Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 239
Filter
1.
Sci Total Environ ; 927: 171976, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38547984

ABSTRACT

The associated benefits and potential environmental risks of nanopesticides on plant and soil health, particularly in comparison with traditional pesticides, have not been systematically elucidated. Herein, we investigated the impacts of the as-synthesized nano-acetamiprid (Nano-Ace, 20 nm) at low (10 mg/L), medium (50 mg/L), high (100 mg/L) doses and the corresponding high commercial acetamiprid (Ace, 100 mg/L) on the physiological and metabolic response of faba bean (Vicia faba L.) plants, as well as on rhizosphere bacterial communities and functions over short-, medium- and long-term exposures. Overall, Nano-Ace exposure contributed to basic metabolic pathways (e.g., flavonoids, amino acids, TCA cycle intermediate, etc.) in faba bean roots across the whole exposure period. Moreover, Nano-Ace exposure enriched rhizosphere beneficial bacteria (e.g., Streptomyces (420.7%), Pseudomonas (33.8%), Flavobacterium (23.3%)) and suppressed pathogenic bacteria (e.g., Acidovorax (44.5%)). Additionally, Nano-Ace exposure showed a trend of low promotion and high inhibition of soil enzyme activities (e.g., invertase, urease, arylsulfatase, alkaline phosphatase) involved in soil C, N, S, and P cycling, while the inhibition was generally weaker than that of conventional Ace. Altogether, this study indicated that the redox-responsive nano-acetamiprid pesticide possessed high safety for host plants and soil health.


Subject(s)
Neonicotinoids , Plant Roots , Soil Microbiology , Soil Pollutants , Vicia faba , Vicia faba/drug effects , Soil Pollutants/toxicity , Plant Roots/drug effects , Soil/chemistry , Rhizosphere , Pesticides/toxicity , Nanoparticles/toxicity
2.
Sci Rep ; 12(1): 158, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34996977

ABSTRACT

Weeds represent one of the major constraints for faba bean crop. The identification of molecular markers associated with key genes imparting tolerance to herbicides can facilitate and fasten the efficient and effective development of herbicide tolerant cultivars. We phenotyped 140 faba bean genotypes in three open field experiments at two locations in Lebanon and Morocco against three herbicide treatments (T1 metribuzin 250 g ai/ha; T2 imazethapyr 75 g ai/ha; T3 untreated) and one in greenhouse where T1 and T3 were applied. The same set was genotyped using genotyping by sequencing (GBS) which yield 10,794 high quality single nucleotide polymorphisms (SNPs). ADMIXTURE software was used to infer the population structure which revealed two ancestral subpopulations. To identify SNPs associated with phenological and yield related traits under herbicide treatments, Single-trait (ST) and Multi-trait (MT) Genome Wide Association Studies (GWAS) were fitted using GEMMA software, showing 10 and 14 highly significant associations, respectively. Genomic sequences containing herbicide tolerance associated SNPs were aligned against the NCBI database using BLASTX tool using default parameters to annotate candidate genes underlying the causal variants. SNPs from acidic endochitinase, LRR receptor-like serine/threonine-protein kinase RCH1, probable serine/threonine-protein kinase NAK, malate dehydrogenase, photosystem I core protein PsaA and MYB-related protein P-like were significantly associated with herbicide tolerance traits.


Subject(s)
Genes, Plant , Genome, Plant , Herbicide Resistance/genetics , Herbicides/pharmacology , Nicotinic Acids/pharmacology , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Triazines/pharmacology , Vicia faba/drug effects , Vicia faba/genetics , Databases, Genetic , Genome-Wide Association Study , Genotype , Phenotype , Quantitative Trait Loci , Vicia faba/growth & development
3.
Sci Rep ; 11(1): 23746, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34887458

ABSTRACT

Cell death (CD) may be induced by endogenous or exogenous factors and contributes to all the steps of plant development. This paper presents results related to the mechanism of CD regulation induced by kinetin (Kin) in the root cortex of Vicia faba ssp. minor. To explain the process, 6-(2-hydroxy-3-methylbenzylamino)purine (PI-55), adenine (Ad), 5'-amine-5'-deoxyadenosine (Ado) and N-(2-chloro-4-piridylo)-N'-phenylurea (CPPU) were applied to (i) block cytokinin receptors (CKs) and inhibit the activities of enzymes of CK metabolism, i.e., (ii) phosphoribosyltransferase, (iii) kinases, and (iv) oxidases, respectively. Moreover, ethylene glycol-bis(ß-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), lanthanum chloride (LaCl3), ruthenium red (RRed) and cyclosporine A (CS-A) were applied to (i) chelate extracellular calcium ions (Ca2+) as well as blocks of (ii) plasma-, (iii) endoplasmic reticulum- (ER) membrane Ca2+ ion channels and (iv) mitochondria- (MIT) Ca2+ ions release by permeability transition por (PTP), respectively. The measured physiological effectiveness of these factors was the number of living and dying cortex cells estimated with orange acridine (OA) and ethidium bromide (EB), the amounts of cytosolic Ca2+ ions with chlortetracycline (CTC) staining and the intensity of chromatin and Ca2+-CTC complex fluorescence, respectively. Moreover, the role of sorafenib, an inhibitor of RAF kinase, on the vitality of cortex cells and ethylene levels as well as the activities of RAF-like kinase and MEK2 with Syntide-2 and Mek2 as substrates were studied. The results clarified the previously presented suggestion that Kin is converted to appropriate ribotides (5'-monophosphate ribonucleotides), which cooperate with the ethylene and Ca2+ ion signalling pathways to transduce the signal of kinetin-programmed cell death (Kin-PCD). Based on the present and previously published results related to Kin-PCD, the crosstalk between ethylene and MAP kinase signalling, as well as inhibitors of CK receptors and enzymes of their metabolism, is proposed.


Subject(s)
Kinetin/metabolism , Plant Roots/physiology , Vicia faba/physiology , Biomarkers , Calcium/metabolism , Cell Death/drug effects , Cell Survival/drug effects , Kinetin/pharmacology , Plant Roots/cytology , Signal Transduction , Vicia faba/cytology , Vicia faba/drug effects
4.
Cells ; 10(12)2021 12 03.
Article in English | MEDLINE | ID: mdl-34943918

ABSTRACT

Experiments on Vicia faba root meristem cells exposed to 150 µM cadmium chloride (CdCl2) were undertaken to analyse epigenetic changes, mainly with respect to DNA replication stress. Histone modifications examined by means of immunofluorescence labeling included: (1) acetylation of histone H3 on lysine 56 (H3K56Ac), involved in transcription, S phase, and response to DNA damage during DNA biosynthesis; (2) dimethylation of histone H3 on lysine 79 (H3K79Me2), correlated with the replication initiation; (3) phosphorylation of histone H3 on threonine 45 (H3T45Ph), engaged in DNA synthesis and apoptosis. Moreover, immunostaining using specific antibodies against 5-MetC-modified DNA was used to determine the level of DNA methylation. A significant decrease in the level of H3K79Me2, noted in all phases of the CdCl2-treated interphase cell nuclei, was found to correspond with: (1) an increase in the mean number of intranuclear foci of H3K56Ac histones (observed mainly in S-phase), (2) a plethora of nuclear and nucleolar labeling patterns (combined with a general decrease in H3T45Ph), and (3) a decrease in DNA methylation. All these changes correlate well with a general viewpoint that DNA modifications and post-translational histone modifications play an important role in gene expression and plant development under cadmium-induced stress conditions.


Subject(s)
Cadmium/toxicity , DNA Replication/genetics , Epigenesis, Genetic , Meristem/cytology , Meristem/genetics , Stress, Physiological/genetics , Vicia faba/genetics , 5-Methylcytosine/metabolism , Acetylation/drug effects , Cell Cycle/drug effects , Cell Cycle/genetics , Chromatin/metabolism , DNA Replication/drug effects , DNA, Plant/metabolism , Epigenesis, Genetic/drug effects , Histones/metabolism , Lysine/metabolism , Meristem/drug effects , Methylation/drug effects , Phosphorylation/drug effects , Stress, Physiological/drug effects , Vicia faba/cytology , Vicia faba/drug effects
5.
Pak J Biol Sci ; 24(5): 618-628, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34486337

ABSTRACT

<b>Background and Objective:</b> The bean seed beetle <i>Bruchidius incarnatus</i> is a major insect pest for stored grains that causes great economic damage. The investigated research aimed to evaluate the efficacy of two species of algae: <i>Fucus vesiculosus </i>and <i>Spirulina platensis </i>as natural alternative pesticides against <i>Bruchidius incarnatus</i> stages. <b>Materials and Methods:</b> The efficacy of two tested algae with amounts of 0.25, 0.35 and 0.50 g were evaluated on <i>B. incarnatus</i> stages. The activities of some biochemical components were assayed to determine the algae effect. Seed germination and growth parameters were studied. <b>Results:</b> <i>F. vesiculosus </i>caused higher potent on larval and adult stages than<i> S. platensis</i>. Antioxidant enzymes Glutathione Peroxidase (GPX) and Superoxide Dismutases (SOD) in treated adults have reached the highest level when compared with control. Some biochemical components in adults were affected also by algae treatment. Treatment with two algaecaused stimulation of seedling and germination development. On the other hand, both types of algae occurred an expansion in the mitotic index and low levels of abnormalities. <b>Conclusion:</b> Both types of algae are considered a promising Bio-insecticide in controlling stored grain pests and it may be considered Bio-eco-friendly in pest management.


Subject(s)
Fucus/metabolism , Spirulina/metabolism , Vicia faba/drug effects , Biological Control Agents/pharmacology , Biological Control Agents/standards
6.
Cells ; 10(7)2021 06 29.
Article in English | MEDLINE | ID: mdl-34209882

ABSTRACT

GABA (gamma-aminobutyric acid) and melatonin are endogenous compounds that enhance plant responses to abiotic stresses. The response of Vicia faba to different stressors (salinity (NaCl), poly ethylene glycol (PEG), and sulfur dioxide (SO2)) was studied after priming with sole application of GABA and melatonin or their co-application (GABA + melatonin). Both melatonin and GABA and their co-application increased leaf area, number of flowers, shoot dry and fresh weight, and total biomass. Plants treated with GABA, melatonin, and GABA + melatonin developed larger stomata with wider aperture compared to the stomata of control plants. The functionality of the photosynthetic system was improved in primed plants. To investigate the photosynthetic functionality in details, the leaf samples of primed plants were exposed to different stressors, including SO2, PEG, and NaCl. The maximum quantum yield of photosystem II (PS II) was higher in the leaf samples of primed plants, while the non-photochemical quenching (NPQ) of primed plants was decreased when leaf samples were exposed to the stressors. Correlation analysis showed the association of initial PIabs with post-stress FV/FM and NPQ. Stressors attenuated the association of initial PIabs with both FV/FM and NPQ, while priming plants with GABA, melatonin, or GABA + melatonin minimized the effect of stressors by attenuating these correlations. In conclusion, priming plants with both GABA and melatonin improved growth and photosynthetic performance of Vicia faba and mitigated the effects of abiotic stressors on the photosynthetic performance.


Subject(s)
Melatonin/pharmacology , Photosynthesis/drug effects , Stress, Physiological/drug effects , gamma-Aminobutyric Acid/pharmacology , Biomass , Chlorophyll/metabolism , Flowers/drug effects , Flowers/physiology , Osmotic Pressure/drug effects , Plant Roots/drug effects , Plant Roots/physiology , Plant Shoots/drug effects , Plant Shoots/physiology , Plant Stomata/drug effects , Plant Stomata/physiology , Sodium Chloride/pharmacology , Sulfur Dioxide/toxicity , Vicia faba/drug effects , Vicia faba/growth & development , Vicia faba/physiology
7.
Sci Rep ; 11(1): 14484, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34262071

ABSTRACT

The agricultural use of silica (SiO2) nanoparticles (NPs) has the potential to control insect pests while the safety and tritrophic effects on plants and beneficial natural enemies remains unknown. Here, we evaluate the effects of silica NPs on insect pests with different feeding niches, natural enemies, and a plant. Silica NPs were applied at different concentrations (75-425 mg/L) on field-cultivated faba bean and soybean for two growing seasons. The faba bean pests, the cowpea aphid Aphis craccivora and the American serpentine leafminer Liriomyza trifolii, and the soybean pest, the cotton leafworm Spodoptera littoralis, were monitored along with their associated predators. Additional laboratory experiments were performed to test the effects of silica NPs on the growth of faba bean seedlings and to determine whether the rove beetle Paederus fuscipes is attracted to cotton leafworm-infested soybean treated with silica NPs. In the field experiments, silica NPs reduced the populations of all three insect pests and their associated predators, including rove beetles, as the concentration of silica NPs increased. In soybean fields, however, the total number of predators initially increased after applying the lowest concentration. An olfactometer-based choice test found that rove beetles were more likely to move towards an herbivore-infested plant treated with silica NPs than to a water-treated control, suggesting that silica NPs enhance the attraction of natural enemies via herbivore-induced plant volatiles. In the laboratory, while silica NPs inhibited the development of faba bean roots at 400 mg/L, they did not affect germination percentage, germination time, shoot length, or vigor index compared to the control.


Subject(s)
Insecta/drug effects , Insecta/physiology , Insecticides/pharmacology , Nanoparticles , Animals , Aphids/drug effects , Aphids/physiology , Coleoptera/drug effects , Coleoptera/physiology , Dose-Response Relationship, Drug , Egypt , Germination/drug effects , Insecticides/chemistry , Nanoparticles/chemistry , Population Density , Predatory Behavior/drug effects , Silicon Dioxide , Glycine max , Spodoptera/drug effects , Spodoptera/physiology , Vicia faba/drug effects , Vicia faba/growth & development
8.
Int J Mol Sci ; 22(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925461

ABSTRACT

The survival of cells depends on their ability to replicate correctly genetic material. Cells exposed to replication stress can experience a number of problems that may lead to deregulated proliferation, the development of cancer, and/or programmed cell death. In this article, we have induced prolonged replication arrest via hydroxyurea (HU) treatment and also premature chromosome condensation (PCC) by co-treatment with HU and caffeine (CF) in the root meristem cells of Vicia faba. We have analyzed the changes in the activities of retinoblastoma-like protein (RbS807/811ph). Results obtained from the immunocytochemical detection of RbS807/811ph allowed us to distinguish five unique activity profiles of pRb. We have also performed detailed 3D modeling using Blender 2.9.1., based on the original data and some final conclusions. 3D models helped us to visualize better the events occurring within the nuclei and acted as a high-resolution aid for presenting the results. We have found that, despite the decrease in pRb activity, its activity profiles were mostly intact and clearly recognizable, with some local alterations that may correspond to the increased demand in transcriptional activity. Our findings suggest that Vicia faba's ability to withstand harsh environments may come from its well-developed and highly effective response to replication stress.


Subject(s)
Caffeine/pharmacology , Chromatin/drug effects , Hydroxyurea/pharmacology , Plant Proteins/metabolism , Vicia faba/drug effects , Chromatin/chemistry , Chromatin/metabolism , Chromosomes, Plant/drug effects , Chromosomes, Plant/metabolism , Cyclin D1/metabolism , DNA Replication/drug effects , Histones/metabolism , Image Processing, Computer-Assisted , Interphase , Plant Cells , Retinoblastoma Protein/metabolism , Vicia faba/cytology , Vicia faba/genetics
9.
Environ Geochem Health ; 43(6): 2423-2431, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32926286

ABSTRACT

Although nickel (Ni) has direct relationship with nitrogen metabolism of plants, the high dose of Ni fertilizer in broad bean plants may affect the nitrogen use efficiency (NUE), impair plant development and even cause Ni pollution in soil. Thus, a pot experiment was set up to study the effect of urea fertilization on N-uptake, root and shoots' Ni content as well as growth of broad bean plants under different levels of Ni, using 15N tracer technique. 15N-labeled urea (5% 15N atom excess) was added at three doses (0, 30 and 60 mg N kg-1 soil). Nickel sulfate (NiSO4) was also applied at three levels (0, 50 and 100 mg Ni kg-1 soil). The experiment was laid out with or without acetic acid in randomized complete block design in three replicates. Treatment with the addition of 60 mg N + 50 mg Ni showed the highest values in dry weights of root and shoots, N-uptake by shoots, nitrogen derived from fertilizer (Ndff %) and NUE % by shoots in both with or without acetic acid solution. Higher rate of Ni addition can decrease shoot and root biomass by inhibiting the ability of the plant to uptake the nitrogen efficiently. However, addition of acetic acid solution induced the improvement of NUE % and Ndff % by shoot and root of broad bean plants. This study provides insight into how to improve plant yield without damaging the soil health and will be helpful to create a better world with sustainable agriculture.


Subject(s)
Agriculture/methods , Fertilizers , Urea/pharmacology , Vicia faba/drug effects , Vicia faba/growth & development , Acetic Acid/pharmacology , Biomass , Nickel/pharmacokinetics , Nickel/pharmacology , Nitrogen/analysis , Nitrogen/pharmacokinetics , Nitrogen Isotopes/analysis , Plant Roots/drug effects , Plant Roots/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development
10.
Ecotoxicol Environ Saf ; 209: 111817, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33383339

ABSTRACT

Plants as sessile organisms have developed some unique strategies to withstand environmental stress and adaptive response (AR) is one of them. In the present study Cadmium (Cd)-induced AR was evaluated to ameliorate the genotoxicity of a known chemical mutagen ethyl methanesulphonate (EMS) based on cytotoxicity, genotoxicity and oxidative stress in two model plant systems Allium cepa L. and Vicia faba L. Priming the plants with cadmium chloride (CdCl2, 25 and 50 µM) reduced the genotoxicity of EMS (0.25 mM). Cd-induced AR was evident by the magnitude of adaptive response (MAR) values calculated for cytotoxicity, genotoxicity and biochemical parameters. In addition the involvement of some major metabolic pathways and epigenetic modifications in AR was investigated. Metabolic blockers of protein kinase cascades, DNA repair, oxidative stress and de novo translation interfered with the adaptive response implying their role in AR whereas, inhibitors involved in post-replication repair and autophagy were ineffective implicating that they probably have no role in the AR studied. Moreover to find the role of DNA methylation in AR, methylation-sensitive comet assay was carried out. Simultaneously 5-methyl- 2'-deoxycytidine (5mdC) levels were quantified by HPLC (high performance liquid chromatography). AR was eliminated in cells treated with a demethylating agent, 5-aza- 2'deoxycytidine (AZA). Results implied a contribution of DNA hypermethylation. To the best of our knowledge this is a first report correlating DNA methylation to Cd-induced adaptive response in plants undergoing genotoxic stress.


Subject(s)
Cadmium/toxicity , DNA Damage/physiology , Soil Pollutants/toxicity , Cadmium Chloride/toxicity , Comet Assay , DNA Methylation , DNA Repair , Ethyl Methanesulfonate/toxicity , Mutagens/toxicity , Onions/drug effects , Onions/physiology , Oxidative Stress , Plant Roots/drug effects , Vicia faba/drug effects , Vicia faba/physiology
11.
Sci Rep ; 10(1): 15776, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32978408

ABSTRACT

Root growth responds to local differences in N-form and concentration. This is known for artificial systems and assumed to be valid in soil. The purpose of this study is to challenge this assumption for soil mesocosms locally supplied with urea with and without nitrification inhibitor. Soil column experiments with Vicia faba ('Fuego') and Hordeum vulgare ('Marthe') were performed to investigate soil solution chemistry and root growth response of these two species with contrasting root architectures to the different N-supply simultaneously. Root growth was analysed over time and separately for the fertiliser layer and the areas above and below with X-ray CT (via region growing) and WinRHIZO. Additionally, NO3- and NH4+ in soil and soil solution were analysed. In Vicia faba, no pronounced differences were observed, although CT analysis indicated different root soil exploration for high NH4+. In Hordeum vulgare, high NO3- inhibited lateral root growth while high NH4+ stimulated the formation of first order laterals. The growth response to locally distributed N-forms in soil is species specific and less pronounced than in artificial systems. The combination of soil solution studies and non-invasive imaging of root growth can substantially improve the mechanistic understanding of root responses to different N-forms in soil.


Subject(s)
Fertilizers , Hordeum/growth & development , Nitrogen/pharmacology , Plant Roots/drug effects , Plant Roots/growth & development , Soil/chemistry , Vicia faba/growth & development , Environment, Controlled , Hordeum/drug effects , Vicia faba/drug effects
12.
Ecotoxicology ; 29(7): 1003-1016, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32617728

ABSTRACT

With respect to reducing the pressure on freshwater resources, treated wastewater (TWW) irrigation represents a sustainable alternative in agriculture. Due to their low quality and variable composition, TWW could entail harmful consequences for living organisms in terrestrial ecosystems. This study aims to evaluate how earthworm (Eisenia andrei) can modulate oxidative stress in bean plants (Vicia faba) that are irrigated over a course of 60 days with two doses of TWW (50 and 100%) in addition to a control condition (0%) irrigated with distilled water. This is achieved by measuring glutathione-S-transferase (GST) activity and malondialdehyde accumulation (MDA) in plants. Furthermore, catalase (CAT), GST, MDA, and acetylcholinesterase (AChE) activities of the earthworms are also assessed. Our results show that growth and physiological parameters are modified when applying TWW irrigation. Moreover, oxidative stress apprehended by GST activity and MDA accumulation is exacerbated in V. faba plants after exposure to increased TWW doses. Similarly, TWW irrigation enhances oxidative stress parameters in earthworms with a crucial decrease in AChE activity. In addition, the presence of earthworms increases growth and physiological parameters; it also results in a significant reduction in GST activity and MDA rate in V. faba plants. Our results provide new insights into the impact of TWW irrigation on soil organisms and the importance of earthworms in the reduction of oxidative stress in plants.


Subject(s)
Agricultural Irrigation , Oligochaeta/physiology , Oxidative Stress , Vicia faba/drug effects , Wastewater/analysis , Animals , Vicia faba/physiology
13.
Ecotoxicol Environ Saf ; 197: 110620, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32311615

ABSTRACT

The aim of this study was to evaluate the ecotoxic effect of high concentration cesium (Cs) exposure on plant root growth and its toxicological mechanism. The radicle of broad bean (Vicia faba) was selected as experimental material. The cytotoxic and genotoxic effects of plants exposed to different Cs levels (0.19-1.5 mM) for 48 h were evaluated using scanning electron microscopy (SEM), X-ray fluorescence (XRF) analysis, single-cell gel electrophoresis (SCGE) and random amplified polymorphic DNA (RAPD) assays. The results showed that radicle elongation decreased clearly after 48 h of exposure treatment with different concentrations of Cs solution. The root cell structure was obviously damaged in the Cs treatment groups (0.19-1.5 mM). At a Cs concentration of 1.5 mM, the percentages of viable non-apoptotic cells, viable apoptotic cells, non-viable apoptotic cells, and non-viable cells were 40.09%, 20.67%, 28.73%, and 10.52%, respectively. SCGE showed DNA damage in radicle cells 48 h after Cs exposure. Compared with the control group, the percentage of tail DNA in Cs exposed group (0.38-1.5 mM) increased by 0.56-1.12 times (P < 0.05). RAPD results showed that the genomic stability of V. faba radicles decreased by 4.44%-15.56%. This study confirmed that high concentration Cs exposure had cytotoxicity and genotoxicity effects on plants.


Subject(s)
Cesium/toxicity , DNA Damage , Vicia faba/drug effects , Apoptosis , Cytotoxins/toxicity , Electrophoresis , Genomic Instability/drug effects , Plant Roots/drug effects , Random Amplified Polymorphic DNA Technique , Single-Cell Analysis , Vicia faba/genetics
14.
Ecotoxicol Environ Saf ; 190: 110152, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31927357

ABSTRACT

Nano-titanium dioxide (nTiO2) has been reported to improve tolerance of plants against different environmental stresses by modulating various physiological and biochemical processes. Nitric oxide (NO) has been shown to act as an important stress signaling molecule during plant responses to abiotic stresses. The present work was planned to investigate the involvement of endogenous NO in nTiO2-induced activation of defense system of fava bean (Vicia faba L.) plants under water-deficit stress (WDS) conditions. Water-suffered plants showed increased concentration of hydrogen peroxide (H2O2) and superoxide (O2-) content coupled with increased electrolyte leakage and lipid peroxidation which adversely affected nitrate reductase (NR) activity, chlorophyll content and growth of the plants. However, application of 15 mg L-1 nTiO2 to stressed plants significantly induced NR activity and synthesis of NO which elevated enzymatic and non-enzymatic defense system of the stressed plants and suppressed the generation of H2O2 and O2- content, leakage of electrolytes, and lipid peroxidation. Application of nTiO2, in association with NO, also enhanced the accumulation of osmolytes (proline and glycine betaine) that assisted the stressed plants in osmotic adjustment as witnessed by improved hydration level of the plants. Involvement of NO in nTiO2-induced activation of defense system was confirmed with NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide] which caused recurrence of WDS.


Subject(s)
Dehydration , Nanoparticles/toxicity , Nitric Oxide/metabolism , Stress, Physiological , Titanium/toxicity , Vicia faba/drug effects , Chlorophyll/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation , Superoxides/metabolism , Vicia faba/metabolism
15.
J Hazard Mater ; 386: 121437, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31899027

ABSTRACT

Uranium (U) is a nonessential element that is readily adsorbed and retained in plant roots, causing root damage plants, rather than being translocated to other parts of the plant. The phytotoxicity mechanism of U is poorly understood. In this study, Vicia faba, a model plant for toxicological research, was selected as experimental material to investigate the phytotoxicity mechanism of U. In this study, the effects of U on the growth and development, methonome, transcriptome and mineral nutrient metabolism of V. faba were studied under different U treatments (0-25 µM) by integrating metabolomics, transcriptomic, and mineral nutrient metabolism analysis techniques. The results showed that U accumulation in roots and aboveground parts reached 164.34-927.90 µg/pot, and 0.028-0.119 µg/pot, respectively. U was mainly accumulated in the cell wall of roots, which damaged the root microstructure and inhibited root growth and development. In terms of mineral nutrient metabolism, U treatment (0-25 µM) led to changes in mineral metabolic profiles of seedlings. In total, 612 different metabolites were identified in nontargeted metabolomics, including 309 significantly upregulated metabolites and 303 significantly downregulated metabolites. Using RNA-seq, 4974 differentially expressed genes (DEGs) were identified under the high-concentration U treatment (25 µM), including 1654 genes significantly upregulated genes and 3320 genes significantly downregulated genes. Metabolic pathway analysis showed that a high concentration of U led to an imbalance of mineral nutrient metabolism in plants and changes in the metabolism and transcriptome pathway of plants, including alterations in the function of plasmodesmata and auxin signal transduction pathway. The latter finding may potentially explain the toxic effect of U on plant roots.


Subject(s)
Metabolomics , Minerals/metabolism , Transcriptome , Uranium/toxicity , Vicia faba/drug effects , Cell Wall/metabolism , Plant Roots/metabolism , Signal Transduction , Vicia faba/genetics , Vicia faba/metabolism
16.
Chemosphere ; 241: 125063, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31610463

ABSTRACT

The present experiment was designed to evaluate physico-chemical characteristics and phyto-genotoxicity of arsenic (As) contaminated soil collected from different sites of Lakhimpur, Uttar Pradesh (UP), India by employing Vicia faba L. The analyses included various biochemical as well as cyto-genotoxicity assays. The results showed that soil pH was slightly acidic to neutral in nature. The bulk density (1.18-1.23 gcm-3), particle density (2.51-2.59 gcm-3) and porosity (44-53%) varied in different places. The level of available nutrients, nitrogen, phosphorus and potassium was found to vary as 124-165 mgkg-1, 173-186 mgkg-1 and 48-98 mgkg-1, respectively. The maximum As levels were found in soil of Fulvareya (27.13 mgkg-1) and Atareya (24.12 mgkg-1), the level of As in water samples of these sites were 0.19 mgl-1and 0.21 mgl-1, respectively. Phytotoxicity of the As present in soils was evident through significant increases in stress metabolites, hydrogen peroxide (H2O2), malondialdehyde (MDA) and carbonyl groups in root and shoot of V. faba. Cyto-genotoxic effects were also seen through reduced mitotic index (MI) and increased mitotic depression (MD), relative abnormality rate (RAR) as well as other chromosomal abnormalities along with micronuclei in root meristematic cells of V. faba. The phytotoxicity and cyto-genotoxicity assessment suggests the harmful soil properties that might affect biota.


Subject(s)
Arsenic/toxicity , Environmental Monitoring , Soil Pollutants/toxicity , Arsenic/analysis , Chromosome Aberrations , DNA Damage , Environmental Pollution/analysis , Hydrogen Peroxide/metabolism , India , Meristem/drug effects , Micronucleus Tests/methods , Mitotic Index , Plant Roots/metabolism , Soil/chemistry , Soil Pollutants/analysis , Vicia faba/drug effects , Vicia faba/genetics
17.
Sci Total Environ ; 701: 134816, 2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31704404

ABSTRACT

Nanotechnology is an emerging field in science and engineering, which presents significant impacts on the economy, society and the environment. The nanomaterials' (NMs) production, use, and disposal is inevitably leading to their release into the environment where there are uncertainties about its fate, behaviour, and toxicity. Recent works have demonstrated that NMs can penetrate, translocate, and accumulate in plants. However, studies about the effects of the NMs on plants are still limited because most investigations are carried out in the initial stage of plant development. The present study aimed to evaluate and characterize the photochemical efficiency of photosystem II (PSII) of broad bean (Vicia faba) leaves when subjected to silver nanoparticles (AgNPs) with diameters of 20, 51, and 73 nm as well as to micrometer-size Ag particles (AgBulk). The AgNPs were characterized by transmission electron microscopy and dynamic light scattering. The analyses were performed by injecting the leaves with 100 mg L-1 aqueous solution of Ag and measuring the chlorophyll fluorescence imaging, gas exchange, thermal imaging, and reactive oxygen species (ROS) production. In addition, silver ion (Ag+) release from Ag particles was determined by dialysis. The results revealed that AgNPs induce a decrease in the photochemical efficiency of photosystem II (PSII) and an increase in the non-photochemical quenching. The data also revealed that AgNPs affected the stomatal conductance (gs) and CO2 assimilation. Further, AgNPs induced an overproduction of ROS in Vicia faba leaves. Finally, all observed effects were particle diameter-dependent, increasing with the reduction of AgNPs diameter and revealing that AgBulk caused only a small or no changes on plants. In summary, the results point out that AgNPs may negatively affect the photosynthesis process when accumulated in the leaves, and that the NPs themselves were mainly responsible since negligible Ag+ release was detected.


Subject(s)
Metal Nanoparticles/toxicity , Plant Leaves/drug effects , Silver/toxicity , Vicia faba/drug effects , Photosynthesis/drug effects , Plant Leaves/physiology , Vicia faba/physiology
18.
Ecotoxicology ; 29(1): 65-74, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31786708

ABSTRACT

To overcome the drawbacks of the Vicia faba root tip micronucleus test in soil using the solution extract method, we conducted a potting experiment by direct soil exposure. Cadmium was spiked into 3 typical soils (brown soil, red soil, and black soil) to simulate environmental concentrations (0.625, 1.25, 2.5, 5, and 10 mg kg-1). Multiple Vicia faba tissues (primary root tips, secondary root tips, and leaf tips) were sampled, and mitotic index (MI), chromosome aberration frequency (CA), and micronucleus frequency (MN) were used as endpoints after a seedling period of 5 days. The results showed a response between Cd concentrations and multiple sampling tissues of Vicia faba, and the secondary root tips responded to Cd stress the most, followed by primary root tips and leaf tips. Soil physicochemical properties (e.g., pH, total phosphorus, total organic carbon, etc.) influenced the genotoxicity of Cd, and pH was the dominant factor, which resulted in the genetic toxicity response of Cd in soils in the order: red soil > brown soil > black soil. The lowest observable effect concentration (LOEC) of Cd was 1.25 mg kg-1 for both brown soil and red soil and 2.5 mg kg-1 for black soil. In view of this, we suggested that soil properties should be considered in evaluating genotoxicity risk of Cd in soil, especially with soil pH range, and the secondary root tips should be taken as suitable test tissues in the MN test due to its more sensible response feature to Cd stress in soil.


Subject(s)
Cadmium/toxicity , Micronucleus Tests/methods , Soil Pollutants/toxicity , Vicia faba/physiology , Chromosome Aberrations , DNA Damage , Vicia faba/drug effects
19.
Chemosphere ; 240: 124919, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31726585

ABSTRACT

Ionic liquids (ILs) are regarded as green solvents and are frequently used in the chemical industry. However, ILs may impact plant growth if they are present in the soil environment. To compare toxicity of ILs with different anions in soil, three imidazolium-based ionic liquids (1-hexyl-3-methylimidazolium bromide, 1-hexyl-3-methylimidazolium nitrate, 1-hexyl-3-methylimidazolium tetrafluoroborate) were used to assess impact on Vicia faba. Following 10 d of exposure to these three ILs from 0 to 2500 mg kg-1, shoot length, root length and dry weight of Vicia faba were determined. Pot trials revealed that ILs inhibited Vicia faba growth and according to EC50 values, [C6mim]BF4 was the most toxic one. In addition, physiological indicators of Vicia faba were determined following 10 d of exposure at selected IL concentrations (0, 1, 10, 100 and 500 mg kg-1). ILs led to the generation of reactive oxygen species and then caused oxidative damage, including lipid peroxidation, protein damage and DNA damage, which triggered an increase in antioxidant content and enzyme activity. The experimental results indicated that oxidative stress may be the primary underlying toxic mechanism for Vicia faba. Furthermore, based on the data of physiological experiment, integrated biomarker response (IBR) was calculated to compare the toxicity of the three ILs and toxic order was: [C6mim]NO3<[C6mim]Br<[C6mim]BF4.


Subject(s)
Ionic Liquids/toxicity , Vicia faba/drug effects , Anions/chemistry , Antioxidants/metabolism , Biomarkers/metabolism , Borates/toxicity , Bromides , DNA Damage , Imidazoles/toxicity , Lipid Peroxidation , Nitrates/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Seedlings/metabolism , Soil/chemistry , Soil Pollutants/metabolism , Solvents/metabolism , Toxicity Tests , Vicia faba/growth & development
20.
Ecotoxicol Environ Saf ; 185: 109693, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31550565

ABSTRACT

The objective of this study was to investigate chemical, biological and eco-toxicological parameters of a compost produced through the co-composting of dewatered primary sludge (DPS) and date palm waste to evaluate in which extent it can exploited as a bio-fertilizer. DPS and date palm waste were co-composted in aerobic conditions for 210 days. Physico-chemical parameters were evaluated during composting (total organic carbon, total nitrogen, pH, available forms of phosphorus). Furthermore, heavy metals (Cd, Cu, Cr, Pb, Ni, Zn) and antibiotics (fluoroquinolones, macrolides and tetracyclines) content were analyzed in the DPS. To evaluate the genotoxicity of substrates, Vicia faba micronucleus test was carried out. Single and combined toxicities of a mixture of antibiotics (ciprofloxacin, enroflxacin, nalidixic acid, roxithromycin and sulfapyridin) and chromium (Cr2 (SO4)3 and K2Cr2O7) were examined. Although the final compost product showed a significant decrease of the genotoxicity, almost 50% of the micronucleus frequency still remained, which could be explained by the persistence of several recalcitrant compounds such as chromium and some antibiotics. Overall, the presence of antibiotics and chromium showed that some specific combination of contaminants represent an ecological risk for soil health and ecosystems even at environmentally negligible concentrations.


Subject(s)
Anti-Bacterial Agents/toxicity , Chromium/toxicity , Composting , Mutagens/toxicity , Sewage/chemistry , Soil Pollutants/toxicity , Vicia faba/drug effects , Ecosystem , Fertilizers/analysis , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests , Soil/chemistry , Vicia faba/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...