Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Genomics ; 11(1): 111, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30547786

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a major health burden in need for new medication. To identify potential drug targets a genomic study was performed in lipid-laden primary human hepatocyte (PHH) and human hepatoma cell cultures. METHODS: PHH, HuH7 and HepG2 hepatoma cell cultures were treated with lipids and/or TNFα. Intracellular lipid load was quantified with the ORO assay. The Affymetrix HG-U133+ array system was employed to perform transcriptome analysis. The lipid droplet (LD) growth and fusion was determined by fluorescence microscopy. LD associated proteins were imaged by confocal immunofluorescence microscopy and confirmed by Western immunoblotting. Bioinformatics defined perturbed metabolic pathways. RESULTS: Whole genome expression profiling identified 227, 1031 and 571 significant regulated genes. Likewise, the combined lipid and TNFα treatment of PHH, HuH7 and HepG2 cell cultures revealed 154, 1238 and 278 differentially expressed genes. Although genomic responses differed among in-vitro systems, commonalities were ascertained by filtering the data for LD associated gene regulations. Among others the LD-growth and fusion associated cell death inducing DFFA like effector C (CIDEC), perilipins (PLIN2, PLIN3), the synaptosome-associated-protein 23 and the vesicle associated membrane protein 3 were strongly up-regulated. Likewise, the PPAR targets pyruvate-dehydrogenase-kinase-4 and angiopoietin-like-4 were up-regulated as was hypoxia-inducible lipid droplet-associated (HILPDA), flotilin and FGF21. Their inhibition ameliorates triglyceride and cholesterol accumulation. TNFα treatment elicited strong induction of the chemokine CXCL8, the kinases MAP3K8, MAP4K4 and negative regulators of cytokine signaling, i.e. SOCS2&SOCS3. Live cell imaging of DsRED calreticulin plasmid transfected HuH7 cells permitted an assessment of LD growth and fusion and confocal immunofluorescence microscopy evidenced induced LD-associated PLIN2, CIDEC, HIF1α, HILPDA, JAK1, PDK4 and ROCK2 expression. Notwithstanding, CPT1A protein was repressed to protect mitochondria from lipid overload. Pharmacological inhibition of the GTPase-dynamin and the fatty acid transporter-2 reduced lipid uptake by 28.5 and 35%, respectively. Finally, a comparisons of in-vitro/NAFLD patient biopsy findings confirmed common gene regulations thus demonstrating clinical relevance. CONCLUSION: The genomics of fat-laden hepatocytes revealed LD-associated gene regulations and perturbed metabolic pathways. Immunofluorescence microscopy confirmed expression of coded proteins to provide a rationale for therapeutic intervention strategies. Collectively, the in-vitro system permits testing of drug candidates.


Subject(s)
Genomics/methods , Lipid Droplets/chemistry , Non-alcoholic Fatty Liver Disease/genetics , Carnitine O-Palmitoyltransferase/metabolism , Cells, Cultured , Endoplasmic Reticulum Stress/drug effects , Gene Expression Regulation/drug effects , Hep G2 Cells , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Microscopy, Fluorescence , Mitochondria/drug effects , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Oleic Acid/pharmacology , Oxidoreductases Acting on Sulfur Group Donors/chemistry , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Palmitic Acid/pharmacology , Perilipin-2/metabolism , Qb-SNARE Proteins/chemistry , Qb-SNARE Proteins/metabolism , Qc-SNARE Proteins/chemistry , Qc-SNARE Proteins/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Vesicle-Associated Membrane Protein 3/chemistry , Vesicle-Associated Membrane Protein 3/metabolism
2.
Diabetes Obes Metab ; 18(4): 355-65, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26662378

ABSTRACT

AIM: To determine the impact of a functional human islet clock on insulin secretion and gene transcription. METHODS: Efficient circadian clock disruption was achieved in human pancreatic islet cells by small interfering RNA-mediated knockdown of CLOCK. Human islet secretory function was assessed in the presence or absence of a functional circadian clock by stimulated insulin secretion assays, and by continuous around-the-clock monitoring of basal insulin secretion. Large-scale transcription analysis was accomplished by RNA sequencing, followed by quantitative RT-PCR analysis of selected targets. RESULTS: Circadian clock disruption resulted in a significant decrease in both acute and chronic glucose-stimulated insulin secretion. Moreover, basal insulin secretion by human islet cells synchronized in vitro exhibited a circadian pattern, which was perturbed upon clock disruption. RNA sequencing analysis suggested alterations in 352 transcript levels upon circadian clock disruption. Among them, key regulators of the insulin secretion pathway (GNAQ, ATP1A1, ATP5G2, KCNJ11) and transcripts required for granule maturation and release (VAMP3, STX6, SLC30A8) were affected. CONCLUSIONS: Using our newly developed experimental approach for efficient clock disruption in human pancreatic islet cells, we show for the first time that a functional ß-cell clock is required for proper basal and stimulated insulin secretion. Moreover, clock disruption has a profound impact on the human islet transcriptome, in particular, on the genes involved in insulin secretion.


Subject(s)
CLOCK Proteins/metabolism , Circadian Clocks , Hyperglycemia/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , CLOCK Proteins/antagonists & inhibitors , CLOCK Proteins/genetics , Cation Transport Proteins/antagonists & inhibitors , Cation Transport Proteins/chemistry , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Cells, Cultured , Circadian Clocks/drug effects , Colforsin/pharmacology , GTP-Binding Protein alpha Subunits, Gq-G11/antagonists & inhibitors , GTP-Binding Protein alpha Subunits, Gq-G11/chemistry , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Gene Expression Profiling , Gene Expression Regulation/drug effects , Genes, Reporter/drug effects , Humans , Insulin Secretion , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/drug effects , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/chemistry , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Qa-SNARE Proteins/antagonists & inhibitors , Qa-SNARE Proteins/chemistry , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , RNA Interference , RNA, Small Interfering , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/chemistry , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Vesicle-Associated Membrane Protein 3/antagonists & inhibitors , Vesicle-Associated Membrane Protein 3/chemistry , Vesicle-Associated Membrane Protein 3/genetics , Vesicle-Associated Membrane Protein 3/metabolism , Zinc Transporter 8
3.
Cell Rep ; 7(3): 883-97, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24746815

ABSTRACT

Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN). Here, using Chinese hamster ovary (CHO) Niemann-Pick type C1 (NPC1) mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6) accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs). This increases Stx6/VAMP3 interaction and interferes with the recycling of αVß3 and α5ß1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion.


Subject(s)
Cholesterol/metabolism , Endosomes/metabolism , Qa-SNARE Proteins/metabolism , trans-Golgi Network/metabolism , Animals , CHO Cells , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Movement , Cricetinae , Cricetulus , Humans , Integrin alpha5beta1/metabolism , Intracellular Signaling Peptides and Proteins , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Niemann-Pick C1 Protein , Protein Binding , Protein Transport , Qa-SNARE Proteins/chemistry , Receptors, Vitronectin/metabolism , SNARE Proteins/metabolism , Vesicle-Associated Membrane Protein 3/chemistry , Vesicle-Associated Membrane Protein 3/metabolism , rab GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...