Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
J Med Toxicol ; 18(2): 145-154, 2022 04.
Article in English | MEDLINE | ID: mdl-35258848

ABSTRACT

BACKGROUND: Shock in drug poisoning is a life-threatening condition and current management involves fluid resuscitation and vasopressor therapy. Management is limited by the toxicity of high-dose vasopressors such as catecholamines. Clinical trials have shown the efficacy of angiotensin II as an adjunct vasopressor in septic shock. The aim of this review is to assess the use of angiotensin II in patients with shock secondary to drug overdose. METHODS: Medline (from 1946), Embase (from 1947) and PubMed (from 1946) databases were searched until July 2021 via OVID. Included studies were those with shock due to drug poisoning and received angiotensin II as part of their treatment regimen. Of the 481 articles identified, 13 studies (case reports and scientific abstracts) were included in the final analysis with a total of 14 patients. Extracted data included demographics, overdose drug and dosage, angiotensin II dosage, time of angiotensin II administration, haemodynamic changes, length of hospital stay, mortality, complications, cardiac function and other treatment agents used. RESULTS: Thirteen studies were included consisting of 6 case reports, 6 scientific abstracts and 1 case series. Overdose drugs included antihypertensives (n = 8), psychotropics (n = 4), isopropanol (n = 1) and tamsulosin (n = 1). Out of a total of 14 patients, 3 patients died. Ten patients had their haemodynamic changes reported. In terms of MAP or SBP changes, three patients (30%) had an immediate response to angiotensin II, four patients (40%) had responses within 30 min, one patient (10%) within two hours and two patients (20%) did not have their time reported. Two patients were shown to have direct chronotropic effects within 30 min of angiotensin II administration. The median hospital stay for patients was 5 days (IQR = 4). The time from overdose until angiotensin II administration ranged from 5 to 56 h. Other vasopressors used included phenylephrine, noradrenaline, adrenaline, vasopressin, dobutamine, dopamine, methylene blue and ephedrine. A median of 3 vasopressors were used before initiation of angiotensin II. Twelve patients received angiotensin II as their final treatment. CONCLUSIONS: Angiotensin II may be useful as an adjunct vasopressor in treating shock secondary to drug poisoning. However, the current literature consisted of only very low-quality studies. To truly assess the utility of angiotensin II use in drug-induced poisoned patients, further well-designed prospective studies are required.


Subject(s)
Drug Overdose , Shock , Angiotensin II/therapeutic use , Drug Overdose/drug therapy , Epinephrine , Humans , Norepinephrine , Shock/chemically induced , Shock/drug therapy , Vasoconstrictor Agents/therapeutic use , Vasoconstrictor Agents/toxicity
2.
PLoS One ; 17(2): e0264136, 2022.
Article in English | MEDLINE | ID: mdl-35176122

ABSTRACT

Current research on hypertension utilizes more than fifty animal models that rely mainly on stable increases in systolic blood pressure. In experimental hypertension, grading or scoring of glomerulopathy in the majority of studies is based on a wide range of opinion-based histological changes that do not necessarily comply with lesional descriptors for glomerular injury that are well-established in clinical pathology. Here, we provide a critical appraisal of experimental hypertensive glomerulopathy with the same approach used to assess hypertensive glomerulopathy in humans. Four hypertensive models with varying pathogenesis were analyzed-chronic angiotensin II infused mice, mice expressing active human renin in the liver (TTRhRen), spontaneously hypertensive rats (SHR), and Goldblatt two-kidney one-clip rats (2K1C). Analysis of glomerulopathy utilized the same criteria applied in humans-hyalinosis, focal segmental glomerulosclerosis (FSGS), ischemic, hypertrophic and solidified glomeruli, or global glomerulosclerosis (GGS). Data from animal models were compared to human reference values. Kidneys in TTRhRen mice, SHR and the nonclipped kidneys in 2K1C rats had no sign of hyalinosis, FSGS or GGS. Glomerulopathy in these groups was limited to variations in mesangial and capillary compartment volumes, with mild increases in collagen deposition. Histopathology in angiotensin II infused mice corresponded to mesangioproliferative glomerulonephritis, but not hypertensive glomerulosclerosis. The number of nephrons was significantly reduced in TTRhRen mice and SHR, but did not correlate with severity of glomerulopathy. The most substantial human-like glomerulosclerotic lesions, including FSGS, ischemic obsolescent glomeruli and GGS, were found in the clipped kidneys of 2K1C rats. The comparison of affected kidneys to healthy control in animals produces lesion values that are numerically impressive but correspond to mild damage if compared to humans. Animal studies should be standardized by employing the criteria and classifications established in human pathology to make experimental and human data fully comparable for comprehensive analysis and model improvements.


Subject(s)
Angiotensin II/toxicity , Disease Models, Animal , Glomerulosclerosis, Focal Segmental/pathology , Hypertension, Renal/pathology , Hypertension/complications , Nephritis/pathology , Nephrosclerosis/pathology , Animals , Glomerulosclerosis, Focal Segmental/etiology , Glomerulosclerosis, Focal Segmental/metabolism , Humans , Hypertension/chemically induced , Hypertension, Renal/etiology , Hypertension, Renal/metabolism , Male , Nephritis/etiology , Nephritis/metabolism , Nephrosclerosis/etiology , Nephrosclerosis/metabolism , Rats , Rats, Inbred SHR , Vasoconstrictor Agents/toxicity
3.
J Med Chem ; 65(1): 257-270, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34929081

ABSTRACT

We have shown that CB1 receptor negative allosteric modulators (NAMs) attenuated the reinstatement of cocaine-seeking behaviors in rats. In an effort to further define the structure-activity relationships and assess the druglike properties of the 3-(4-chlorophenyl)-1-(phenethyl)urea-based CB1 NAMs that we recently reported, we introduced substituents of different electronic properties and sizes to the phenethyl group and evaluated their potency in CB1 calcium mobilization, cAMP, and GTPγS assays. We found that 3-position substitutions such as Cl, F, and Me afforded enhanced CB1 potency, whereas 4-position analogues were generally less potent. The 3-chloro analogue (31, RTICBM-189) showed no activity at >50 protein targets and excellent brain permeation but relatively low metabolic stability in rat liver microsomes. Pharmacokinetic studies in rats confirmed the excellent brain exposure of 31 with a brain/plasma ratio Kp of 2.0. Importantly, intraperitoneal administration of 31 significantly and selectively attenuated the reinstatement of the cocaine-seeking behavior in rats without affecting locomotion.


Subject(s)
Behavior, Animal/drug effects , Brain/metabolism , Cocaine-Related Disorders/drug therapy , Cocaine/toxicity , Drug-Seeking Behavior/drug effects , Phenylurea Compounds/chemistry , Receptor, Cannabinoid, CB1/metabolism , Allosteric Regulation , Animals , Brain/drug effects , Cocaine-Related Disorders/etiology , Cocaine-Related Disorders/pathology , Male , Mice , Rats , Rats, Sprague-Dawley , Vasoconstrictor Agents/toxicity
4.
Cells ; 10(9)2021 09 19.
Article in English | MEDLINE | ID: mdl-34572127

ABSTRACT

It has been known that infection plays a role in the development of hypertension. However, the role of hypertension in the progression of infectious diseases remain unknown. Many countries with high rates of hypertension show geographical overlaps with those showing high incidence rates of tuberculosis (TB). To explore the role of hypertension in tuberculosis, we compared the effects of hypertension during mycobacterial infection, we infected both hypertensive Angiotensin II (Ang II) and control mice with Mycobacterium tuberculosis (Mtb) strain H37Ra by intratracheal injection. Ang II-induced hypertension promotes cell death through both apoptosis and necrosis in Mtb H37Ra infected mouse lungs. Interestingly, we found that lipid accumulation in pulmonary tissues was significantly increased in the hypertension group compared to the normal controls. Ang II-induced hypertension increases the formation of foamy macrophages during Mtb infection and it leads to cell death. Moreover, the hypertension group showed more severe granuloma formation and fibrotic lesions in comparison with the control group. Finally, we observed that the total number of mycobacteria was increased in the lungs in the hypertension group compared to the normal controls. Taken together, these results suggest that hypertension increases intracellular survival of Mtb through formation of foamy macrophages, resulting in severe pathogenesis of TB.


Subject(s)
Angiotensin II/toxicity , Apoptosis , Hypertension/pathology , Lung/pathology , Macrophages/pathology , Mycobacterium tuberculosis/physiology , Tuberculosis/pathology , Animals , Hypertension/chemically induced , Lung/microbiology , Macrophages/microbiology , Male , Mice , Mice, Inbred C57BL , Necrosis , Tuberculosis/microbiology , Vasoconstrictor Agents/toxicity
5.
PLoS One ; 16(6): e0252853, 2021.
Article in English | MEDLINE | ID: mdl-34086815

ABSTRACT

The purpose of this study is to examine the effect of repeated cocaine administration on the whole body of rats. Rats (male, 6 weeks old, Sprague Dawley) were injected intraperitoneally with cocaine (50 mg/kg) once a day for 1, 3 or 7 days, and major organs (heart, liver, lung, brain, kidney, spleen) were excised from the sacrificed animals. During autopsy, we found a reduction in spleen size, but not other organs, in cocaine-administered rats as compared to control rats. This reduction became to be noticed at 3 day and easily perceived at 7 day. No marked changes were observed in other organs examined. H&E and EMG staining showed a tendency for a decrease in the number of red blood cells (RBCs) as well as an increase in collagen fibers in the spleens of rats treated repeatedly with cocaine. Transcriptome analysis indicated that repeated cocaine administration depletes RBCs from the spleen. Immunoblot analysis showed that cocaine increases the phosphorylation of myosin light chain (MYL) as well as the levels of transgelin, both of which are involved in the contraction of myofibrils. Collectively, these results show that repeated cocaine administration results in sustained contraction of the spleen, which leads to the release of RBCs from the spleen into circulation.


Subject(s)
Cocaine/toxicity , Gene Expression Regulation/drug effects , Organ Size/drug effects , Spleen/pathology , Transcriptome , Vasoconstrictor Agents/toxicity , Animals , Cocaine/administration & dosage , Male , Rats , Rats, Sprague-Dawley , Spleen/drug effects , Spleen/metabolism , Vasoconstrictor Agents/administration & dosage
6.
Int J Mol Sci ; 22(10)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064664

ABSTRACT

Rutin is a flavonoid with antioxidant property. It has been shown to exert cardioprotection against cardiomyocyte hypertrophy. However, studies regarding its antihypertrophic property are still lacking, whether it demonstrates similar antihypertrophic effect to its metabolite, quercetin. Hence, this study aimed to investigate the effects of both flavonoids on oxidative stress and mitogen-activated protein kinase (MAPK) pathway in H9c2 cardiomyocytes that were exposed to angiotensin II (Ang II) to induce hypertrophy. Cardiomyocytes were exposed to Ang II (600 nM) with or without quercetin (331 µM) or rutin (50 µM) for 24 h. A group given vehicle served as the control. The concentration of the flavonoids was chosen based on the reported effective concentration to reduce cell hypertrophy or cardiac injury in H9c2 cells. Exposure to Ang II increased cell surface area, intracellular superoxide anion level, NADPH oxidase and inducible nitric oxide synthase activities, and reduced cellular superoxide dismutase activity and nitrite level, which were similarly reversed by both rutin and quercetin. Rutin had no significant effects on phosphorylated proteins of extracellular signal-related kinases (ERK1/2) and p38 but downregulated phosphorylated c-Jun N-terminal kinases (JNK1/2), which were induced by Ang II. Quercetin, on the other hand, had significantly downregulated the phosphorylated proteins of ERK1/2, p38, and JNK1/2. The quercetin inhibitory effect on JNK1/2 was stronger than the rutin. In conclusion, both flavonoids afford similar protective effects against Ang II-induced cardiomyocyte hypertrophy, but they differently modulate MAPK pathway.


Subject(s)
Angiotensin II/toxicity , Gene Expression Regulation, Enzymologic/drug effects , Hypertrophy/metabolism , Mitogen-Activated Protein Kinases/metabolism , Myoblasts, Cardiac/metabolism , Quercetin/pharmacology , Rutin/pharmacology , Animals , Antioxidants/pharmacology , Cells, Cultured , Hypertrophy/chemically induced , Hypertrophy/drug therapy , Hypertrophy/pathology , Mitogen-Activated Protein Kinases/genetics , Myoblasts, Cardiac/cytology , Myoblasts, Cardiac/drug effects , NADPH Oxidases/metabolism , Nitric Oxide/metabolism , Phosphorylation , Rats , Reactive Oxygen Species/metabolism , Vasoconstrictor Agents/toxicity
7.
J Cell Mol Med ; 25(16): 7760-7771, 2021 08.
Article in English | MEDLINE | ID: mdl-34180125

ABSTRACT

Lymphangiogenesis is possibly capable of attenuating hypertension-induced cardiac injury. Sirtuin 3 (SIRT3) is an effective mitochondrial deacetylase that has the potential to modulate this process; however, its role in hypertension-induced cardiac lymphangiogenesis to date has not been investigated. Our experiments were performed on 8-week-old wild-type (WT), SIRT3 knockout (SIRT3-KO) and SIRT3 overexpression (SIRT3-LV) mice infused with angiotensin II (Ang II) (1000 ng/kg per minute) or saline for 28 days. After Ang II infusion, SIRT3-KO mice developed a more severe cardiac remodelling, less lymphatic capillaries and lower expression of lymphatic marker when compared to wild-type mice. In comparison, SIRT3-LV restored lymphangiogenesis and attenuated cardiac injury. Furthermore, lymphatic endothelial cells (LECs) exposed to Ang II in vitro exhibited decreased migration and proliferation. Silencing SIRT3 induced functional decrease in LECs, while SIRT3 overexpression LECs facilitated. Moreover, SIRT3 may up-regulate lymphangiogenesis by affecting vascular endothelial growth factor receptor 3 (VEGFR3) and ERK pathway. These findings suggest that SIRT3 could promote lymphangiogenesis and attenuate hypertensive cardiac injury.


Subject(s)
Angiotensin II/toxicity , Endothelial Cells/pathology , Heart Injuries/pathology , Hypertension/complications , Lymphangiogenesis , Sirtuin 3/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Heart Injuries/etiology , Heart Injuries/metabolism , Hypertension/metabolism , Hypertension/physiopathology , Male , Mice , Mice, Knockout , Sirtuin 3/genetics , Vascular Endothelial Growth Factor Receptor-3/genetics , Vasoconstrictor Agents/toxicity
8.
Amino Acids ; 53(7): 1079-1089, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34089389

ABSTRACT

The present study was to explore whether alarin could alleviate heart failure (HF) and attenuate cardia fibrosis via inhibiting oxidative stress. The fibrosis of cardiac fibroblasts (CFs) was induced by angiotensin (Ang) II. HF models were induced by ligation of the left anterior descending artery to cause ischemia myocardial infarction (MI) in Sprague-Dawley rats. Alarin (1.0 nM/kg/d) was administrated by intraperitoneal injection for 28 days. The decreases of left ventricular (LV) ejection fraction (EF), fractional shortening (FS), the maximum of the first differentiation of LV pressure (LV ± dp/dtmax) and LV systolic pressure (LVSP), and the increases of LV volume in systole (LVVS), LV volume in diastole (LVVD), LV end-systolic diameter (LVESD) and LV end-diastolic diameter (LVEDD) in MI rats were improved by alarin treatment. The increases in the expression levels of collagen I, collagen III, and transforming growth factor (TGF)-ß were inhibited by alarin treatment in CFs and in the hearts of MI rats. The levels of NADPH oxidase (Nox) activity, superoxide anions and malondialdehyde (MDA) levels were increased, and the level of superoxide dismutase (SOD) activity was reduced in Ang II-treated CFs, which were reversed by alarin. Nox1 overexpression reversed the effects of alarin on attenuating the increases of collagen I, collagen III and TGF-ß expression levels induced by Ang II in CFs. These results indicated that alarin improved HF and cardiac fibrosis via inhibiting oxidative stress in HF rats. Nox1 played important roles in the regulation of alarin effects on attenuating CFs fibrosis induced by Ang II.


Subject(s)
Angiotensin II/toxicity , Fibrosis/prevention & control , Galanin-Like Peptide/pharmacology , Heart Failure/complications , Myocardial Infarction/complications , Oxidative Stress , Animals , Fibrosis/etiology , Fibrosis/pathology , Male , Malondialdehyde/metabolism , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta/metabolism , Vasoconstrictor Agents/toxicity
9.
Int J Mol Sci ; 22(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33947043

ABSTRACT

Neonatal arterial ischemic stroke is one of the more severe birth complications. The injury can result in extensive neurological damage and is robustly associated with later diagnoses of cerebral palsy (CP). An important part of efforts to develop new therapies include the on-going refinement and understanding of animal models that capture relevant clinical features of neonatal brain injury leading to CP. The potent vasoconstrictor peptide, Endothelin-1 (ET-1), has previously been utilised in animal models to reduce local blood flow to levels that mimic ischemic stroke. Our previous work in this area has shown that it is an effective and technically simple approach for modelling ischemic injury at very early neonatal ages, resulting in stable deficits in motor function. Here, we aimed to extend this model to also examine the impact on cognitive function. We show that focal delivery of ET-1 to the cortex of Sprague Dawley rats on postnatal day 0 (P0) resulted in impaired learning in a touchscreen-based test of visual discrimination and correlated with important clinical features of CP including damage to large white matter structures.


Subject(s)
Brain Ischemia/complications , Cerebral Palsy/etiology , Disease Models, Animal , Endothelin-1/toxicity , Vasoconstrictor Agents/toxicity , Animals , Animals, Newborn , Association Learning , Atrophy , Brain Ischemia/chemically induced , Brain Ischemia/pathology , Cell Count , Cerebral Cortex/pathology , Cerebral Palsy/pathology , Cognition Disorders/etiology , Corpus Striatum/pathology , Endothelin-1/administration & dosage , Inflammation , Injections , Microglia/pathology , Movement Disorders/etiology , Neurons/pathology , Perceptual Disorders/etiology , Rats , Rats, Sprague-Dawley , Rotarod Performance Test , Vasoconstrictor Agents/administration & dosage , White Matter/pathology
10.
Mol Cell Biochem ; 476(9): 3253-3260, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33886061

ABSTRACT

Pathological cardiac hypertrophy is associated with many diseases including hypertension. Recent studies have identified important roles for microRNAs (miRNAs) in many cardiac pathophysiological processes, including the regulation of cardiomyocyte hypertrophy. However, the role of miR-145-5p in the cardiac setting is still unclear. In this study, H9C2 cells were overexpressed with microRNA-145-5p, and then treated with Ang-II for 24 h, to study the effect of miR-145-5p on Ang-II-induced myocardial hypertrophy in vitro. Results showed that Ang-II treatment down-regulated miR-145-5p expression were revered after miR-145-5p overexpression. Based on results of bioinformatics algorithms, paxillin was predicted as a candidate target gene of miR-145-5p, luciferase activity assay revealed that the luciferase activity of cells was substantial downregulated the following co-transfection with wild paxillin 3'UTR and miR-145-5p compared to that in scramble control, while the inhibitory effect of miR-145-5p was abolished after transfection of mutant paxillin 3'UTR. Additionally, overexpression of miR-145-5p markedly inhibited activation of Rac-1/ JNK /c-jun/ NFATc3 and ANP expression and induced SIRT1 expression in Ang-II treated H9c2 cells. Jointly, our study suggested that miR-145-5p inhibited cardiac hypertrophy by targeting paxillin and through modulating Rac-1/ JNK /c-jun/ NFATc3/ ANP / Sirt1 signaling, therefore proving novel downstream molecular pathway of miR-145-5p in cardiac hypertrophy.


Subject(s)
Angiotensin II/toxicity , Cardiomegaly/drug therapy , Gene Expression Regulation/drug effects , MicroRNAs/genetics , Myoblasts, Cardiac/drug effects , Paxillin/antagonists & inhibitors , Animals , Atrial Natriuretic Factor/genetics , Atrial Natriuretic Factor/metabolism , Cardiomegaly/chemically induced , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cells, Cultured , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , Myoblasts, Cardiac/metabolism , Myoblasts, Cardiac/pathology , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism , Rats , Sirtuin 1/genetics , Sirtuin 1/metabolism , Vasoconstrictor Agents/toxicity , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
11.
Can J Physiol Pharmacol ; 99(10): 1000-1006, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33852804

ABSTRACT

The Hippo/YAP (yes-associated protein) pathway is an important signaling pathway to control organ development and tissue homeostasis. YAP is a downstream effector of the Hippo pathway and a critical mediator of mechanic stress. Hypertensive nephropathy is characterized with glomerular sclerosis stiffness and renal fibrosis. The present study investigated the role of YAP pathway in angiotensin (Ang) II hypertensive renal injury by using YAP activation inhibitor verteporfin. Ang II increased the protein expression of YAP in renal nucleus fraction, decreased phospho-YAP, and phospho-LATS1/2 (large tumor suppressors 1 and 2) expressions in renal cytoplasmic fraction, suggesting Ang II activation of renal YAP. Ang II significantly increased systolic blood pressure (SBP), proteinuria, glomerular sclerosis, and fibrosis; treatment with verteporfin attenuated Ang II-induced proteinuria and renal injury with a mild reduction in SBP. Moreover, Ang II increased the protein expressions of inflammatory factors including tumor necrosis factor α, interleukin 1ß, and monocyte chemoattractant protein-1, and profibrotic factors including transforming growth factor ß, phospho-Smad3 and fibronectin. Verteporfin reversed abovementioned Ang II-induced molecule expressions. Our results for the first time demonstrate that the activation of the YAP pathway promotes hypertensive renal inflammation and fibrosis, which may promote hypertensive renal injury. YAP may be a new target for prevention and treatment of hypertensive renal diseases.


Subject(s)
Acute Kidney Injury/drug therapy , Angiotensin II/toxicity , Hypertension, Renal/drug therapy , Hypertension/metabolism , Nephritis/drug therapy , Verteporfin/pharmacology , YAP-Signaling Proteins/antagonists & inhibitors , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Blood Pressure , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Fibrosis , Hypertension/chemically induced , Hypertension/pathology , Hypertension, Renal/etiology , Hypertension, Renal/metabolism , Hypertension, Renal/pathology , Male , Mice , Mice, Inbred C57BL , Nephritis/etiology , Nephritis/metabolism , Nephritis/pathology , Photosensitizing Agents/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Vasoconstrictor Agents/toxicity
12.
Can J Physiol Pharmacol ; 99(10): 1036-1047, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33857387

ABSTRACT

Although vasodilatation evoked by acidosis at normal body temperature is well known, the reports regarding effect of acidosis on the reactivity of the isolated arteries at low temperatures are nonexistent. This study tested the hypothesis that the inhibitory effect of acidosis on the neurogenic vasoconstriction may be increased by cooling. Using wire myography, we recorded the neurogenic contraction of the rat tail artery segments to the electrical field stimulation in the absence and in the presence of 0.03-10.0 µmol/L noradrenaline. The experiments were conducted at 37 °C or 25 °C and pH 7.4 or 6.6 which was decreased by means of CO2. Noradrenaline at concentration of 0.03-0.1 µmol/L significantly potentiated the neurogenic vasoconstriction at 25 °C, and the potentiation was not inhibited by acidosis. Contrary to our hypothesis, acidosis at a low temperature did not affect the noradrenaline-induced tone and significantly increased the neurogenic contraction of the artery segments in the absence and presence of noradrenaline. These effects of acidosis were partly dependent on the endothelium and L-type Ca2+ channels activation. The phenomenon described for the first time might be of importance for the reduction in the heat loss by virtue of decrease in the subcutaneous blood flow at low ambient temperatures.


Subject(s)
Acidosis/physiopathology , Norepinephrine/pharmacology , Peripheral Nerves/pathology , Animals , Cold Temperature , Electric Stimulation , Male , Muscle Contraction , Nitric Oxide/metabolism , Peripheral Nerves/drug effects , Rats , Rats, Wistar , Tail/blood supply , Vasoconstriction , Vasoconstrictor Agents/toxicity
13.
J Cell Mol Med ; 25(9): 4408-4419, 2021 05.
Article in English | MEDLINE | ID: mdl-33793066

ABSTRACT

Nuclear factor erythroid 2-related factor (Nrf2) is an important regulator of cellular antioxidant defence. We previously showed that SFN prevented Ang II-induced cardiac damage via activation of Nrf2. However, the underlying mechanism of SFN's persistent cardiac protection remains unclear. This study aimed to explore the potential of SFN in activating cardiac Nrf2 through epigenetic mechanisms. Wild-type mice were injected subcutaneously with Ang II, with or without SFN. Administration of chronic Ang II-induced cardiac inflammatory factor expression, oxidative damage, fibrosis and cardiac remodelling and dysfunction, all of which were effectively improved by SFN treatment, coupled with an up-regulation of Nrf2 and downstream genes. Bisulfite genome sequencing and chromatin immunoprecipitation (ChIP) were performed to detect the methylation level of the first 15 CpGs and histone H3 acetylation (Ac-H3) status in the Nrf2 promoter region, respectively. The results showed that SFN reduced Ang II-induced CpG hypermethylation and promoted Ac-H3 accumulation in the Nrf2 promoter region, accompanied by the inhibition of global DNMT and HDAC activity, and a decreased protein expression of key DNMT and HDAC enzymes. Taken together, SFN exerts its cardioprotective effect through epigenetic modification of Nrf2, which may partially contribute to long-term activation of cardiac Nrf2.


Subject(s)
Angiotensin II/toxicity , Cardiomyopathies/prevention & control , Epigenesis, Genetic , Gene Expression Regulation/drug effects , Isothiocyanates/pharmacology , NF-E2-Related Factor 2/metabolism , Sulfoxides/pharmacology , Animals , Cardiomyopathies/chemically induced , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Male , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/genetics , Oxidative Stress , Vasoconstrictor Agents/toxicity
14.
Int J Mol Sci ; 22(5)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668403

ABSTRACT

Cocaine is one of the most widely abused illicit drugs worldwide and has long been recognised as an agent of cardiac dysfunction in numerous cases of drug overdose. Cocaine has previously been shown to up-regulate cytoskeletal rearrangements and morphological changes in numerous tissues; however, previous literature observes such changes primarily in clinical case reports and addiction studies. An investigation into the fundamental cytoskeletal parameters of migration, adhesion and proliferation were studied to determine the cytoskeletal and cytotoxic basis of cocaine in cardiac cells. Treatment of cardiac myocytes with cocaine increased cell migration and adhesion (p < 0.05), with no effect on cell proliferation, except with higher doses eliciting (1-10 µg/mL) its diminution and increase in cell death. Cocaine downregulated phosphorylation of cofilin, decreased expression of adhesion modulators (integrin-ß3) and increased expression of ezirin within three hours of 1 µg/mL treatments. These functional responses were associated with changes in cellular morphology, including alterations in membrane stability and a stellate-like phenotype with less compaction between cells. Higher dose treatments of cocaine (5-10 µg/mL) were associated with significant cardiomyocyte cell death (p < 0.05) and loss of cellular architecture. These results highlight the importance of cocaine in mediating cardiomyocyte function and cytotoxicity associated with the possible loss of intercellular contacts required to maintain normal cell viability, with implications for cardiotoxicity relating to hypertrophy and fibrogenesis.


Subject(s)
Cardiotoxicity/pathology , Cocaine/toxicity , Cytoskeleton/pathology , Myocytes, Cardiac/pathology , Vasoconstrictor Agents/toxicity , Animals , Cardiotoxicity/etiology , Cell Adhesion , Cell Movement , Cell Survival , Cells, Cultured , Cytoskeleton/drug effects , Myocytes, Cardiac/drug effects , Rats
15.
Life Sci ; 273: 119239, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33652033

ABSTRACT

Our previous work revealed the protective effect of Qiliqiangxin (QLQX) on cardiac microvascular endothelial cells (CMECs), but the underlying mechanisms remain unclear. We aimed to investigate whether QLQX exerts its protective effect against high-concentration angiotensin II (Ang II)-induced CMEC apoptosis through the autophagy machinery. CMECs were cultured in high-concentration Ang II (1 µM) medium in the presence or absence of QLQX for 48 h. We found that QLQX obviously inhibited Ang II-triggered autophagosome synthesis and apoptosis in cultured CMECs. QLQX-mediated protection against Ang II-induced CMEC apoptosis was reversed by the autophagy activator rapamycin. Specifically, deletion of ATG7 in cultured CMECs indicated a detrimental role of autophagy in Ang II-induced CMEC apoptosis. QLQX reversed Ang II-mediated ErbB2 phosphorylation impairment. Furthermore, inhibition of ErbB2 phosphorylation with lapatinib in CMECs revealed that QLQX-induced downregulation of Ang II-activated autophagy and apoptosis was ErbB2 phosphorylation-dependent via the AKT-FoxO3a axis. Activation of ErbB2 phosphorylation by Neuregulin-1ß achieved a similar CMEC-protective effect as QLQX in high-concentration Ang II medium, and this effect was also abolished by autophagy activation. These results show that the CMEC-protective effect of QLQX under high-concentration Ang II conditions could be partly attributable to QLQX-mediated ErbB2 phosphorylation-dependent downregulation of autophagy via the AKT-FoxO3a axis.


Subject(s)
Angiotensin II/toxicity , Autophagy , Drugs, Chinese Herbal/pharmacology , Endothelial Cells/drug effects , Forkhead Box Protein O3/metabolism , Myocytes, Cardiac/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-2/metabolism , Animals , Apoptosis , Endothelial Cells/metabolism , Endothelial Cells/pathology , Forkhead Box Protein O3/genetics , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Rats , Rats, Sprague-Dawley , Receptor, ErbB-2/genetics , Signal Transduction , Vasoconstrictor Agents/toxicity
16.
Neuroimage ; 232: 117919, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33652141

ABSTRACT

Unilateral damage to the frontoparietal network typically impairs saccade target selection within the contralesional visual hemifield. Severity of deficits and the degree of recovery have been associated with widespread network dysfunction, yet it is not clear how these behavioural and functional brain changes relate with the underlying structural white matter tracts. Here, we investigated whether recovery after unilateral prefrontal cortex (PFC) lesions was associated with changes in white matter microstructure across large-scale frontoparietal cortical and thalamocortical networks. Diffusion-weighted imaging was acquired in four male rhesus macaques at pre-lesion, week 1, and week 8-16 post-lesion when target selection deficits largely recovered. Probabilistic tractography was used to reconstruct cortical frontoparietal fiber tracts, including the superior longitudinal fasciculus (SLF) and transcallosal fibers connecting the PFC or posterior parietal cortex (PPC), as well as thalamocortical fiber tracts connecting the PFC and PPC to thalamic nuclei. We found that the two animals with small PFC lesions showed increased fractional anisotropy in both cortical and thalamocortical fiber tracts when behaviour had recovered. However, we found that fractional anisotropy decreased in cortical frontoparietal tracts after larger PFC lesions yet increased in some thalamocortical tracts at the time of behavioural recovery. These findings indicate that behavioural recovery after small PFC lesions may be supported by both cortical and subcortical areas, whereas larger PFC lesions may have induced widespread structural damage and hindered compensatory remodeling in the cortical frontoparietal network.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Recovery of Function/physiology , Thalamus/diagnostic imaging , White Matter/diagnostic imaging , Animals , Macaca mulatta , Male , Nerve Net/drug effects , Nerve Net/physiology , Photic Stimulation/methods , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Recovery of Function/drug effects , Thalamus/drug effects , Thalamus/physiology , Vasoconstrictor Agents/toxicity , White Matter/drug effects , White Matter/physiology
17.
Aging (Albany NY) ; 13(3): 4409-4427, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33495414

ABSTRACT

Vascular remodeling is a pertinent target for cardiovascular therapy. Vascular smooth muscle cell (VSMC) dysfunction plays a key role in vascular remodeling. Myeloid differentiation 2 (MD2), a cofactor of toll-like receptor 4 (TLR4), is involved in atherosclerotic progress and cardiac remodeling via activation of chronic inflammation. In this study, we explored the role of MD2 in vascular remodeling using an Ang II-induced mouse model and cultured human aortic VSMCs. MD2 deficiency suppressed Ang II-induced vascular fibrosis and phenotypic switching of VSMCs without affecting blood pressure in mice. Mechanistically, MD2 deficiency prevented Ang II-induced expression of inflammatory cytokines and oxidative stress in mice and cultured VSMCs. Furthermore, MD2 deficiency reversed Ang II-activated MAPK signaling and Ang II-downregulated SIRT1 expression. Taken together, MD2 plays a significant role in Ang II-induced vascular oxidative stress, inflammation, and remodeling, indicating that MD2 is a potential therapeutic target for the treatment of vascular remodeling-related cardiovascular diseases.


Subject(s)
Inflammation/genetics , Lymphocyte Antigen 96/genetics , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Oxidative Stress/genetics , Vascular Remodeling/genetics , Angiotensin II/toxicity , Animals , Aorta/metabolism , Aorta/pathology , Gene Knockdown Techniques , Humans , In Vitro Techniques , Lymphocyte Antigen 96/metabolism , Mice , Mice, Knockout , Muscle, Smooth, Vascular/pathology , Reactive Oxygen Species/metabolism , Vasoconstrictor Agents/toxicity
18.
Mol Ther ; 29(3): 1120-1137, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33130312

ABSTRACT

Emerging evidence reveals that autophagy plays crucial roles in cardiac hypertrophy. Long noncoding RNAs (lncRNAs) are novel transcripts that function as gene regulators. However, it is unclear whether lncRNAs regulate autophagy in cardiac hypertrophy. Here, we identified a novel transcript named lncRNA Gm15834, which was upregulated in the transverse aortic constriction (TAC) model in vivo and the angiotensin-II (Ang-II)-induced cardiac hypertrophy model in vitro and was regulated by nuclear factor kappa B (NF-κB). Importantly, forced expression of lncRNA Gm15834 enhanced autophagic activity of cardiomyocytes and promoted myocardial hypertrophy, whereas silencing of lncRNA Gm15834 attenuated autophagy-induced myocardial hypertrophy. Mechanistically, we found that lncRNA Gm15834 could function as an endogenous sponge RNA of microRNA (miR)-30b-3p, which was downregulated in cardiac hypertrophy. Inhibition of miR-30b-3p enhanced cardiomyocyte autophagic activity and aggravated myocardial hypertrophy, whereas overexpression of miR-30b-3p suppressed autophagy-induced myocardial hypertrophy by targeting the downstream autophagy factor of unc-51-like kinase 1 (ULK1). Moreover, inhibition of lncRNA Gm15834 by adeno-associated virus carrying short hairpin RNA (shRNA) suppressed cardiomyocyte autophagic activity, improved cardiac function, and mitigated cardiac hypertrophy. Taken together, our study identified a novel regulatory axis encompassing lncRNA Gm15834/miR-30b-3p/ULK1/autophagy in cardiac hypertrophy, which may provide a potential therapy target for cardiac hypertrophy.


Subject(s)
Autophagy-Related Protein-1 Homolog/metabolism , Autophagy , Cardiomegaly/therapy , Gene Expression Regulation , RNA, Long Noncoding/antagonists & inhibitors , Angiotensin II/toxicity , Animals , Autophagy-Related Protein-1 Homolog/genetics , Cardiomegaly/chemically induced , Cardiomegaly/genetics , Cardiomegaly/pathology , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NF-kappa B/genetics , NF-kappa B/metabolism , RNA, Long Noncoding/genetics , Signal Transduction , Vasoconstrictor Agents/toxicity
19.
J Dev Orig Health Dis ; 12(2): 309-318, 2021 04.
Article in English | MEDLINE | ID: mdl-32489168

ABSTRACT

Prenatal glucocorticoid overexposure has been shown to programme adult cardiovascular function in a range of species, but much less is known about the long-term effects of neonatal glucocorticoid overexposure. In horses, prenatal maturation of the hypothalamus-pituitary-adrenal axis and the normal prepartum surge in fetal cortisol occur late in gestation compared to other precocious species. Cortisol levels continue to rise in the hours after birth of full-term foals and increase further in the subsequent days in premature, dysmature and maladapted foals. Thus, this study examined the adult cardiovascular consequences of neonatal cortisol overexposure induced by adrenocorticotropic hormone administration to full-term male and female pony foals. After catheterisation at 2-3 years of age, basal arterial blood pressures (BP) and heart rate were measured together with the responses to phenylephrine (PE) and sodium nitroprusside (SNP). These data were used to assess cardiac baroreflex sensitivity. Neonatal cortisol overexposure reduced both the pressor and bradycardic responses to PE in the young adult males, but not females. It also enhanced the initial hypotensive response to SNP, slowed recovery of BP after infusion and reduced the gain of the cardiac baroreflex in the females, but not males. Basal diastolic pressure and cardiac baroreflex sensitivity also differed with sex, irrespective of neonatal treatment. The results show that there is a window of susceptibility for glucocorticoid programming during the immediate neonatal period that alters cardiovascular function in young adult horses in a sex-linked manner.


Subject(s)
Cardiovascular System/pathology , Nitroprusside/toxicity , Phenylephrine/toxicity , Animals , Animals, Newborn , Cardiovascular System/drug effects , Female , Horses , Male , Sex Factors , Vasoconstrictor Agents/toxicity , Vasodilator Agents/toxicity
20.
Aging (Albany NY) ; 13(1): 493-515, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33259334

ABSTRACT

Mitochondrial calcium uptake 1 (MICU1) is a pivotal molecule in maintaining mitochondrial homeostasis under stress conditions. However, it is unclear whether MICU1 attenuates mitochondrial stress in angiotensin II (Ang-II)-induced cardiac hypertrophy or if it has a role in the function of melatonin. Here, small-interfering RNAs against MICU1 or adenovirus-based plasmids encoding MICU1 were delivered into left ventricles of mice or incubated with neonatal murine ventricular myocytes (NMVMs) for 48 h. MICU1 expression was depressed in hypertrophic myocardia and MICU1 knockdown aggravated Ang-II-induced cardiac hypertrophy in vivo and in vitro. In contrast, MICU1 upregulation decreased cardiomyocyte susceptibility to hypertrophic stress. Ang-II administration, particularly in NMVMs with MICU1 knockdown, led to significantly increased reactive oxygen species (ROS) overload, altered mitochondrial morphology, and suppressed mitochondrial function, all of which were reversed by MICU1 supplementation. Moreover, peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α)/MICU1 expression in hypertrophic myocardia increased with melatonin. Melatonin ameliorated excessive ROS generation, promoted mitochondrial function, and attenuated cardiac hypertrophy in control but not MICU1 knockdown NMVMs or mice. Collectively, our results demonstrate that MICU1 attenuates Ang-II-induced cardiac hypertrophy by inhibiting mitochondria-derived oxidative stress. MICU1 activation may be the mechanism underlying melatonin-induced protection against myocardial hypertrophy.


Subject(s)
Antioxidants/pharmacology , Calcium-Binding Proteins/genetics , Cardiomegaly/genetics , Melatonin/pharmacology , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Oxidative Stress/genetics , Angiotensin II/toxicity , Animals , Calcium-Binding Proteins/drug effects , Calcium-Binding Proteins/metabolism , Cardiomegaly/chemically induced , Cardiomegaly/metabolism , Disease Models, Animal , Gene Knockdown Techniques , Heart/drug effects , In Vitro Techniques , Mice , Mitochondria/drug effects , Mitochondrial Membrane Transport Proteins/drug effects , Mitochondrial Membrane Transport Proteins/metabolism , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Reactive Oxygen Species/metabolism , Vasoconstrictor Agents/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...