pharmacology , Transferrin , Albumins , Hypoxia , Catechols/pharmacology
9.
J Trace Elem Med Biol ; 79: 127245, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37406475

ABSTRACT

Many transition metal complexes have been explored for their therapeutic properties after the discovery of cisplatin. Schiff bases have an efficient complexation tendency with the transition metals and several medicinal properties have been reported. However, fewer studies have reported the medicinal utility of vanadium and its Schiff base complexes. This paper provides a comprehensive overview of vanadium complexes with Schiff bases along with their mechanistic insight. Vanadium complexes in + 4 and + 5 oxidation states have exhibited well-defined geometry and found to be thermodynamically stable. The studies have reported the G0/G1 phase cell cycle arrest and decreased delta psi m, inducing mitochondrial membrane depolarization in cancer cell lines along with the alterations in the metabolism of the cancer cells upon dosing with the vanadium complexes. Cancer cell invasion and growth are also found to be markedly reduced by peroxo complexes of vanadium. The studies included in the review paper have been taken from leading indexing databases and focus was laid on recent reports in literature. The biological potential of vanadium complexes of Schiff bases opens new horizons for future interdisciplinary studies and investigation focussed on understanding the biochemistry of these complexes, along with designing new complexes which have better bioavailability, solubility and low or non-toxicity.


Subject(s)
Coordination Complexes , Vanadium , Vanadium/pharmacology , Schiff Bases/pharmacology , Schiff Bases/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Cisplatin , Oxidation-Reduction
10.
Int J Mol Sci ; 24(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37298322

ABSTRACT

Vanadium (V) is a trace mineral whose biological activity, role as a micronutrient, and pharmacotherapeutic applications remain unknown. Over the last years, interest in V has increased due to its potential use as an antidiabetic agent mediated by its ability to improve glycemic metabolism. However, some toxicological aspects limit its potential therapeutic application. The present study aims to evaluate the effect of the co-treatment with copper (Cu) and bis(maltolato)oxovanadium(IV) (BMOV) as a possible strategy to reduce the toxicity of BMOV. Treating hepatic cells with BMOV reduced cell viability under the present conditions, but cell viability was corrected when cells were co-incubated with BMOV and Cu. Additionally, the effect of these two minerals on nuclear and mitochondrial DNA was evaluated. Co-treatment with both metals reduced the nuclear damage caused by BMOV. Moreover, treatment with these two metals simultaneously tended to reduce the ND1/ND4 deletion of the mitochondrial DNA produced with the treatment using BMOV alone. In conclusion, these results showed that combining Cu and V could effectively reduce the toxicity associated with V and enhance its potential therapeutic applications.


Subject(s)
Copper , Trace Elements , Copper/pharmacology , Vanadates/pharmacology , Vanadium/pharmacology , Pyrones , Hypoglycemic Agents , DNA, Mitochondrial
11.
Tissue Cell ; 82: 102109, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37229935

ABSTRACT

Vanadium is a transition metal that naturally occurs in the environment and has a variety of biological and physiological impacts on humans. Sodium orthovanadate (SOV), a well-known chemical compound of vanadium, has shown notable anti-cancer activity in various types of human malignancies. However, the effect of SOV on stomach cancer is yet undetermined. Furthermore, only a few studies have investigated the association of SOV and radiosensitivity with stomach cancer. Our study has investigated the ability of SOV to increase the sensitivity of gastric cancer cells to radiation. To detect autophagy triggered by ionizing radiation and the influence of SOV on cell radiosensitivity, the Cell Counting Kit-8 (CCK8) test, EDU staining experiment, colony formation assay, and immunofluorescence were performed. The possible synergistic effects of SOV and irradiation were examined in vivo using a xenograft mouse model of stomach cancer cells. Both in vitro and in vivo studies showed that SOV markedly reduced the growth of stomach cancer cells and improved their radiosensitivity. Our results showed that SOV increased gastric cancer cells' radiosensitivity, thereby blocking the radiation-induced autophagy-related protein, ATG10. Thus, SOV can be considered a potential agent for radiosensitizing gastric cancer.


Subject(s)
Stomach Neoplasms , Humans , Mice , Animals , Stomach Neoplasms/radiotherapy , Vanadates/pharmacology , Vanadium/pharmacology , Apoptosis , Autophagy , Cell Line, Tumor
12.
J Trace Elem Med Biol ; 78: 127201, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37210920

ABSTRACT

BACKGROUND: Parasitic infections are a public health problem since they have high morbidity and mortality worldwide. In parasitosis such as malaria, leishmaniasis and trypanosomiasis it is necessary to develop new compounds for their treatment since an increase in drug resistance and toxic effects have been observed. Therefore, the use of different compounds that couple vanadium in their structure and that have a broad spectrum against different parasites have been proposed experimentally. OBJECTIVE: Report the mechanisms of action exerted by vanadium in different parasites. CONCLUSION: In this review, some of the targets that vanadium compounds have were identified and it was observed that they have a broad spectrum against different parasites, which represents an advance to continue investigating therapeutic options.


Subject(s)
Malaria , Parasitic Diseases , Vanadium Compounds , Humans , Antiparasitic Agents/pharmacology , Antiparasitic Agents/therapeutic use , Vanadium/pharmacology , Parasitic Diseases/drug therapy , Parasitic Diseases/parasitology
13.
Biol Trace Elem Res ; 201(11): 5169-5182, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36826713

ABSTRACT

Increasing evidence suggests that organic vanadium compounds are bioavailable and safe therapeutic agents with insulin-mimetic and insulin-enhancing features. The objective of the current study was to examine the effect of vanadium-enriched yeast (VEY) supplementation on the gene expression level of insulin receptor substrates and clinical manifestations of obese type 2 diabetic mellitus (T2DM) patients. In this randomized, double-blind, placebo-controlled clinical trial, 44 obese T2DM patients were randomly allocated into either VEY (0.9 mg/day vanadium pentoxide) or placebo group for 12 weeks. The mRNA expression level of protein tyrosine phosphatase 1B (PTP1B), phosphatase and tensin homolog (PTEN), mitogen-activated protein kinase (MAPK), ribosomal protein S6 kinase (S6K), and nuclear factor kappa-light-chain-enhancer of activated B cells (NFƘB) genes in the peripheral blood mononuclear cells, serum levels of metabolic parameters, anthropometric indices, as well as the quality of life, and dietary intake were collected at pre- and post-intervention phases. Analysis of covariance was performed to obtain the corresponding effect size. Results showed that VEY administration significantly decreased anthropometric indices and glycemic parameters and increased insulin sensitivity after adjusting for potential covariates (p < 0.05), in comparison to the placebo group. Additionally, VEY supplementation was significantly effective on MAPK, PTP1B, and NFƘB gene expression level, compared to the placebo group. No significant changes were noticed for dietary intake, quality of life, and lipid profile in the VEY group, compared to the placebo group. Overall, VEY supplementation can be considered as a promising safe adjunct therapy for improving anthropometric indices and glycemic parameters in T2DM patients.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Yeast, Dried , Humans , Vanadium/pharmacology , Vanadium/therapeutic use , Vanadium/metabolism , Saccharomyces cerevisiae/metabolism , Receptor, Insulin/metabolism , Blood Glucose , Leukocytes, Mononuclear/metabolism , Quality of Life , Insulin/metabolism , Double-Blind Method , Dietary Supplements
14.
Biol Trace Elem Res ; 201(10): 5037-5052, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36652102

ABSTRACT

The medical field now needs more novel drugs to treat obesity and type-2 diabetes mellitus (T2D) than ever before. Obesity and T2D are both characterized by resistance to the hormones leptin and insulin. PTP-1B is a promising target for drug growth, as strong genetic, pharmacological, and biochemical evidence points to the possibility of treating diabetes and obesity by blocking the PTP-1B enzyme. Studies have also found that PTP-1B is overexpressed in patients with diabetes and obesity, suggesting that inhibiting PTP-1B may be a useful technique in their care. There are no clinically used PTP-1B inhibitors, despite the fact that numerous naturally occurring PTP-1B inhibitors have demonstrated great therapeutic promise. This is most likely due to their low activity or lack of selectivity. It is still important to look for more effective and focused PTP-1B inhibitors. A few organovanadium metal complexes were synthesized and characterized, and binding studies on vanadium complexes with PTP-B were also performed using fluorescence emission spectroscopy. Additionally, we theoretically (molecular modeling) and experimentally (enzyme kinetics) examined the PTP-1B inhibitory effects of these vanadium metal complexes and found that they have excellent PTP-1B inhibitory properties.


Subject(s)
Coordination Complexes , Diabetes Mellitus, Type 2 , Humans , Vanadium/pharmacology , Coordination Complexes/pharmacology , Kinetics , Diabetes Mellitus, Type 2/drug therapy , Obesity/drug therapy , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use
15.
Int J Mol Sci ; 24(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36674660

ABSTRACT

In this research, we investigated the structural and biological properties of phosphate glasses (PGs) after the addition of V2O5. A xV2O5∙(100 − x)[CaF2∙3P2O5∙CaO] glass system with 0 ≤ x ≤ 16 mol% was synthesized via a conventional melt-quenching technique. Several analysis techniques (dissolution tests, pH, SEM-EDS, FT-IR, and EPR) were used to obtain new experimental data regarding the structural behavior of the system. In vitro tests were conducted to assess the antitumor character of V2O5-doped glass (x = 16 mol%) compared to the matrix (x = 0 mol%) and control (CTRL-) using several tumoral cell lines (A375, A2780, and Caco-2). The characterization of PGs showed an overall dissolution rate of over 90% for all vitreous samples (M and V1−V7) and the high reactivity of this system. EPR revealed a well-resolved hyperfine structure (hfs) typical of vanadyl ions in a C4v symmetry. FT-IR spectra showed the presence of all structural units expected for P2O5, as well as very clear depolymerization of the vitreous network induced by V2O5. The MTT assay indicated that the viability of tumor cells treated with V7-glass extract was reduced to 50% when the highest concentration was used (10 µg/mL) compared to the matrix treatment (which showed no cytotoxic effect at any concentration). Moreover, the matrix treatment (without V2O5) provided an optimal environment for tumor cell attachment and proliferation. In conclusion, the two types of treatment investigated herein were proven to be very different from a statistical point of view (p < 0.01), and the in vitro studies clearly underline the cytotoxic potential of vanadium ions from phosphate glass (V7) as an antitumor agent.


Subject(s)
Ovarian Neoplasms , Vanadium , Female , Humans , Vanadium/pharmacology , Spectroscopy, Fourier Transform Infrared , Cell Line, Tumor , Caco-2 Cells , Vanadates , Phosphates , Glass/chemistry , Ions
16.
Biol Trace Elem Res ; 201(8): 3774-3790, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36334248

ABSTRACT

Vanadium exposure has the adverse effect on lung function in human, whereas the detailed mechanisms of vanadium exposure-induced pulmonary toxicity are limited. Hence, the present study aimed to investigate the hub genes and signaling pathways related to sodium metavanadate (SMV)-induced pulmonary toxicity. The transcript expression profile GSE36684 downloaded from Gene Expression Omnibus contained eight human bronchial epithelial cell (HBEC) samples including five SMV-treated and three control HBEC samples. Totally 455 differentially expressed genes (DEGs) were screened, especially 201 and 254 genes were up- and down-regulated in the HBECs treated with SMV. Gene ontology analysis suggested that the DEGs were mainly involved in signal transduction, the response to drug, cell proliferation, adhesion, and migration. Pathway analysis demonstrated that the DEGs were primarily participated in NF-κB, Wnt, MAPK, and PI3K-Akt signaling pathways. Moreover, the hub genes, including ITGA5, ITGB3, ITGA2, LAMC2, MMP2, and ITGA4, might contribute to SMV-induced pulmonary toxicity. Our study improves the understanding of the molecular mechanisms by which SMV induced the pulmonary toxicity.


Subject(s)
Gene Expression Profiling , Vanadium , Humans , Vanadium/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Gene Expression , Epithelial Cells/metabolism , Computational Biology
17.
J Environ Manage ; 326(Pt A): 116725, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36375431

ABSTRACT

Although the contamination situation of chromium (Cr) and vanadium (V) have been revealed, the effects of their re-release on ecological risk in contaminated acidic paddy soil are unclear. To evaluate the effects, we assigned soil microcosms across three different concentration (100, 200, 300 mg/L) and introduced Cr and V alone or combination into an already slightly contaminated acidic soil. We found that Cr and V alone or interacted to increased soil bioavailable-metals, changed soil properties and nutrients to varying degrees. Meanwhile, soil ammoniacal nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) contents, nitrogen (N) -cycling enzyme activities, microbial mass N were significantly influenced by Cr addition. Which demonstrated that Cr re-release may disturb soil N cycle. However, V alone significantly improved soil NO3--N contents, cellulase and dehydrogenase activities, soil respiration intensity and microbial mass carbon: nitrogen. Meanwhile, V addition also decreased bacterial diversity while Cr addition increased bacterial diversity and shaped new bacterial community, some V(V) and Cr (VI) reducing bacteria were identified. Heatmap of Pearson correlation and Redundancy analysis showed that NH4+-N, NO3--N, Potassium, Phosphorus, and Cr played an important role in bacterial community structure. These findings suggested that re-release of Cr and V disturbed soil function and raised ecological risks, and the power to destroy the ecosystem stability originated from Cr was much stronger than V. This study was contributed to understand the effects of Cr and V re-release on microecology in contaminated acidic agricultural soil.


Subject(s)
Soil Pollutants , Soil , Soil/chemistry , Chromium/analysis , Vanadium/pharmacology , Soil Microbiology , Soil Pollutants/analysis , Ecosystem , Bacteria , Nitrogen/analysis , Nutrients
18.
Biol Trace Elem Res ; 201(6): 3088-3098, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35915278

ABSTRACT

Various forms of vanadium coexist in vivo, and the behavior mechanism is different. An investigation of the separate and simultaneous binding of three vanadium forms with bovine serum albumin (BSA) was performed. VO(acac)2/NaVO3/VOSO4 bound to site I of BSA, and their binding constants were 4.26 × 105, 9.18 × 103, and 4.31 × 102 L mol-1 at 298 K, respectively. VO(acac)2 had the strongest binding ability to BSA and had the most influence on the secondary structure of BSA and the microenvironment of around amino acid residues. The effect of NaVO3 and VOSO4 coexistence on the binding of VO(acac)2 to BSA was therefore further investigated. Both NaVO3 and VOSO4 had an effect on the binding of VO(acac)2 and BSA, with NaVO3 having the most noticeable effect. NaVO3 interfered with the binding process of VO(acac)2 and BSA, increased the binding constant, and changed the binding forces between them. Competition and allosteric effect may be responsible for the change of binding process between VO(acac)2 and BSA in the presence of NaVO3/VOSO4.


Subject(s)
Serum Albumin, Bovine , Vanadium , Binding Sites , Protein Binding , Spectrometry, Fluorescence , Vanadium/pharmacology
19.
Inorg Chem ; 61(51): 20757-20773, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36519680

ABSTRACT

A hydrophobic Schiff base catecholate vanadium complex was recently discovered to have anticancer properties superior to cisplatin and suited for intratumoral administration. This [VO(HSHED)(DTB)] complex, where HSHED is N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine and the non-innocent catecholato ligand is di-t-butylcatecholato (DTB), has higher stability compared to simpler catecholato complexes. Three new chloro-substituted Schiff base complexes of vanadium(V) with substituted catecholates as co-ligands were synthesized for comparison with their non-chlorinated Schiff base vanadium complexes, and their properties were characterized. Up to four geometric isomers for each complex were identified in organic solvents using 51V and 1H NMR spectroscopies. Spectroscopy was used to characterize the structure of the major isomer in solution and to demonstrate that the observed isomers are exchanged in solution. All three chloro-substituted Schiff base vanadium(V) complexes with substituted catecholates were also characterized by UV-vis spectroscopy, mass spectrometry, and electrochemistry. Upon testing in human glioblastoma multiforme (T98g) cells as an in vitro model of brain gliomas, the most sterically hindered, hydrophobic, and stable compound [t1/2 (298 K) = 15 min in cell medium] was better than the two other complexes (IC50 = 4.1 ± 0.5 µM DTB, 34 ± 7 µM 3-MeCat, and 19 ± 2 µM Cat). Furthermore, upon aging, the complexes formed less toxic decomposition products (IC50 = 9 ± 1 µM DTB, 18 ± 3 µM 3-MeCat, and 8.1 ± 0.6 µM Cat). The vanadium complexes with the chloro-substituted Schiff base were more hydrophobic, more hydrolytically stable, more easily reduced compared to their corresponding parent counterparts, and the most sterically hindered complex of this series is only the second non-innocent vanadium Schiff base complex with a potent in vitro anticancer activity that is an order of magnitude more potent than cisplatin under the same conditions.


Subject(s)
Coordination Complexes , Vanadium , Humans , Vanadium/pharmacology , Vanadium/chemistry , Cisplatin , Schiff Bases/pharmacology , Schiff Bases/chemistry , Water , Magnetic Resonance Spectroscopy , Coordination Complexes/pharmacology , Ligands
20.
Int J Mol Sci ; 23(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36430373

ABSTRACT

Bipolar disorder (BD) is a severe and common chronic mental illness. The biological basis of the disease is poorly understood and its treatment is unsatisfactory. Our previous studies supported the notion that alterations in Na+, K+-ATPase activity were involved in the etiology of BD. As various chemical elements inhibit Na+, K+-ATPase, we determined the concentration of 26 elements in the serum of BD patients before and after treatment and in postmortem brain samples from BD patients, and compared them with matched controls. The only element that was reduced significantly in the serum following treatment was vanadium (V). Furthermore, the concentration of V was significantly lower in the pre-frontal cortex of BD patients compared with that of the controls. Intracerebroventricular administration of V in mice elicited anxiolytic and depressive activities, concomitantly inhibited brain Na+, K+-ATPase activity, and increased extracellular signal-regulated kinase phosphorylation. A hypothesis associating V with BD was set forth decades ago but eventually faded out. Our results are in accord with the hypothesis and advocate for a thorough examination of the possible involvement of chemical elements, V in particular, in BD.


Subject(s)
Bipolar Disorder , Animals , Mice , Bipolar Disorder/drug therapy , Vanadium/pharmacology , Brain , Frontal Lobe , Adenosine Triphosphatases
SELECTION OF CITATIONS
SEARCH DETAIL
...