Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 108(1): 13-22, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21562028

ABSTRACT

BACKGROUND AND AIMS: In seeds with deep simple epicotyl morphophysiological dormancy, warm and cold stratification are required to break dormancy of the radicle and shoot, respectively. Although the shoot remains inside the seed all winter, little is known about its growth and morphological development prior to emergence in spring. The aims of the present study were to determine the temperature requirements for radicle and shoot emergence in seeds of Viburnum betulifolium and V. parvifolium and to monitor growth of the epicotyl, plumule and cotyledons in root-emerged seeds. METHODS: Fresh and pre-treated seeds of V. betulifolium and V. parvifolium were incubated under various temperature regimes and monitored for radicle and shoot emergence. Growth of the epicotyl and cotyledons at different stages was observed with dissecting and scanning electron microscopes. KEY RESULTS: The optimum temperature for radicle emergence of seeds of both species, either kept continuously at a single regime or exposed to a sequence of regimes, was 20/10 °C. GA(3) had no effect on radicle emergence. Cold stratification (5 °C) was required for shoot emergence. The shoot apical meristem in fresh seeds did not form a bulge until the embryo had grown to the critical length for radicle emergence. After radicle emergence, the epicotyl--plumule and cotyledons grew slowly at 5 and 20/10 °C, and the first pair of true leaves was initiated. However, the shoot emerged only from seeds that received cold stratification. CONCLUSIONS: Seeds of V. betulifolium and V. parvifolium have deep simple epicotyl morphophysiological dormancy, C(1b)B (root)-C(3) (epicotyl). Warm stratification was required to break the first part of physiological dormancy (PD), thereby allowing embryo growth and subsequently radicle emergence. Although cold stratification was not required for differentiation of the epicotyl--plumule, it was required to break the second part of PD, thereby allowing the shoot to emerge in spring.


Subject(s)
Plant Dormancy/physiology , Plant Shoots/growth & development , Seeds/physiology , Viburnum/physiology , Plant Leaves/growth & development , Seasons , Seeds/growth & development , Temperature , Time Factors , Viburnum/embryology , Viburnum/growth & development
2.
Ann Bot ; 95(2): 323-30, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15546926

ABSTRACT

BACKGROUND AND AIMS: The shrub Viburnum tinus is widely distributed in mattoral vegetation of the Mediterranean basin. The purpose of the present study was to classify the seed dormancy type and examine the requirements for embryo growth, root protrusion and shoot emergence. METHODS: Overwintered fruits were collected in western Spain in April 2001 and prepared in three ways: entire pericarp was removed, exocarp and mesocarp were removed or fruits were left intact. Fruits treated in these three ways were subjected to artificial annual temperature cycles or to constant temperature regimes for 1.5 years. KEY RESULTS: Removal of exocarp and mesocarp was necessary for embryo growth and germination. High temperature favoured dormancy alleviation and embryo growth, intermediate to low temperatures favoured root protrusion, and intermediate temperature shoot emergence. There was substantial germination at constant temperature regimes, indicating an overlap between temperature intervals suitable for the different stages of embryo and seedling development. Functionally, V. tinus has the same root and shoot emergence pattern that is described for other Viburnum species considered to have epicotyl dormancy. However, the requirement for high and low temperatures for radicle protrusion and epicotyl emergence, respectively, was missing in V. tinus; these characters are the foundation for the epicotyl dormancy classification. CONCLUSIONS: It is concluded that V. tinus does not have epicotyl dormancy. Instead, there is a combination of a weak morphophysiological dormancy and a slow germination process, where different temperatures during an annual cycle favour different development stages. The present study suggests that the first complete seedlings would emerge in the field 1.5 years after fruit maturation in October, i.e. seed dispersal during winter, embryo growth during the first summer, root protrusion and establishment during the second autumn and winter, and cotyledon emergence during the second spring.


Subject(s)
Germination/physiology , Seeds/growth & development , Viburnum/physiology , Plant Roots/growth & development , Plant Shoots/growth & development , Seedlings/growth & development , Time Factors , Viburnum/embryology , Viburnum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...