Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 275
Filter
1.
Cell Rep ; 38(1): 110190, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34986355

ABSTRACT

Translocation renal cell carcinoma (tRCC) is a poorly characterized subtype of kidney cancer driven by MiT/TFE gene fusions. Here, we define the landmarks of tRCC through an integrative analysis of 152 patients with tRCC identified across genomic, clinical trial, and retrospective cohorts. Most tRCCs harbor few somatic alterations apart from MiT/TFE fusions and homozygous deletions at chromosome 9p21.3 (19.2% of cases). Transcriptionally, tRCCs display a heightened NRF2-driven antioxidant response that is associated with resistance to targeted therapies. Consistently, we find that outcomes for patients with tRCC treated with vascular endothelial growth factor receptor inhibitors (VEGFR-TKIs) are worse than those treated with immune checkpoint inhibitors (ICI). Using multiparametric immunofluorescence, we find that the tumors are infiltrated with CD8+ T cells, though the T cells harbor an exhaustion immunophenotype distinct from that of clear cell RCC. Our findings comprehensively define the clinical and molecular features of tRCC and may inspire new therapeutic hypotheses.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Microphthalmia-Associated Transcription Factor/genetics , Oncogene Proteins, Fusion/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Gene Expression Regulation, Neoplastic , Gene Fusion/genetics , Humans , Immune Checkpoint Inhibitors/therapeutic use , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Oncogene Proteins, Fusion/metabolism , Protein Kinase Inhibitors/therapeutic use , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors
2.
Eur J Pharmacol ; 912: 174550, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34610279

ABSTRACT

BACKGROUND: The interaction between tumor cells and tumor microenvironment is a necessary condition for promoting the metastasis of malignant tumors. METHODS: Two different transwell culture systems were interfered with by recombinant factor placental growth factor (re-PIGF) and the re-PIGF + transforming growth factor-ß1 (TGF-ß1)-neutralizing antibody (anti-TGF-ß1). We performed immunofluorescence, flow cytometry and enzyme linked immunosorbent assay (ELISA) to analyze the expression of PIGF, fms-like tyrosine kinase-1 (Flt-1), macrophage marker F4/80 +, macrophage M2 marker CD163+ and TGF-ß1 in vitro. Meanwhile, cell viability assay and optical microscope assay were conducted to explore the cell viability and vascularization ability of human umbilical vein endothelial cells (HUVECs). RESULTS: Re-PIGF increased the expression of PIGF in A549 cells and the expression of Flt-1 in BM-Mac cells, and significantly enhanced the ability of bone marrow-derived macrophages (BM-Mac) to transform into macrophages. At the same time, re-PIGF increased the expression of cytokine TGF-ß1 in A549 cells/BM-Mac transwell culture system. On the contrary, re-PIGF + anti-TGF-ß1 inhibited the expression of Flt-1 in BM-Mac cells and inhibited the ability of BM-Mac cells to transform into macrophages. Finally, re-PIGF + anti-TGF-ß1 reduced the cell viability and angiogenesis of HUVECs. CONCLUSION: The surface molecule PIGF of lung cancer cells could bind to the receptor Flt-1 on the surface of macrophages, thereby increasing the production of TGF-ß1, and ultimately promoting the formation of angiogenesis in lung cancer.


Subject(s)
Lung Neoplasms/blood supply , Lung Neoplasms/immunology , Neovascularization, Pathologic/metabolism , Placenta Growth Factor/metabolism , Transforming Growth Factor beta1/metabolism , Tumor-Associated Macrophages/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , A549 Cells , Angiogenesis Inducing Agents/pharmacology , Antigens, CD/metabolism , Antigens, Differentiation/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Cell Survival/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Lung Neoplasms/metabolism , Receptors, Cell Surface/metabolism , Recombinant Proteins/pharmacology , Transforming Growth Factor beta1/antagonists & inhibitors , Tumor-Associated Macrophages/drug effects , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors
3.
J Antibiot (Tokyo) ; 74(10): 734-742, 2021 10.
Article in English | MEDLINE | ID: mdl-34282315

ABSTRACT

A series of analogs of vegfrecine, a natural quinone vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor, was synthesized via oxidative amination of 2,5-dihydroxybenzamide with functionalized arylamine followed by ammonolysis and substitution of the quinone ring. The inhibitory activities of the analogs against the VEGFR-1 and -2 tyrosine kinases were assayed in vitro with the aim to identify a compound suitable to treat cancer and inflammatory diseases. Alterations of the functionality of the phenyl group, substitution of the quinone ring, and oxidative cyclization of the 1-carboxamide-2-aminoquinone moiety to form an isoxazole quinone ring were examined. Introduction of halo- and alkyl-substituents at the 5'-position of the phenyl ring resulted in potent inhibition of the VEGFR-1 and -2 tyrosine kinases. In particular, structural modification at C-5' on the phenyl ring was shown to significantly affect the selectivity of the inhibition between the VEGFR-1 and -2 tyrosine kinases. Compound 8, 5'-methyl-vegfrecine, showed superior selectivity toward the VEGFR-2 tyrosine kinase over the VEGFR-1 tyrosine kinase.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Benzoquinones/chemistry , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Benzoquinones/pharmacology , Cell Survival/drug effects , Drug Discovery , Mice , Molecular Docking Simulation , Molecular Structure , NIH 3T3 Cells , Structure-Activity Relationship
4.
Int J Mol Sci ; 22(9)2021 May 04.
Article in English | MEDLINE | ID: mdl-34064508

ABSTRACT

During tumor growth, angiogenesis is required to ensure oxygen and nutrient transport to the tumor. Vascular endothelial growth factor (VEGF) is the major inducer of angiogenesis and appears to be a key modulator of the anti-tumor immune response. Indeed, VEGF modulates innate and adaptive immune responses through direct interactions and indirectly by modulating protein expressions on endothelial cells or vascular permeability. The inhibition of the VEGF signaling pathway is clinically approved for the treatment of several cancers. Therapies targeting VEGF can modulate the tumor vasculature and the immune response. In this review, we discuss the roles of VEGF in the anti-tumor immune response. In addition, we summarize therapeutic strategies based on its inhibition, and their clinical approval.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Immunologic Factors/therapeutic use , Neoplasms/drug therapy , Neovascularization, Pathologic/prevention & control , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Adaptive Immunity/drug effects , Antibodies, Monoclonal, Humanized/therapeutic use , Bevacizumab/therapeutic use , Capillary Permeability/drug effects , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/pathology , Gene Expression Regulation, Neoplastic , Humans , Immunity, Innate/drug effects , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/pathology , Receptors, Vascular Endothelial Growth Factor/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Signal Transduction , Sorafenib/therapeutic use , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/immunology , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/immunology , Ramucirumab
5.
Sci Rep ; 11(1): 13144, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162963

ABSTRACT

Tumor progression and metastatic dissemination are driven by cell-intrinsic and biomechanical cues that favor the growth of life-threatening secondary tumors. We recently identified pro-metastatic vascular regions with blood flow profiles that are permissive for the arrest of circulating tumor cells. We have further established that such flow profiles also control endothelial remodeling, which favors extravasation of arrested CTCs. Yet, how shear forces control endothelial remodeling is unknown. In the present work, we aimed at dissecting the cellular and molecular mechanisms driving blood flow-dependent endothelial remodeling. Transcriptomic analysis of endothelial cells revealed that blood flow enhanced VEGFR signaling, among others. Using a combination of in vitro microfluidics and intravital imaging in zebrafish embryos, we now demonstrate that the early flow-driven endothelial response can be prevented upon specific inhibition of VEGFR tyrosine kinase and subsequent signaling. Inhibitory targeting of VEGFRs reduced endothelial remodeling and subsequent metastatic extravasation. These results confirm the importance of VEGFR-dependent endothelial remodeling as a driving force of CTC extravasation and metastatic dissemination. Furthermore, the present work suggests that therapies targeting endothelial remodeling might be a relevant clinical strategy in order to impede metastatic progression.


Subject(s)
Endothelium, Vascular/physiology , Hemorheology , Transendothelial and Transepithelial Migration , Animals , Animals, Genetically Modified , Blood Flow Velocity/drug effects , Embryo, Nonmammalian/blood supply , Embryo, Nonmammalian/physiology , Gene Expression Regulation, Neoplastic , Gene Ontology , Human Umbilical Vein Endothelial Cells , Humans , In Vitro Techniques , Intravital Microscopy , Microfluidics , Microscopy, Confocal , Neoplastic Cells, Circulating , Quinazolines/pharmacology , Quinazolines/therapeutic use , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics , Signal Transduction/physiology , Sunitinib/pharmacology , Sunitinib/therapeutic use , Transendothelial and Transepithelial Migration/drug effects , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-1/physiology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/physiology , Zebrafish/embryology
6.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-34006633

ABSTRACT

Neovascularization is a key feature of ischemic retinal diseases and the wet form of age-related macular degeneration (AMD), all leading causes of severe vision loss. Vascular endothelial growth factor (VEGF) inhibitors have transformed the treatment of these disorders. Millions of patients have been treated with these drugs worldwide. However, in real-life clinical settings, many patients do not experience the same degree of benefit observed in clinical trials, in part because they receive fewer anti-VEGF injections. Therefore, there is an urgent need to discover and identify novel long-acting VEGF inhibitors. We hypothesized that binding to heparan-sulfate proteoglycans (HSPG) in the vitreous, and possibly other ocular structures, may be a strategy to promote intraocular retention, ultimately leading to a reduced burden of intravitreal injections. We designed a series of VEGF receptor 1 variants and identified some with strong heparin-binding characteristics and ability to bind to vitreous matrix. Our data indicate that some of our variants have longer duration and greater efficacy in animal models of intraocular neovascularization than current standard of care. Our study represents a systematic attempt to exploit the functional diversity associated with heparin affinity of a VEGF receptor.


Subject(s)
Choroidal Neovascularization/drug therapy , Heparan Sulfate Proteoglycans/pharmacology , Macular Degeneration/drug therapy , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/genetics , Angiogenesis Inhibitors/chemistry , Animals , Cell Proliferation/drug effects , Choroidal Neovascularization/genetics , Choroidal Neovascularization/pathology , Crystallography, X-Ray , Endothelial Cells/drug effects , Eye/drug effects , Eye/pathology , Heparan Sulfate Proteoglycans/genetics , Heparan Sulfate Proteoglycans/immunology , Heparin/genetics , Human Umbilical Vein Endothelial Cells , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/pharmacology , Immunoglobulin Fc Fragments/ultrastructure , Intravitreal Injections , Macular Degeneration/genetics , Macular Degeneration/pathology , Mice , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/ultrastructure , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vitreous Body/drug effects
8.
ACS Appl Mater Interfaces ; 13(10): 11708-11720, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33656845

ABSTRACT

Conventional antiangiogenetic inhibitors suffered from poor delivery problems that result in unsatisfactory antitumor treatment efficacy. Although the liposomes or nanomaterial-based delivery systems can improve the therapeutic efficacy of antiangiogenic molecules, the assembly process is far too complex. Herein, a nanomaterial or a new nanodrug that could work without the help of a carrier and could be easily synthesized is needed. Au nanoclusters (AuNCs) are a kind of ideal nanostructures that could spontaneously enter into the cell and could be synthesized by a relatively easy one-pot method. Here, changing the traditional ligand glutathione (GSH) into an anti-Flt1 peptide (AF) has enriched the newly synthesized AF@AuNCs with targeted antiangiogenic properties. Based on the specific binding between AF and vascular endothelial growth factor receptor 1 (VEGFR1), the interaction between VEGFR1 and its ligands could be blocked. Furthermore, the expression of VEGFR2 could be downregulated. Compared with pure AF peptide- and GSH-participated AuNCs (GSH@AuNCs), AF@AuNCs were more effective in inhibiting both tube formation and migration of the endothelial cells in vitro. Furthermore, the in vivo chick embryo chorioallantoic membrane (CAM) experiment and antitumor experiment were conducted to further verify the enhanced antiangiogenesis and tumor inhibition effect of AF@AuNCs. Our findings provide promising evidence of a carrier-free nanodrug for tumors and other vascular hyperproliferative diseases.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Gold/chemistry , Metal Nanoparticles/chemistry , Neoplasms/drug therapy , Peptides/administration & dosage , Angiogenesis Inhibitors/therapeutic use , Animals , Cell Line, Tumor , Drug Carriers/chemistry , Glutathione/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Mice, Inbred BALB C , Mice, Nude , Neoplasms/metabolism , Peptides/therapeutic use , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-1/metabolism
9.
Mol Hum Reprod ; 27(1)2021 01 22.
Article in English | MEDLINE | ID: mdl-33493277

ABSTRACT

Preeclampsia (PE) is a hypertensive disorder that occurs during pregnancy. Low-dose aspirin is used to reduce the occurrence of early-onset PE; however, the mechanisms are not clear. The aim of this study was to reveal the underlying mechanism of aspirin in reducing sFlt-1-mediated apoptosis of trophoblast cells in PE. Serum sFlt-1 and sEng profiles and placental oxidative stress levels were significantly decreased in PE patients treated with aspirin compared with untreated patients without it, whereas serum PLGF and placental SOD profiles were increased in PE patients with aspirin. Aspirin attenuated the role of sFlt-1 in oxidative stress and endothelial dysfunction and reduced apoptosis of trophoblasts by inactivating the NF-κB signalling pathway in HTR-8/SVneo trophoblast cells. Blood pressure, urine protein, swelling of the villous vessels and mitochondrial parameters were noted to be much better after aspirin administrated to sFlt-1 treated pregnant mice. In conclusion, aspirin reverses the endothelial dysfunction and oxidative stress caused by sFlt-1 and thus reduces apoptosis of preeclamptic trophoblasts by inactivating NF-κB signalling pathway.


Subject(s)
Apoptosis/drug effects , Aspirin/pharmacology , Pre-Eclampsia/prevention & control , Trophoblasts/drug effects , Vascular Endothelial Growth Factor Receptor-1/metabolism , Angiogenesis Inducing Agents/blood , Animals , Aspirin/therapeutic use , Cell Line , Female , Humans , I-kappa B Proteins/metabolism , Male , Mice , Mice, Inbred ICR , NF-kappa B/antagonists & inhibitors , Oxidative Stress/drug effects , Pre-Eclampsia/blood , Pregnancy , Signal Transduction/drug effects , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors
10.
Crit Rev Anal Chem ; 51(5): 445-453, 2021.
Article in English | MEDLINE | ID: mdl-32295395

ABSTRACT

Bevacizumab is a chimeric monoclonal human-murine antibody originated from murine monoclonal antibody (muMAb A4.6.1) with the human immunoglobulin IgG1. BVZ binds the extracellular portion of vascular endothelial growth factor receptors (VEGFR), which have tyrosine kinase activity. The mechanism of action of BVZ involves binding to VEGFR, Flt-1 (VEGFR-1) and KDR/Flk-1 (VEGFR-2), inducing homodimerization of two receptor subunits, and, consequently, autophosphorylation of their tyrosine kinase domains located inside the cytoplasm. With the advent of nanostructured systems it is increasingly necessary to look for safe analytical methods, ensuring the reliability of the results obtained by them, becoming essential to ensure the quality of medicines. In this work, the incorporation of bevacizumab in to different drug delivery systems was presented. Moreover, detailed investigation was performed about methods for qualitative and quantitative analyses of bevacizumab, including, biological fluids, and drug delivery systems, were investigated. Most recently high performance liquid chromatography coupled with various detectors, liquid chromatography, mass spectrometry and ELISA were used for this purpose. Thus, this review was performed to evaluate the benefits of bevacizumab carried by nanostructured systems and the analytical methods available for detection and quantification of these drugs.


Subject(s)
Angiogenesis Inhibitors/analysis , Bevacizumab/analysis , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/pharmacology , Animals , Bevacizumab/administration & dosage , Bevacizumab/pharmacology , Drug Delivery Systems , Humans , Phosphorylation , Reproducibility of Results , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors
11.
Int J Mol Sci ; 21(23)2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33255816

ABSTRACT

In this study, we aimed at the application of the concept of photopharmacology to the approved vascular endothelial growth factor receptor (VEGFR)-2 kinase inhibitor axitinib. In a previous study, we found out that the photoisomerization of axitinib's stilbene-like double bond is unidirectional in aqueous solution due to a competing irreversible [2+2]-cycloaddition. Therefore, we next set out to azologize axitinib by means of incorporating azobenzenes as well as diazocine moieties as photoresponsive elements. Conceptually, diazocines (bridged azobenzenes) show favorable photoswitching properties compared to standard azobenzenes because the thermodynamically stable Z-isomer usually is bioinactive, and back isomerization from the bioactive E-isomer occurs thermally. Here, we report on the development of different sulfur-diazocines and carbon-diazocines attached to the axitinib pharmacophore that allow switching the VEGFR-2 activity reversibly. For the best sulfur-diazocine, we could verify in a VEGFR-2 kinase assay that the Z-isomer is biologically inactive (IC50 >> 10,000 nM), while significant VEGFR-2 inhibition can be observed after irradiation with blue light (405 nm), resulting in an IC50 value of 214 nM. In summary, we could successfully develop reversibly photoswitchable kinase inhibitors that exhibit more than 40-fold differences in biological activities upon irradiation. Moreover, we demonstrate the potential advantage of diazocine photoswitches over standard azobenzenes.


Subject(s)
Axitinib/chemistry , Azo Compounds/pharmacology , Neoplasms/drug therapy , Vascular Endothelial Growth Factor Receptor-1/genetics , Axitinib/pharmacology , Azo Compounds/chemistry , Carbon/chemistry , Humans , Isomerism , Light , Neoplasms/genetics , Photochemical Processes/drug effects , Stilbenes/chemistry , Sulfur/chemistry , Thermodynamics , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Water/chemistry
12.
Molecules ; 25(21)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182255

ABSTRACT

A novel series of pyrimidine-benzotriazole derivatives have been synthesized and evaluated for their anticancer activity against human solid tumor cell lines. The most promising molecule 12O was identified for its excellent antiproliferative activities, especially against the SiHa cell line with IC50 value as 0.009 µM. Kinase inhibition assay assessed 12O was a potential multi-kinase inhibitor, which possessed potent inhibitory activities against cyclin-dependent kinases (CDKs) and fms-like tyrosine kinase (FLT) with IC50 values in the nanomolar range. Molecular docking studies illustrated that the introduction of triazole moiety in 12O was critical for CDKs inhibition. In addition, 12O inhibited cancer cell proliferation, colony-formation, and cell cycle progression and provoked apoptotic death in vitro. In an SiHa xenograft mouse model, a once-daily dose of compound 12O at 20 mg/kg significantly suppressed the tumor growth without obvious toxicity. Taken together, 12O provided valuable guide for further structural optimization for CDKs and FLT inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinases/antagonists & inhibitors , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Female , HeLa Cells , Humans , Inhibitory Concentration 50 , MCF-7 Cells , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Neoplasm Transplantation , Protein Kinase Inhibitors/administration & dosage , Pyrimidines/chemistry
13.
Sci Rep ; 10(1): 15810, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32978411

ABSTRACT

Endothelial dysfunction is a hallmark of preeclampsia, a life-threatening complication of pregnancy characterised by hypertension and elevated soluble Fms-Like Tyrosine Kinase-1 (sFlt-1). Dysregulation of hydrogen sulfide (H2S) by inhibition of cystathionine γ-lyase (CSE) increases sFlt-1 and soluble endoglin (sEng) release. We explored whether compromise in CSE/H2S pathway is linked to dysregulation of the mitochondrial bioenergetics and oxidative status. We investigated whether these effects were linked to CSE-induced sFlt-1 and sEng production in endothelial cells. Here, we demonstrate that CSE/H2S pathway sustain endothelial mitochondrial bioenergetics and loss of CSE increases the production of mitochondrial-specific superoxide. As a compensatory effect, low CSE environment enhances the reliance on glycolysis. The mitochondrial-targeted H2S donor, AP39, suppressed the antiangiogenic response and restored the mitochondrial bioenergetics in endothelial cells. AP39 revealed that upregulation of sFlt-1, but not sEng, is independent of the mitochondrial H2S metabolising enzyme, SQR. These data provide new insights into the molecular mechanisms for antiangiogenic upregulation in a mitochondrial-driven environment. Targeting H2S to the mitochondria may be of therapeutic benefit in the prevention of endothelial dysfunction associated with preeclampsia.


Subject(s)
Cystathionine gamma-Lyase/metabolism , Endoglin/antagonists & inhibitors , Endothelium, Vascular/metabolism , Energy Metabolism , Hydrogen Sulfide/pharmacology , Mitochondria/metabolism , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Air Pollutants/pharmacology , Cystathionine gamma-Lyase/genetics , Endoglin/metabolism , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism
14.
Sci Rep ; 10(1): 12409, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32710087

ABSTRACT

Vascular endothelial growth factor-A (VEGF) is the angiogenic factor promoting the pathological neovascularization in age-related macular degeneration (AMD) or diabetic macular edema (DME). Evidences have suggested a neurotrophic and neuroprotective role of VEGF, albeit in retina, cellular mechanisms underlying the VEGF neuroprotection remain elusive. Using purified adult retinal ganglion cells (RGCs) in culture, we demonstrated here that VEGF is released by RGCs themselves to promote their own survival, while VEGF neutralization by specific antibodies or traps drastically reduced the RGC survival. These results indicate an autocrine VEGF neuroprotection on RGCs. In parallel, VEGF produced by mixed retinal cells or by mesenchymal stem cells exerted a paracrine neuroprotection on RGCs. Such neuroprotective effect was obtained using the recombinant VEGF-B, suggesting the involvement of VEGF-R1 pathway in VEGF-elicited RGC survival. Finally, glaucomatous patients injected with VEGF traps (ranibizumab or aflibercept) due to either AMD or DME comorbidity, showed a significant reduction of RGC axon fiber layer thickness, consistent with the plausible reduction of the VEGF autocrine stimulation of RGCs. Our results provide evidence of the autocrine neuroprotective function of VEGF on RGCs is crucially involved to preserve injured RGCs such as in glaucomatous patients.


Subject(s)
Glaucoma/drug therapy , Retinal Ganglion Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Aged , Aged, 80 and over , Animals , Autocrine Communication/drug effects , Cell Survival/drug effects , Cells, Cultured , Diabetic Retinopathy/complications , Diabetic Retinopathy/drug therapy , Female , Glaucoma/etiology , Glaucoma/pathology , Humans , Intravitreal Injections , Macular Degeneration/complications , Macular Degeneration/drug therapy , Macular Edema/complications , Macular Edema/drug therapy , Male , Mesenchymal Stem Cells/metabolism , Middle Aged , Paracrine Communication/drug effects , Primary Cell Culture , Prospective Studies , Ranibizumab/administration & dosage , Rats , Receptors, Vascular Endothelial Growth Factor/administration & dosage , Recombinant Fusion Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor B/genetics , Vascular Endothelial Growth Factor B/metabolism , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-1/metabolism
15.
Pharmacol Res ; 159: 104957, 2020 09.
Article in English | MEDLINE | ID: mdl-32485280

ABSTRACT

The vascular endothelial growth factor receptor-1 (VEGFR-1) is a membrane receptor for VEGF-A, placenta growth factor (PlGF) and VEGF-B that plays a crucial role in melanoma invasiveness, vasculogenic mimicry and tumor-associated angiogenesis. Furthermore, activation of VEGFR-1 is involved in the mobilization of myeloid progenitors from the bone marrow that infiltrate the tumor. Myeloid-derived suppressor cells and tumor-associated macrophages have been involved in tumor progression and resistance to cancer treatment with immune checkpoint inhibitors (ICIs). We have recently demonstrated that the anti-VEGFR-1 monoclonal antibody (mAb) D16F7 developed in our laboratories is able to inhibit melanoma growth in preclinical in vivo models and to reduce monocyte/macrophage progenitor mobilization and tumor infiltration by myeloid cells. Aim of the study was to investigate whether the anti-VEGFR-1 mAb D16F7 affects the activity of protumoral M2 macrophages in vitro in response to PlGF and inhibits the recruitment of these cells to the melanoma site in vivo. Finally, we tested whether, through its multi-targeted action, D16F7 mAb might increase the efficacy of ICIs against melanoma. The results indicated that VEGFR-1 expression is up-regulated in human activated M2 macrophages compared to activated M1 cells and exposure to the D16F7 mAb decreases in vitro chemotaxis of activated M2 macrophages. In vivo treatment with the anti-VEGFR-1 mAb D16F7 of B6D2F1 mice injected with syngeneic B16F10 melanoma cells resulted in tumor growth inhibition associated with the modification of tumor microenvironment that involves a decrease of melanoma infiltration by M2 macrophages and PD-1+ and FoxP3+ cells. These alterations result in increased M1/M2 and CD8+/FoxP3+ ratios, which favor an antitumor and immunostimulating milieu. Accordingly, D16F7 mAb increased the antitumor activity of the ICIs anti-CTLA-4 and anti-PD-1 mAbs. Overall, these data reinforce the role of VEGFR-1-mediated-signalling as a valid target for reducing tumor infiltration by protumoral macrophages and for improving the efficacy of immunotherapy with ICIs.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Tumor-Associated Macrophages/drug effects , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Humans , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Macrophage Activation/drug effects , Male , Melanoma/immunology , Melanoma/metabolism , Melanoma, Experimental/drug therapy , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Mice , Skin Neoplasms/immunology , Skin Neoplasms/metabolism , Tumor Microenvironment , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Vascular Endothelial Growth Factor Receptor-1/immunology , Vascular Endothelial Growth Factor Receptor-1/metabolism
16.
Mol Biol Rep ; 47(3): 2061-2071, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32072404

ABSTRACT

Tumor angiogenesis allows tumor cells to grow and migrate toward the bloodstream and initiate metastasis. The interactions of vascular endothelial growth factors (VEGF) A and B, as the important regulating factors for blood vessel growth, with VEGFR1 and VEGFR2 trigger angiogenesis process. Thus, preventing these interactions led to the effective blockade of VEGF/VEGFRs signaling pathways. In this study, the inhibitory effect of a 23-mer linear peptide (VGB4), which binds to both VEGFR1 and VEGFR2, on VEGF-stimulated Human Umbilical Vein Endothelial Cells (HUVECs) and highly metastatic human breast cancer cell MDA-MB-231 proliferation was examined using MTT assay. To assess the anti-migratory potential of VGB4, HUVECs and also MDA-MB-231 cells wound healing assay was carried out at 48 and 72 h. In addition, downstream signaling pathways of VEGF associated with cell migration and invasion were investigated by quantification of mRNA and protein expression using real-time quantitative PCR and western blot in 4T1 tumor tissues and MDA-MB-231 cells. The results revealed that VGB4 significantly impeded proliferation of HUVECs and MDA-MB-231 cells, in a dose- and time-dependent manner, and migration of HUVECs and MDA-MB-231 cells for a prolonged time. We also observed statistically significant reduction of the transcripts and protein levels of focal adhesion kinase (FAK), Paxillin, matrix metalloproteinase-2 (MMP-2), RAS-related C3 botulinum substrate 1 (Rac1), P21-activated kinase-2 (PAK-2) and Cofilin-1 in VGB4-treated 4T1 tumor tissues compared to controls. The protein levels of phospho-VEGFR1, phospho-VEGFR2, Vimentin, ß-catenin and Snail were markedly decreased in both VGB4-treated MDA-MB-231 cells and VGB4-treated 4T1 tumor tissues compared to controls as evidenced by western blotting. These results, in addition to our previous studies, confirm that dual blockage of VEGFR1 and VEGFR2, due to the inactivation of diverse signaling mediators, effectively suppresses tumor growth and metastasis.


Subject(s)
Breast Neoplasms/metabolism , Signal Transduction , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Biomarkers, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/etiology , Breast Neoplasms/pathology , Cell Line, Tumor , Chromatography, High Pressure Liquid , Disease Models, Animal , Female , Gene Expression , Humans , Mice , Molecular Targeted Therapy , Peptides , RNA, Messenger/genetics , Signal Transduction/drug effects , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-1/chemistry , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/chemistry , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/metabolism
17.
Int J Mol Sci ; 21(2)2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31936463

ABSTRACT

Age-related macular degeneration (AMD) is the primary cause of blindness in advanced countries. Repeated intravitreal delivery of anti-vascular endothelial growth factor (VEGF) agents has represented an important advancement for the therapy of wet AMD with significative results in terms of blindness prevention and partial vision restore. Nonetheless, some patients are not responsive or do not attain significant visual improvement, intravitreal injection may cause serious complications and important side effects have been reported for the prolonged block of VEGF-A. In order to evaluate new anti-angiogenic strategies, we focused our attention on VEGF receptor 1 (VEGFR1) developing a specific VEGFR-1 antagonist, a tetrameric tripeptide named inhibitor of VEGFR 1 (iVR1). We have evaluated its anti-angiogenic activity in the preclinical model of AMD, the laser-induced choroid neovascularization (CNV). iVR1 is able to potently inhibit CNV when delivered by intravitreal injection. Surprisingly, it is able to significantly reduce CNV also when delivered by gavage. Our data show that the specific block of VEGFR1 in vivo represents a valid alternative to the block of VEGF-A and that the inhibition of the pathological neovascularization at ocular level is also possible by systemic delivery of compounds not targeting VEGF-A.


Subject(s)
Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/pathology , Oligopeptides/administration & dosage , Oligopeptides/therapeutic use , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Administration, Oral , Animals , Intravitreal Injections , Lasers , Mice, Inbred C57BL , Oligopeptides/chemistry , Spectroscopy, Fourier Transform Infrared , Trifluoroacetic Acid/chemistry , Vascular Endothelial Growth Factor Receptor-1/metabolism
18.
Expert Opin Pharmacother ; 21(4): 491-506, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31957503

ABSTRACT

Introduction: Angiogenesis is the process by which the tumor develops its potential for growth and distant metastasis. The main proangiogenic switch is vascular endothelial growth factor (VEGF), which, along with its receptor VEGFR, is a target for biological drugs such as multi-targeted tyrosine kinase inhibitors used for many neoplasms, including non-small cell lung cancer (NSCLC).Areas covered: The fact that angiokinase inhibitors act on several signaling molecules simultaneously means that the use of alternative transmission pathways, which nullifies the effect of drugs directed against a single target, is avoided. Nevertheless, most of these drugs have failed to improve any outcome in NSCLC patients. The authors discuss these points and provide their expert perspectives.Expert opinion: Multikinase inhibitors are the fruit of research which regards cancer as a complex system of interacting processes. However, the lack of predictive biomarkers of response has limited the development of this class of drugs in NSCLC. Combination trials with chemotherapy, immunotherapy or other targeted drugs are ongoing, and while some have already confirmed the role of antiangiogenic small molecules in integrated regimes, others are still evaluating the efficacy of these drugs and raising questions about their cost and tolerability.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Humans , Treatment Outcome
19.
Curr Cancer Drug Targets ; 20(4): 295-305, 2020.
Article in English | MEDLINE | ID: mdl-31713485

ABSTRACT

BACKGROUND: Atypical teratoid rhabdoid tumor of the central nervous system (CNS ATRT) is a malignancy that commonly affects young children. The biological mechanisms contributing to tumor aggressiveness and resistance to conventional therapies in ATRT are unknown. Previous studies have shown the activity of insulin like growth factor-I receptor (IGF-1R) in ATRT tumor specimens and cell lines. IGF-1R has been shown to cross-talk with other receptor tyrosine kinases (RTKs) in a number of cancer types, leading to enhanced cell proliferation. OBJECTIVE: This study aims to evaluate the role of IGF-1 receptor cross-talk in ATRT biology and the potential for therapeutic targeting. METHODS: Cell lines derived from CNS ATRT specimens were analyzed for IGF-1 mediated cell proliferation. A comprehensive receptor tyrosine kinase (RTK) screen was conducted following IGF-1 stimulation. Bioinformatic analysis of publicly available cancer growth inhibition data to identify correlation between IC50 of a VEGFR inhibitor and IGF-1R expression. RESULTS: Comprehensive RTK screen identified VEGFR-2 cross-activation following IGF-1 stimulation. Bioinformatics analysis demonstrated a positive correlation between IC50 values of VEGFR inhibitor Axitinib and IGF-1R expression, supporting the critical influence of IGF-1R in modulating response to anti-angiogenic therapies. CONCLUSION: Overall, our data present a novel experimental framework to evaluate and utilize receptor cross-talk mechanisms to select effective drugs and combinations for future therapeutic trials in ATRT.


Subject(s)
Central Nervous System Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Receptor Cross-Talk/drug effects , Receptor, IGF Type 1/antagonists & inhibitors , Rhabdoid Tumor/drug therapy , Teratoma/drug therapy , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Axitinib/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Central Nervous System Neoplasms/metabolism , Central Nervous System Neoplasms/pathology , Humans , In Vitro Techniques , Insulin-Like Growth Factor I/pharmacology , Molecular Targeted Therapy/methods , Receptor, IGF Type 1/metabolism , Rhabdoid Tumor/metabolism , Rhabdoid Tumor/pathology , Signal Transduction/drug effects , Teratoma/metabolism , Teratoma/pathology , Vascular Endothelial Growth Factor Receptor-1/metabolism
20.
PLoS Genet ; 15(12): e1008468, 2019 12.
Article in English | MEDLINE | ID: mdl-31877123

ABSTRACT

Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disease in which the dystrophin coding for a membrane stabilizing protein is mutated. Recently, the vasculature has also shown to be perturbed in DMD and DMD model mdx mice. Recent DMD transcriptomics revealed the defects were correlated to a vascular endothelial growth factor (VEGF) signaling pathway. To reveal the relationship between DMD and VEGF signaling, mdx mice were crossed with constitutive (CAGCreERTM:Flt1LoxP/LoxP) and endothelial cell-specific conditional gene knockout mice (Cdh5CreERT2:Flt1LoxP/LoxP) for Flt1 (VEGFR1) which is a decoy receptor for VEGF. Here, we showed that while constitutive deletion of Flt1 is detrimental to the skeletal muscle function, endothelial cell-specific Flt1 deletion resulted in increased vascular density, increased satellite cell number and improvement in the DMD-associated phenotype in the mdx mice. These decreases in pathology, including improved muscle histology and function, were recapitulated in mdx mice given anti-FLT1 peptides or monoclonal antibodies, which blocked VEGF-FLT1 binding. The histological and functional improvement of dystrophic muscle by FLT1 blockade provides a novel pharmacological strategy for the potential treatment of DMD.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Muscular Dystrophy, Duchenne/drug therapy , Peptides/administration & dosage , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Animals , Antibodies, Monoclonal/pharmacology , Disease Models, Animal , Endothelial Cells/metabolism , Gene Knockout Techniques , Male , Mice , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/physiopathology , Organ Specificity , Peptides/pharmacology , Signal Transduction/drug effects , Vascular Endothelial Growth Factor Receptor-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...