Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
Sci Signal ; 17(848): eadk1822, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106321

ABSTRACT

Deposition of amyloid-ß (Aß) in the brain can impair neuronal function and contribute to cognitive decline in Alzheimer's disease (AD). Here, we found that dopamine and the dopamine precursor levodopa (also called l-DOPA) induced Aß degradation in the brain. Chemogenetic approaches in mice revealed that the activation of dopamine release from ventral tegmental area (VTA) neurons increased the abundance and activity of the Aß-degrading enzyme neprilysin and reduced the amount of Aß deposits in the prefrontal cortex in a neprilysin-dependent manner. Aged mice had less dopamine and neprilysin in the anterior cortex, a decrease that was accentuated in AD model mice. Treating AD model mice with levodopa reduced Aß deposition and improved cognitive function. These observations demonstrate that dopamine promotes brain region-specific, neprilysin-dependent degradation of Aß, suggesting that dopamine-associated strategies have the potential to treat this aspect of AD pathology.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Dopamine , Neprilysin , Ventral Tegmental Area , Neprilysin/metabolism , Neprilysin/genetics , Animals , Dopamine/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/drug effects , Levodopa/pharmacology , Brain/metabolism , Mice, Transgenic , Disease Models, Animal , Humans , Proteolysis/drug effects , Mice, Inbred C57BL , Prefrontal Cortex/metabolism , Male
2.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 402-408, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38953264

ABSTRACT

There are mutual neural projections between the ventral tegmental area (VTA) and the medial prefrontal cortex (mPFC),which form a circuit.Recent studies have shown that this circuit is vital in regulating arousal from sleep and general anesthesia.This paper introduces the anatomical structures of VTA and mPFC and the roles of various neurons and projection pathways in the regulation of arousal,aiming to provide new ideas for further research on the mechanism of arousal from sleep and general anesthesia.


Subject(s)
Arousal , Prefrontal Cortex , Ventral Tegmental Area , Prefrontal Cortex/physiology , Ventral Tegmental Area/physiology , Arousal/physiology , Humans , Animals , Neural Pathways/physiology
3.
Neuron ; 112(16): 2783-2798.e9, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-38959892

ABSTRACT

The lateral septum (LS) is composed of heterogeneous cell types that are important for various motivated behaviors. However, the transcriptional profiles, spatial arrangement, function, and connectivity of these cell types have not been systematically studied. Using single-nucleus RNA sequencing, we delineated diverse genetically defined cell types in the LS that play distinct roles in reward processing. Notably, we found that estrogen receptor 1 (Esr1)-expressing neurons in the ventral LS (LSEsr1) are key drivers of reward seeking via projections to the ventral tegmental area, and these neurons play an essential role in methamphetamine (METH) reward and METH-seeking behavior. Extended exposure to METH increases the excitability of LSEsr1 neurons by upregulating hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, thereby contributing to METH-induced locomotor sensitization. These insights not only elucidate the intricate molecular, circuit, and functional architecture of the septal region in reward processing but also reveal a neural pathway critical for METH reward and behavioral sensitization.


Subject(s)
Methamphetamine , Neurons , Reward , Septal Nuclei , Animals , Mice , Neurons/physiology , Neurons/metabolism , Methamphetamine/pharmacology , Septal Nuclei/physiology , Septal Nuclei/metabolism , Male , Ventral Tegmental Area/physiology , Ventral Tegmental Area/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Neural Pathways/physiology , Mice, Inbred C57BL , Drug-Seeking Behavior/physiology
4.
J Neurosci Res ; 102(7): e25369, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39037062

ABSTRACT

Cannabis consumption has increased from 1.5% to 2.5% in Canada between 2012 and 2019. Clinical studies have indicated effects of prenatal cannabis exposure on birth weight, substance use, and neurodevelopmental disorders, but are confounded by several difficult to control variables. Animal models allow for examination of the mechanism of cannabis-induced changes in neurodevelopment and behavior, while controlling dose and timing. Several animal models of prenatal cannabis exposure exist which provide varying levels of construct validity, control of dose, and exposure to maternal stress. Using a voluntary oral consumption model, mouse dams received 5 mg/kg Δ9-tetrahydrocannabinol (THC) whole cannabis oil in peanut butter daily from gestational day 1 (GD1) to postnatal day 10 (PD10). At GD1, GD18, PD1, PD10, and PD15, maternal plasma was collected; pup brains were collected from GD18 onward. Pup brains had higher levels of THC and cannabidiol at each time point, each of which persisted in maternal plasma and pup brains past the end of treatment (PD15). Male and female adolescent offspring were examined for changes to ventral tegmental area (VTA) dopamine neuron activity and cocaine-seeking behavior. Prenatal and early postnatal (GD1-PD10) cannabis-exposed male, but not female mice had decreased gamma-aminobutyric acid (GABAergic) input, depolarized resting membrane potential, and increased spontaneous firing of VTA dopamine neurons. Cannabis-exposed offspring showed faster decay of N-methyl-D-aspartate (NMDA) currents in both sexes. However, no differences in cocaine-seeking behavior were noted. These data characterize a voluntary prenatal cannabis exposure model and demonstrates VTA dopamine neuronal activity is disinhibited in offspring.


Subject(s)
Cocaine , Dopaminergic Neurons , Prenatal Exposure Delayed Effects , Ventral Tegmental Area , Animals , Female , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism , Pregnancy , Mice , Prenatal Exposure Delayed Effects/chemically induced , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Male , Cocaine/pharmacology , Cocaine/toxicity , Dronabinol/toxicity , Dronabinol/pharmacology , Mice, Inbred C57BL , Cannabis
5.
Neuropharmacology ; 258: 110095, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39084597

ABSTRACT

Stress is a major risk factor for several neuropsychiatric disorders in women, including postpartum depression. During the postpartum period, diminished ovarian hormone secretion increases susceptibility to developing depressive symptoms. Pleiotropic peptide hormones, like prolactin, are markedly released during lactation and suppress hypothalamic-pituitary-adrenal axis responses in women and acute stress-induced behavioral responses in female rodents. However, the effects of prolactin on chronic stress-induced maladaptive behaviors remain unclear. Here, we used chronic variable stress to induce maladaptive physiology in ovariectomized female rats and concurrently administered prolactin to assess its effects on several depression-relevant behavioral, endocrine, and neural characteristics. We found that chronic stress increased sucrose anhedonia and passive coping in saline-treated, but not prolactin-treated rats. Prolactin treatment did not alter stress-induced thigmotaxis, corticosterone (CORT) concentrations, hippocampal cell activation or survival. However, prolactin treatment reduced basal CORT concentrations and increased dopaminergic cells in the ventral tegmental area. Further, prolactin-treated rats had reduced microglial activation in the ventral hippocampus following chronic stress exposure. Together, these data suggest prolactin mitigates chronic stress-induced maladaptive behaviors and physiology in hypogonadal females. Moreover, these findings imply neuroendocrine-immune mechanisms by which peptide hormones confer stress resilience during periods of low ovarian hormone secretion.


Subject(s)
Corticosterone , Ovariectomy , Prolactin , Stress, Psychological , Animals , Female , Prolactin/pharmacology , Stress, Psychological/physiopathology , Stress, Psychological/psychology , Corticosterone/blood , Rats , Anhedonia/drug effects , Anhedonia/physiology , Rats, Sprague-Dawley , Adaptation, Psychological/drug effects , Adaptation, Psychological/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Behavior, Animal/drug effects , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism
6.
Transl Psychiatry ; 14(1): 293, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019862

ABSTRACT

Electronic cigarettes (e-cigs) use, especially among youngsters, has been on the rise in recent years. However, little is known about the long-term effects of the use of e-cigs on brain functional activity. We acquired the resting-state functional magnetic resonance imaging (rs-fMRI) data from 93 e-cigs users with nicotine dependence and 103 health controls (HC). The local synchronization was analyzed via the regional homogeneity (ReHo) method at voxel-wise level. The functional connectivity (FC) between the nucleus accumbens (NAcc), the ventral tegmental area (VTA), and the insula was calculated at ROI-wise level. The support vector machining classification model based on rs-fMRI measures was used to identify e-cigs users from HC. Compared with HC, nicotine-dependent e-cigs users showed increased ReHo in the right rolandic operculum and the right insula (p < 0.05, FDR corrected). At the ROI-wise level, abnormal FCs between the NAcc, the VTA, and the insula were found in e-cigs users compared to HC (p < 0.05, FDR corrected). Correlation analysis found a significant negative correlation between ReHo in the left NAcc and duration of e-cigs use (r = -0.273, p = 0.008, FDR corrected). The following support vector machine model based on significant results of rs-fMRI successfully differentiates chronic e-cigs users from HC with an accuracy of 73.47%, an AUC of 0.781, a sensitivity of 67.74%, and a specificity of 78.64%. Dysregulated spontaneous activity and FC of addiction-related regions were found in e-cigs users with nicotine dependence, which provides crucial insights into the prevention of its initial use and intervention for quitting e-cigs.


Subject(s)
Electronic Nicotine Delivery Systems , Magnetic Resonance Imaging , Nucleus Accumbens , Tobacco Use Disorder , Humans , Tobacco Use Disorder/physiopathology , Tobacco Use Disorder/diagnostic imaging , Male , Female , Adult , Nucleus Accumbens/diagnostic imaging , Nucleus Accumbens/physiopathology , Young Adult , Insular Cortex/diagnostic imaging , Insular Cortex/physiopathology , Ventral Tegmental Area/diagnostic imaging , Ventral Tegmental Area/physiopathology , Support Vector Machine , Case-Control Studies , Vaping/physiopathology
7.
Obesity (Silver Spring) ; 32(8): 1448-1452, 2024 08.
Article in English | MEDLINE | ID: mdl-38979671

ABSTRACT

OBJECTIVE: This study aimed to determine a dopaminergic circuit required for diet-induced obesity in mice. METHODS: We created conditional deletion mutants for tyrosine hydroxylase (TH) using neurotensin receptor 1 (Ntsr1) Cre and other Cre drivers and measured feeding and body weight on standard and high-fat diets. We then used an adeno-associated virus to selectively restore TH to the ventral tegmental area (VTA) Ntsr1 neurons in conditional knockout (cKO) mice. RESULTS: Mice with cKO of Th using Vglut2-Cre, Cck-Cre, Calb1-Cre, and Bdnf-Cre were susceptible to obesity on a high-fat diet; however, Ntsr1-Cre Th cKO mice resisted weight gain on a high-fat diet and did not experience an increase in day eating unlike their wild-type littermate controls. Restoration of TH to the VTA Ntsr1 neurons of the Ntsr1-Cre Th cKO mice using an adeno-associated virus resulted in an increase in weight gain and day eating on a high-fat diet. CONCLUSIONS: Ntsr1-Cre Th cKO mice failed to increase day eating on a high-fat diet, offering a possible explanation for their resistance to diet-induced obesity. These results implicate VTA Ntsr1 dopamine neurons as promoting out-of-phase feeding behavior on a high-fat diet that could be an important contributor to diet-induced obesity in humans.


Subject(s)
Diet, High-Fat , Dopamine , Mice, Knockout , Obesity , Receptors, Neurotensin , Tyrosine 3-Monooxygenase , Ventral Tegmental Area , Weight Gain , Animals , Receptors, Neurotensin/metabolism , Receptors, Neurotensin/genetics , Obesity/metabolism , Obesity/etiology , Mice , Ventral Tegmental Area/metabolism , Dopamine/metabolism , Tyrosine 3-Monooxygenase/metabolism , Male , Neurons/metabolism , Dopaminergic Neurons/metabolism , Mice, Inbred C57BL , Dependovirus/genetics , Body Weight
8.
Neuropharmacology ; 258: 110055, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38950692

ABSTRACT

Sleep disturbances and persistent pain conditions are public health challenges worldwide. Although it is well-known that sleep deficit increases pain sensitivity, the underlying mechanisms remain elusive. We have recently demonstrated the involvement of nucleus accumbens (NAc) and anterior cingulate cortex (ACC) in the pronociceptive effect of sleep restriction. In this study, we found that sleep restriction increases c-Fos expression in NAc and ACC, suggesting hyperactivation of these regions during prolonged wakefulness in male Wistar rats. Blocking adenosine A2A receptors in the NAc or GABAA receptors in the ventral tegmental area (VTA), dorsal raphe nucleus (DRN), or locus coeruleus (LC) effectively mitigated the pronociceptive effect of sleep restriction. In contrast, the blockade of GABAA receptors in each of these nuclei only transiently reduced carrageenan-induced hyperalgesia. Pharmacological activation of dopamine D2, serotonin 5-HT1A and noradrenaline alpha-2 receptors within the ACC also prevented the pronociceptive effect of sleep restriction. While pharmacological inhibition of these same monoaminergic receptors in the ACC restored the pronociceptive effect which had been prevented by the GABAergic disinhibition of the of the VTA, DRN or LC. Overall, these findings suggest that the pronociceptive effect of sleep restriction relies on increased adenosinergic activity on NAc, heightened GABAergic activity in VTA, DRN, and LC, and reduced inhibitory monoaminergic activity on ACC. These findings advance our understanding of the interplay between sleep and pain, shedding light on potential NAc-brainstem-ACC mechanisms that could mediate increased pain sensitivity under conditions of sleep impairment.


Subject(s)
Nucleus Accumbens , Rats, Wistar , Sleep Deprivation , Ventral Tegmental Area , Animals , Male , Sleep Deprivation/metabolism , Sleep Deprivation/physiopathology , Rats , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/drug effects , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Receptor, Adenosine A2A/metabolism , Hyperalgesia/metabolism , Dorsal Raphe Nucleus/metabolism , Dorsal Raphe Nucleus/drug effects , Gyrus Cinguli/metabolism , Gyrus Cinguli/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Brain Stem/metabolism , Brain Stem/drug effects , Locus Coeruleus/metabolism , Locus Coeruleus/drug effects , Carrageenan , Receptors, GABA-A/metabolism , Receptors, Dopamine D2/metabolism , Adenosine A2 Receptor Antagonists/pharmacology
9.
Nat Neurosci ; 27(8): 1574-1586, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38961229

ABSTRACT

The hypothesis that midbrain dopamine (DA) neurons broadcast a reward prediction error (RPE) is among the great successes of computational neuroscience. However, recent results contradict a core aspect of this theory: specifically that the neurons convey a scalar, homogeneous signal. While the predominant family of extensions to the RPE model replicates the classic model in multiple parallel circuits, we argue that these models are ill suited to explain reports of heterogeneity in task variable encoding across DA neurons. Instead, we introduce a complementary 'feature-specific RPE' model, positing that individual ventral tegmental area DA neurons report RPEs for different aspects of an animal's moment-to-moment situation. Further, we show how our framework can be extended to explain patterns of heterogeneity in action responses reported among substantia nigra pars compacta DA neurons. This theory reconciles new observations of DA heterogeneity with classic ideas about RPE coding while also providing a new perspective of how the brain performs reinforcement learning in high-dimensional environments.


Subject(s)
Dopaminergic Neurons , Models, Neurological , Reward , Ventral Tegmental Area , Dopaminergic Neurons/physiology , Animals , Ventral Tegmental Area/physiology , Dopamine/metabolism , Humans , Reinforcement, Psychology
10.
Nat Neurosci ; 27(8): 1565-1573, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38969756

ABSTRACT

In nature, both males and females engage in competitive aggressive interactions to resolve social conflicts, yet the behavioral principles guiding such interactions and their underlying neural mechanisms remain poorly understood. Through circuit manipulations in wild mice, we unveil oxytocin-expressing (OT+) neurons in the hypothalamic paraventricular nucleus (PVN) as a neural hub governing behavior in dyadic and intragroup social conflicts, influencing the degree of behavioral sexual dimorphism. We demonstrate that OT+ PVN neurons are essential and sufficient in promoting aggression and dominance hierarchies, predominantly in females. Furthermore, pharmacogenetic activation of these neurons induces a change in the 'personality' traits of the mice within groups, in a sex-dependent manner. Finally, we identify an innervation from these OT neurons to the ventral tegmental area that drives dyadic aggression, in a sex-specific manner. Our data suggest that competitive aggression in naturalistic settings is mediated by a sexually dimorphic OT network connected with reward-related circuitry.


Subject(s)
Aggression , Neurons , Oxytocin , Paraventricular Hypothalamic Nucleus , Sex Characteristics , Animals , Oxytocin/metabolism , Aggression/physiology , Female , Male , Mice , Paraventricular Hypothalamic Nucleus/physiology , Neurons/physiology , Social Behavior , Ventral Tegmental Area/physiology , Conflict, Psychological , Mice, Inbred C57BL
11.
Transl Psychiatry ; 14(1): 269, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956048

ABSTRACT

Addiction is a complex behavioral disorder characterized by compulsive drug-seeking and drug use despite harmful consequences. The prefrontal cortex (PFC) plays a crucial role in cocaine addiction, involving decision-making, impulse control, memory, and emotional regulation. The PFC interacts with the brain's reward system, including the ventral tegmental area (VTA) and nucleus accumbens (NAc). The PFC also projects to the lateral habenula (LHb), a brain region critical for encoding negative reward and regulating the reward system. In the current study, we examined the role of PFC-LHb projections in regulating cocaine reward-related behaviors. We found that optogenetic stimulation of the PFC-LHb circuit during cocaine conditioning abolished cocaine preference without causing aversion. In addition, increased c-fos expression in LHb neurons was observed in animals that received optic stimulation during cocaine conditioning, supporting the circuit's involvement in cocaine preference regulation. Molecular analysis in animals that received optic stimulation revealed that cocaine-induced alterations in the expression of GluA1 subunit of AMPA receptor was normalized to saline levels in a region-specific manner. Moreover, GluA1 serine phosphorylation on S845 and S831 were differentially altered in LHb and VTA but not in the PFC. Together these findings highlight the critical role of the PFC-LHb circuit in controlling cocaine reward-related behaviors and shed light on the underlying mechanisms. Understanding this circuit's function may provide valuable insights into addiction and contribute to developing targeted treatments for substance use disorders.


Subject(s)
Cocaine , Habenula , Neurons , Optogenetics , Prefrontal Cortex , Receptors, AMPA , Reward , Animals , Prefrontal Cortex/metabolism , Cocaine/pharmacology , Male , Habenula/metabolism , Neurons/metabolism , Receptors, AMPA/metabolism , Cocaine-Related Disorders/physiopathology , Cocaine-Related Disorders/metabolism , Neural Pathways , Rats , Proto-Oncogene Proteins c-fos/metabolism , Phosphorylation , Ventral Tegmental Area/metabolism , Behavior, Animal
12.
Transl Psychiatry ; 14(1): 277, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965230

ABSTRACT

The mechanisms contributing to alcohol use disorder (AUD) are complex and the orexigenic peptide ghrelin, which enhances alcohol reward, is implied as a crucial modulator. The major proportion of circulating ghrelin is however the non-octanoylated form of ghrelin, des-acyl ghrelin (DAG), whose role in reward processes is unknown. As recent studies show that DAG decreases food intake, we hypothesize that DAG attenuates alcohol-related responses in animal models. Acute and repeated DAG treatment dose-dependently decreased alcohol drinking in male and female rats. In these alcohol-consuming male rats, repeated DAG treatment causes higher levels of dopamine metabolites in the ventral tegmental area, an area central to reward processing. The role of DAG in reward processing is further supported as DAG prevents alcohol-induced locomotor stimulation, reward in the conditioned place preference paradigm, and dopamine release in the nucleus accumbens in male rodents. On the contrary, DAG does not alter the memory of alcohol reward or affect neurotransmission in the hippocampus, an area central to memory. Further, circulating DAG levels are positively correlated with alcohol drinking in female but not male rats. Studies were conducted in attempts to identify tentative targets of DAG, which currently are unknown. Data from these recombinant cell system revealed that DAG does not bind to either of the monoamine transporters, 5HT2A, CB1, or µ-opioid receptors. Collectively, our data show that DAG attenuates alcohol-related responses in rodents, an effect opposite to that of ghrelin, and contributes towards a deeper insight into behaviors regulated by the ghrelinergic signaling pathway.


Subject(s)
Alcohol Drinking , Dopamine , Ghrelin , Nucleus Accumbens , Reward , Ventral Tegmental Area , Animals , Ghrelin/pharmacology , Ghrelin/metabolism , Male , Rats , Female , Dopamine/metabolism , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/drug effects , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Ethanol/pharmacology , Ethanol/administration & dosage , Humans , Hippocampus/metabolism , Hippocampus/drug effects , Rats, Sprague-Dawley
13.
eNeuro ; 11(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38969500

ABSTRACT

Midbrain dopamine neurons receive convergent synaptic input from multiple brain areas, which perturbs rhythmic pacemaking to produce the complex firing patterns observed in vivo. This study investigated the impact of single and multiple inhibitory inputs on ventral tegmental area (VTA) dopamine neuron firing in mice of both sexes using novel experimental measurements and modeling. We first measured unitary inhibitory postsynaptic currents produced by single axons using both minimal electrical stimulation and minimal optical stimulation of rostromedial tegmental nucleus and ventral pallidum afferents. We next determined the phase resetting curve, the reversal potential for GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs), and the average interspike membrane potential trajectory during pacemaking. We combined these data in a phase oscillator model of a VTA dopamine neuron, simulating the effects of unitary inhibitory postsynaptic conductances (uIPSGs) on spike timing and rate. The effect of a uIPSG on spike timing was predicted to vary according to its timing within the interspike interval or phase. Simulations were performed to predict the pause duration resulting from the synchronous arrival of multiple uIPSGs and the changes in firing rate and regularity produced by asynchronous uIPSGs. The model data suggest that asynchronous inhibition is more effective than synchronous inhibition, because it tends to hold the neuron at membrane potentials well positive to the IPSC reversal potential. Our results indicate that small fluctuations in the inhibitory synaptic input arriving from the many afferents to each dopamine neuron are sufficient to produce highly variable firing patterns, including pauses that have been implicated in reinforcement.


Subject(s)
Action Potentials , Dopaminergic Neurons , Inhibitory Postsynaptic Potentials , Neural Inhibition , Ventral Tegmental Area , Animals , Ventral Tegmental Area/physiology , Dopaminergic Neurons/physiology , Male , Female , Inhibitory Postsynaptic Potentials/physiology , Neural Inhibition/physiology , Action Potentials/physiology , Models, Neurological , Mice, Inbred C57BL , Mice , Electric Stimulation
14.
J Neurosci ; 44(29)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38886059

ABSTRACT

Anxiety-related disorders respond to cognitive behavioral therapies, which involved the medial prefrontal cortex (mPFC). Previous studies have suggested that subregions of the mPFC have different and even opposite roles in regulating innate anxiety. However, the specific causal targets of their descending projections in modulating innate anxiety and stress-induced anxiety have yet to be fully elucidated. Here, we found that among the various downstream pathways of the prelimbic cortex (PL), a subregion of the mPFC, PL-mediodorsal thalamic nucleus (MD) projection, and PL-ventral tegmental area (VTA) projection exhibited antagonistic effects on anxiety-like behavior, while the PL-MD projection but not PL-VTA projection was necessary for the animal to guide anxiety-related behavior. In addition, MD-projecting PL neurons bidirectionally regulated remote but not recent fear memory retrieval. Notably, restraint stress induced high-anxiety state accompanied by strengthening the excitatory inputs onto MD-projecting PL neurons, and inhibiting PL-MD pathway rescued the stress-induced anxiety. Our findings reveal that the activity of PL-MD pathway may be an essential factor to maintain certain level of anxiety, and stress increased the excitability of this pathway, leading to inappropriate emotional expression, and suggests that targeting specific PL circuits may aid the development of therapies for the treatment of stress-related disorders.


Subject(s)
Anxiety , Neural Pathways , Prefrontal Cortex , Stress, Psychological , Animals , Anxiety/psychology , Anxiety/physiopathology , Male , Stress, Psychological/psychology , Stress, Psychological/physiopathology , Prefrontal Cortex/physiopathology , Neural Pathways/physiopathology , Neural Pathways/physiology , Mice , Fear/physiology , Fear/psychology , Mice, Inbred C57BL , Ventral Tegmental Area/physiopathology , Thalamus/physiopathology , Mediodorsal Thalamic Nucleus/physiology , Mediodorsal Thalamic Nucleus/physiopathology
15.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928178

ABSTRACT

Physiology and behavior are structured temporally to anticipate daily cycles of light and dark, ensuring fitness and survival. Neuromodulatory systems in the brain-including those involving serotonin and dopamine-exhibit daily oscillations in neural activity and help shape circadian rhythms. Disrupted neuromodulation can cause circadian abnormalities that are thought to underlie several neuropsychiatric disorders, including bipolar mania and schizophrenia, for which a mechanistic understanding is still lacking. Here, we show that genetically depleting serotonin in Tph2 knockout mice promotes manic-like behaviors and disrupts daily oscillations of the dopamine biosynthetic enzyme tyrosine hydroxylase (TH) in midbrain dopaminergic nuclei. Specifically, while TH mRNA and protein levels in the Substantia Nigra (SN) and Ventral Tegmental Area (VTA) of wild-type mice doubled between the light and dark phase, TH levels were high throughout the day in Tph2 knockout mice, suggesting a hyperdopaminergic state. Analysis of TH expression in striatal terminal fields also showed blunted rhythms. Additionally, we found low abundance and blunted rhythmicity of the neuropeptide cholecystokinin (Cck) in the VTA of knockout mice, a neuropeptide whose downregulation has been implicated in manic-like states in both rodents and humans. Altogether, our results point to a previously unappreciated serotonergic control of circadian dopamine signaling and propose serotonergic dysfunction as an upstream mechanism underlying dopaminergic deregulation and ultimately maladaptive behaviors.


Subject(s)
Circadian Rhythm , Dopamine , Mice, Knockout , Serotonin , Tryptophan Hydroxylase , Tyrosine 3-Monooxygenase , Ventral Tegmental Area , Animals , Serotonin/metabolism , Mice , Circadian Rhythm/physiology , Dopamine/metabolism , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/genetics , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/deficiency , Ventral Tegmental Area/metabolism , Cholecystokinin/metabolism , Cholecystokinin/genetics , Dopaminergic Neurons/metabolism , Male , Substantia Nigra/metabolism , Mice, Inbred C57BL , Bipolar Disorder/metabolism , Bipolar Disorder/genetics
16.
Behav Neurosci ; 138(3): 164-177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38934920

ABSTRACT

A growing body of literature indicates that mediated learning techniques have specific utility for tapping into reality testing in animal models of neuropsychiatric illness. In particular, recent work has shown that animal models that recapitulate various endophenotypes of schizophrenia are particularly vulnerable to impairments in reality testing when undergoing mediated learning. Multiple studies have indicated that these effects are dopamine receptor 2-dependent and correlated with aberrant insular cortex (IC) activity. However, until now, the connection between dopamine and the IC had not been investigated. Here, we utilized a novel intersectional approach to label mesencephalic dopamine cells that specifically project to the insular cortex in both wild-type controls and transgenic mice expressing the dominant-negative form of the Disrupted-in-Schizophrenia-1 (DISC-1) gene. Using these techniques, we identified a population of cells that project from the ventral tegmental area (VTA) to the IC. Afterward, we conducted multiple studies to test the necessity of this circuit in behaviors ranging from gustatory detection to the maintenance of effort and, finally, mediated performance. Our results indicate that perturbations of the DISC-1 genetic locus lead to a reduction in the number of cells in the VTA → IC circuit. Behaviorally, VTA → IC circuitry does not influence gustatory detection or motivation to acquire sucrose reward; however, inactivation of this circuit differentially suppresses Pavlovian approach behavior in wild-type and DISC-1 transgenic mice during mediated performance testing. Moreover, under these testing conditions, inactivation of this circuit predisposes wild-type (but not DISC-1) mice to display impaired reality testing. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Dopaminergic Neurons , Insular Cortex , Mice, Transgenic , Animals , Dopaminergic Neurons/physiology , Dopaminergic Neurons/metabolism , Mice , Insular Cortex/physiology , Male , Ventral Tegmental Area/physiology , Ventral Tegmental Area/metabolism , Mice, Inbred C57BL , Neural Pathways/physiology , Reward , Disease Models, Animal , Dopamine/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Mesencephalon/metabolism , Mesencephalon/physiology , Schizophrenia/physiopathology
17.
Nat Commun ; 15(1): 5353, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918403

ABSTRACT

Nociceptin/orphanin-FQ (N/OFQ) is a recently appreciated critical opioid peptide with key regulatory functions in several central behavioral processes including motivation, stress, feeding, and sleep. The functional relevance of N/OFQ action in the mammalian brain remains unclear due to a lack of high-resolution approaches to detect this neuropeptide with appropriate spatial and temporal resolution. Here we develop and characterize NOPLight, a genetically encoded sensor that sensitively reports changes in endogenous N/OFQ release. We characterized the affinity, pharmacological profile, spectral properties, kinetics, ligand selectivity, and potential interaction with intracellular signal transducers of NOPLight in vitro. Its functionality was established in acute brain slices by exogeneous N/OFQ application and chemogenetic induction of endogenous N/OFQ release from PNOC neurons. In vivo studies with fibre photometry enabled direct recording of NOPLight binding to exogenous N/OFQ receptor ligands, as well as detection of endogenous N/OFQ release within the paranigral ventral tegmental area (pnVTA) during natural behaviors and chemogenetic activation of PNOC neurons. In summary, we show here that NOPLight can be used to detect N/OFQ opioid peptide signal dynamics in tissue and freely behaving animals.


Subject(s)
Neurons , Nociceptin , Opioid Peptides , Receptors, Opioid , Animals , Opioid Peptides/metabolism , Receptors, Opioid/metabolism , Receptors, Opioid/genetics , Neurons/metabolism , Humans , Mice , Male , Ventral Tegmental Area/metabolism , Nociceptin Receptor , HEK293 Cells , Brain/metabolism , Mice, Inbred C57BL , Ligands , Biosensing Techniques/methods
18.
Elife ; 132024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865180

ABSTRACT

A social memory pathway connecting the ventral hippocampus, the lateral septum and the ventral tegmental area helps to regulate how mice react to unknown individuals.


Subject(s)
Social Behavior , Animals , Mice , Ventral Tegmental Area/physiology , Hippocampus/physiology , Memory/physiology
19.
Nat Commun ; 15(1): 4947, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858350

ABSTRACT

The potential brain mechanism underlying resilience to socially transferred allodynia remains unknown. Here, we utilize a well-established socially transferred allodynia paradigm to segregate male mice into pain-susceptible and pain-resilient subgroups. Brain screening results show that ventral tegmental area glutamatergic neurons are selectively activated in pain-resilient mice as compared to control and pain-susceptible mice. Chemogenetic manipulations demonstrate that activation and inhibition of ventral tegmental area glutamatergic neurons bi-directionally regulate resilience to socially transferred allodynia. Moreover, ventral tegmental area glutamatergic neurons that project specifically to the nucleus accumbens shell and lateral habenula regulate the development and maintenance of the pain-resilient phenotype, respectively. Together, we establish an approach to explore individual variations in pain response and identify ventral tegmental area glutamatergic neurons and related downstream circuits as critical targets for resilience to socially transferred allodynia and the development of conceptually innovative analgesics.


Subject(s)
Glutamic Acid , Hyperalgesia , Neurons , Nucleus Accumbens , Ventral Tegmental Area , Animals , Male , Hyperalgesia/physiopathology , Ventral Tegmental Area/physiopathology , Mice , Glutamic Acid/metabolism , Nucleus Accumbens/physiopathology , Neurons/metabolism , Mesencephalon , Mice, Inbred C57BL , Resilience, Psychological , Habenula , Disease Models, Animal
20.
Neuron ; 112(16): 2721-2731.e5, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-38901431

ABSTRACT

The ventral tegmental area (VTA) is a critical node in circuits governing motivated behavior and is home to diverse populations of neurons that release dopamine, gamma-aminobutyric acid (GABA), glutamate, or combinations of these neurotransmitters. The VTA receives inputs from many brain regions, but a comprehensive understanding of input-specific activation of VTA neuronal subpopulations is lacking. To address this, we combined optogenetic stimulation of select VTA inputs with single-nucleus RNA sequencing (snRNA-seq) and highly multiplexed in situ hybridization to identify distinct neuronal clusters and characterize their spatial distribution and activation patterns. Quantification of immediate-early gene (IEG) expression revealed that different inputs activated select VTA subpopulations, which demonstrated cell-type-specific transcriptional programs. Within dopaminergic subpopulations, IEG induction levels correlated with differential expression of ion channel genes. This new transcriptomics-guided circuit analysis reveals the diversity of VTA activation driven by distinct inputs and provides a resource for future analysis of VTA cell types.


Subject(s)
Genes, Immediate-Early , Optogenetics , Ventral Tegmental Area , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/cytology , Animals , Mice , Optogenetics/methods , Dopaminergic Neurons/metabolism , Male , Neurons/metabolism , Mice, Inbred C57BL , Sequence Analysis, RNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL