Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Arq. Inst. Biol ; 90: e00282021, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1552080

ABSTRACT

The black aphid Aphis craccivora (Koch, 1854) stands out between the bugs considered cowpea pests. The objective of this study was to evaluate the effects of silicon application on the resistance induction of cowpea plants to the black aphid A. craccivora. The experiment was conducted in the Entomology Laboratory of the Phytosanitary sector of the Centro de Ciências Agrárias at the Universidade Federal do Piauí. The effects of the application of silicon on biological aspects were evaluated using a completely randomized design, with four treatments and 40 repetitions, being: silicon in soil (T1), silicon in soil + leaf (T2), silicone leaf (T3), and control (T4). The following biological variables were evaluated: generation period, reproductive period, fecundity, and daily average of nymphs per female. The silicon and lignin contents were also evaluated in the plants. The silicic acid was applied in a 1% solution around the stem of the plants (soil), 15 days after emergence, by diluting 2 g of the product in 200 mL of water. However, the leaf application was carried out with sprayer five days after application in soil. The non-preference of A. craccivora on bean was also evaluated. The evaluations were performed after 24, 48 and 72 hours of infestation by counting nymphs at 24, 48 and 72 hours and adults at each leaf session. The application of silicon promotes the reduction of the production of nymphs, interfering in the biological aspects of A. craccivora, and has potential to be used in a cowpea pest management program in cowpea.


Subject(s)
Aphids , Pesticides/analysis , Silicon/administration & dosage , Pest Control/methods , Vigna/parasitology , Plant Defense Against Herbivory
2.
Plant Cell Rep ; 40(12): 2287-2302, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34387737

ABSTRACT

KEY MESSAGE: This study establishes possibility of combinatorial silencing of more than one functional gene for their efficacy against root-knot nematode, M. incognita. Root-knot nematodes (RKN) of the genus Meloidogyne are the key important plant parasitic nematodes (PPNs) in agricultural and horticultural crops worldwide. Among RKNs, M. incognita is the most notorious that demand exploration of novel strategies for their management. Due to its sustainable and target-specific nature, RNA interference (RNAi) has gained unprecedented importance to combat RKNs. However, based on the available genomic information and interaction studies, it can be presumed that RKNs are dynamic and not dependent on single genes for accomplishing a particular function. Therefore, it becomes extremely important to consider silencing of more than one gene to establish any synergistic or additive effect on nematode parasitism. In this direction, we have combined three effectors specific to subventral gland cells of M. incognita, Mi-msp1, Mi-msp16, Mi-msp20 as fusion cassettes-1 and two FMRFamide-like peptides, Mi-flp14, Mi-flp18, and Mi-msp20 as fusion cassettes-2 to establish their possible utility for M. incognita management. In vitro RNAi assay in tomato and adzuki bean using these two fusion gene negatively altered nematode behavior in terms of reduced attraction, invasion, development, and reproduction. Subsequently, Nicotiana tabacum plants were transformed with these two fusion gene hairpin RNA-expressing vectors (hpRNA), and characterized via PCR, qRT-PCR, and Southern blot hybridization. Production of siRNAs specific to Mi-flp18 and Mi-msp1 was also confirmed by Northern hybridization. Further, transgenic events expressing single copy insertions of hpRNA constructs of fusion 1 and fusion-2 conferred up to 85% reduction in M. incognita multiplication. Besides, expression quantification revealed a significant reduction in mRNA abundance of target genes (up to 1.8-fold) in M. incognita females extracted from transgenic plants, and provided additional evidence for successful gene silencing.


Subject(s)
Helminth Proteins/genetics , Host-Parasite Interactions/genetics , Nicotiana/genetics , RNA Interference , Tylenchoidea/genetics , Animals , Female , Gene Silencing , Solanum lycopersicum/genetics , Solanum lycopersicum/parasitology , Plants, Genetically Modified/genetics , RNA, Small Interfering/genetics , Recombinant Fusion Proteins/genetics , Reproducibility of Results , Nicotiana/parasitology , Tylenchoidea/pathogenicity , Vigna/genetics , Vigna/parasitology
3.
Theor Appl Genet ; 134(9): 2749-2766, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34117909

ABSTRACT

KEY MESSAGE: Polygenic genome-wide association mapping identified two regions of the cowpea genome associated with different components of resistance to its major post-harvest pest, the seed beetle Callosobruchus maculatus. Cowpea (Vigna unguiculata) is an important grain and fodder crop in arid and semi-arid regions of Africa, Asia, and South America, where the cowpea seed beetle, Callosobruchus maculatus, is a serious post-harvest pest. Development of cultivars resistant to C. maculatus population growth in storage could increase grain yield and quality and reduce reliance on insecticides. Here, we use a MAGIC (multi-parent, advanced-generation intercross) population of cowpea consisting of 305 recombinant inbred lines (RILs) to identify genetic variants associated with resistance to seed beetles. Because inferences regarding the genetic basis of resistance may depend on the source of the pest or the assay protocol, we used two divergent geographic populations of C. maculatus and two complementary assays to measure several aspects of resistance. Using polygenic genome-wide association mapping models, we found that the cowpea RILs harbor substantial additive-genetic variation for most resistance measures. Variation in several components of resistance, including larval development time and survival, was largely explained by one or several linked loci on chromosome 5. A second region on chromosome 8 explained increased seed resistance via the induction of early-exiting larvae. Neither of these regions contained genes previously associated with resistance to insects that infest grain legumes. We found some evidence of gene-gene interactions affecting resistance, but epistasis did not contribute substantially to resistance variation in this mapping population. The combination of mostly high heritabilities and a relatively consistent and simple genetic architecture increases the feasibility of breeding for enhanced resistance to C. maculatus.


Subject(s)
Chromosomes, Plant/genetics , Coleoptera/physiology , Disease Resistance/immunology , Genetic Variation , Plant Diseases/immunology , Plant Proteins/metabolism , Vigna/genetics , Animals , Chromosome Mapping/methods , Disease Resistance/genetics , Gene Expression Regulation, Plant , Genome-Wide Association Study , Plant Diseases/genetics , Plant Diseases/parasitology , Plant Proteins/genetics , Vigna/growth & development , Vigna/parasitology
4.
BMC Plant Biol ; 21(1): 38, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33430784

ABSTRACT

BACKGROUND: Black gram [Vigna mungo (L)] seeds are a rich source of digestible protein and dietary fibre, both for human and animal consumption. However, the quality and quantity of the Vigna seeds are severely affected by bruchid beetles during storage. Therefore, analyses of the expression of the bruchid induced transcript dynamics in black gram pods would be helpful to understand the underlying defense mechanism against bruchid oviposition. RESULTS: We used the RNAseq approach to survey the changes in transcript profile in the developing seeds of a moderately resistant cultivar IC-8219 against bruchid oviposition using a susceptible cultivar T-9 as a control. A total of 96,084,600 and 99,532,488 clean reads were generated from eight (4 each) samples of IC-8219 and T-9 cultivar, respectively. Based on the BLASTX search against the NR database, 32,584 CDSs were generated of which 31,817 CDSs were significantly similar to Vigna radiata, a close relative of Vigna mungo. The IC-8219 cultivar had 630 significantly differentially expressed genes (DEGs) of which 304 and 326 genes up and down-regulated, respectively. However, in the T-9 cultivar, only 168 DEGs were identified of which 142 and 26 genes up and down-regulated, respectively. The expression analyses of 10 DEGs by qPCR confirmed the accuracy of the RNA-Seq data. Gene Ontology and KEGG pathway analyses helped us to better understand the role of these DEGs in oviposition mediated defense response of black gram. In both the cultivars, the most significant transcriptomic changes in response to the oviposition were related to the induction of defense response genes, transcription factors, secondary metabolites, enzyme inhibitors, and signal transduction pathways. It appears that the bruchid ovipositioning mediated defense response in black gram is induced by SA signaling pathways and defense genes such as defensin, genes for secondary metabolites, and enzyme inhibitors could be potential candidates for resistance to bruchids. CONCLUSION: We generated a transcript profile of immature black gram pods upon bruchid ovipositioning by de novo assembly and studied the underlying defense mechanism of a moderately resistant cultivar.


Subject(s)
Coleoptera , Disease Resistance/genetics , Host-Parasite Interactions , Oviposition , Plant Diseases/genetics , Vigna/genetics , Vigna/parasitology , Animals , Gene Expression Profiling , Gene Expression Regulation, Plant , Quantitative Trait Loci
5.
Exp Parasitol ; 220: 108045, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33220261

ABSTRACT

Root-knot disease, caused by Meloidogyne spp., alters histology as well as physiology of the roots thus influencing metabolism of vegetative and reproductive parts leading to huge losses in crop productivity. The experimental plant, Vigna unguiculata L. (cowpea of Fabaceae family) var. Gomti is an economically important pulse crop plant. An experiment was conducted to evaluate the effects of different concentrations (0, 25, 50 or 100 ppm) and various modes of applications (root dip, soil drench or foliar spray) of MgO nanoparticles on cowpea infected with M. incognita. The MgO nanoparticles were synthesized chemically and characterized by transmission and scanning electron microscopy (TEM, SEM), UV-Vis spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The scanning electron microscopy images of second stage juveniles of M. incognita treated with MgO nanoparticles (50 and 100 ppm) exhibited indentations, roughness and distortions in the cuticular surface, in comparison to the control untreated juveniles. MgO nanoparticles, in varying concentrations (50, 100 and 200 ppm), were dispensed into the plants by root dip, soil drench and foliar spray methods and their efficacy was assessed in terms of morphological characteristics, yield parameters and biochemical attributes of M. incognita infected plants. In planta trials revealed that 100 ppm dose of MgO nanoparticles, as root dip application, demonstrated reduced nematode fecundity, decreased number and smaller size of galls; enhanced plant growth, increased chlorophyll, carotenoid, seed protein, and root and shoot nitrogen contents. From these findings it could be inferred that MgO nanoparticles played twin roles, first as a nematicidal agent and the other as growth promotion inducer.


Subject(s)
Magnesium Oxide/administration & dosage , Nanoparticles/administration & dosage , Plant Diseases/parasitology , Tylenchoidea/drug effects , Vigna/parasitology , Aerosols , Animals , Magnesium Oxide/pharmacology , Microscopy, Electron, Scanning , Nanoparticles/therapeutic use , Nanoparticles/ultrastructure , Photoelectron Spectroscopy , Plant Diseases/prevention & control , Plant Leaves/drug effects , Plant Roots/drug effects , Plant Roots/parasitology , Plant Roots/physiology , Soil/parasitology , Spectroscopy, Fourier Transform Infrared , Tylenchoidea/ultrastructure , Vigna/growth & development , Vigna/physiology , X-Ray Diffraction
6.
Sci Rep ; 10(1): 4108, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32139771

ABSTRACT

Susceptibility to root-knot nematodes (Meloidogyne spp.) is one of the major factors limiting mungbean production in South and South-East Asia. Host-pest-environment interaction in mungbean and root-knot nematode (M. incognita) was investigated in multi-location field evaluation using 38 promising mungbean genotypes extracted from initial evaluation of 250 genotypes under sick plots considering second stage freshly hatched juvenile as inoculants. The extent of environmental and genotype-by-environment interactions (GGE) was assessed to comprehend the dynamism of resistance and identification of durable resistant mungbean genotypes. Among environmental factors, nematode activity was highly influenced by rainfall and minimum temperature. The GGE biplot and multiple comparison tests detected a higher proportion of genotype × environment (GE) interaction followed by genotype and environment on number of nematode galls, gall index and reproduction factor. The first two principal components (PCs) explained 64.33% and 66.99% of the total variation of the environment-centered gall scoring and reproduction factor data, respectively. The high GE variation indicated the presence of non-cross over interactions which justify the necessities of multi-location testing. Detection of non-redundant testing locations would expedite optimum resource utilization in future. The GGE biplot analysis identified genotypes such as PM-10-12, IPM-410-3 and NVL-641 as the outperforming and desirable genotypes with durable resistance against M. incognita which can be exploited in mungbean breeding programmes globally. On the contrary, the highest gall scoring and reproduction factor were recorded in genotype IPM-9901-8. Computation of confidence interval (CI) at 95% level through bootstrapping increased precision of GGE biplot towards genotype recommendation. Furthermore, total phenol content, ascorbic acid, phenlylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO) activities were also higher in identified resistant genotypes and this information would be useful for devising mungbean breeding strategies in future for resistance against root-knot nematodes.


Subject(s)
Gene-Environment Interaction , Plant Diseases/parasitology , Tylenchoidea , Vigna/parasitology , Animals , Disease Resistance , Genotype , Plant Diseases/genetics , Vigna/genetics , Vigna/immunology
7.
Am Nat ; 195(2): 231-246, 2020 02.
Article in English | MEDLINE | ID: mdl-32017632

ABSTRACT

Spreading populations are subject to evolutionary processes acting on dispersal and reproduction that can increase invasion speed and variability. It is typically assumed that dispersal and demography traits evolve independently, but abundant evidence points to correlations between them that may be positive or negative and genetic, maternal, or environmental. We sought to understand how demography-dispersal correlations modify the eco-evolutionary dynamics of range expansion. We first explored this question with the beetle Callosobruchus maculatus, a laboratory model in which evolutionary acceleration of invasion has been demonstrated. We then built a simulation model to explore the role of trait correlations in this system and more generally. We found that positive correlations amplify the positive influence of evolution on speed and variability while negative correlations (such as we found empirically) constrain that influence. Strong negative genetic correlations can even cause evolution to decelerate invasion. Genetic and nongenetic (maternal and environmental) correlations had similar effects on some measures of invasion but different effects on others. Model results enabled us to retrospectively explain invasion dynamics and trait evolution in C. maculatus and may similarly aid the interpretation of other field and laboratory studies. Nonindependence of demography and dispersal is an important consideration for understanding and predicting outcomes of range expansion.


Subject(s)
Animal Distribution , Coleoptera/physiology , Population Dynamics , Animals , Biological Evolution , Coleoptera/genetics , Computer Simulation , Female , Male , Phenotype , Reproduction , Vigna/parasitology
8.
Mol Genet Genomics ; 295(2): 275-286, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31705195

ABSTRACT

Two bruchid species, azuki bean weevil (Callosobruchus chinensis L.) and cowpea weevil (Callosobruchus maculatus F.), are the most important insect pests of mungbean [Vigna radiata (L.) Wilczek] after harvest. Improving bruchid resistance is a major goal for mungbean breeders. Bruchid resistance in mungbean is controlled by a single major locus, Br. The tightly linked VrPGIP1 and VrPGIP2, which encode polygalacturonase-inhibiting proteins (PGIPs), are the candidate genes at the Br locus associated with bruchid resistance. One VrPGIP1 resistance allele and two VrPGIP2 resistance alleles have been identified. In this study, we fine-mapped the bruchid-resistance genes in wild mungbean (V. radiata var. sublobata) accession ACC41 using the F2 population (574 individuals) derived from the 'Kamphaeng Saen 2' (susceptible) × ACC41 (resistant) cross. A QTL analysis indicated that the resistance to the azuki bean weevil and cowpea weevil in ACC41 is controlled by a major QTL (qBr5.1) and a minor QTL (qBr5.2), which are only 0.3 cM apart. qBr5.1 and qBr5.2 accounted for about 82% and 2% of the resistance variation in the F2 population, respectively. qBr5.1 was mapped to a 237.35-kb region on mungbean chromosome 5 containing eight annotated genes, including VrPGIP1 and VrPGIP2. An examination of the ACC41 VrPGIP1 and VrPGIP2 sequences revealed a new allele for VrPGIP1 (i.e., VrPGIP1-2). Compared with the wild-type sequence, VrPGIP1-2 has five SNPs, of which four cause amino acid changes (residues 125, 129, 188, and 336). A protein sequence analysis indicated that residues 125 and 129 in VrPGIP1-2 are in a ß-sheet B1 region, whereas residues 188 and 336 are in a C10-helix region and at the end of the C-terminal region, respectively. Because the ß-sheet B1 region is important for interactions with polygalacturonase (PG), residues 125 and 129 in VrPGIP1-2 likely contribute to bruchid resistance by inhibiting PG. Our results imply that VrPGIP1-2 is associated with the bruchid resistance of wild mungbean accession ACC41. This new resistance allele may be useful for breeding mungbean varieties exhibiting durable bruchid resistance.


Subject(s)
Coleoptera/pathogenicity , Plant Diseases/genetics , Seeds/genetics , Vigna/genetics , Alleles , Animals , Disease Resistance/genetics , Plant Diseases/parasitology , Plant Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Seeds/parasitology , Vigna/parasitology
9.
Int J Parasitol ; 49(13-14): 1061-1073, 2019 12.
Article in English | MEDLINE | ID: mdl-31733196

ABSTRACT

Meloidogyne incognita is a polyphagous plant-parasitic nematode that causes considerable yield loss in agricultural and horticultural crops. The management options available for M. incognita are extremely limited. Here we identified and characterised a M. incognita homolog of Caenorhabditis elegans sterol-binding protein (Mi-SBP-1), a transcriptional regulator of several lipogenesis pathway genes, and used RNA interference-mediated gene silencing to establish its utility as a target for the management of M. incognita. Mi-sbp-1 is predicted to be a helix-loop-helix domain containing DNA binding transcription factor, and is present in the M. incognita genome in three copies. The RNA-Seq analysis of Mi-sbp-1 silenced second stage juveniles confirmed the key role of this gene in lipogenesis regulation in M. incognita. In vitro and host-induced gene silencing of Mi-sbp-1 in M. incognita second stage juveniles resulted in loss of nematodes' ability to utilise the stored fat reserves, slower nematode development, and reduced parasitism on adzuki bean and tobacco plants. The multiplication factor for the Mi-sbp-1 silenced nematodes on adzuki bean plants was reduced by 51% compared with the control nematodes in which Mi-sbp-1 was not silenced. Transgenic expression of the double-stranded RNA construct of the Mi-sbp-1 gene in tobacco plants caused 40-45% reduction in M. incognita multiplication, 30-43.8% reduction in the number of egg masses, and 33-54% reduction in the number of eggs per egg mass compared with the wild type control plants. Our results confirm that Mi-sbp-1 is a key regulator of lipogenesis in M. incognita and suggest that it can be used as an effective target for its management. The findings of this study can be extended to develop methods to manage other economically important parasitic nematodes.


Subject(s)
Lipogenesis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Tylenchoidea/enzymology , Tylenchoidea/metabolism , Animals , Caenorhabditis elegans Proteins/genetics , Gene Silencing , Plant Diseases/parasitology , Nicotiana/parasitology , Treatment Outcome , Tylenchoidea/growth & development , Vigna/parasitology
10.
Sci Rep ; 9(1): 11719, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31406222

ABSTRACT

Zombi pea (Vigna vexillata) is a legume crop that is resistant to several biotic and abiotic stresses. Callosobruchus maculatus and Callosobruchus chinensis are serious stored-insect pests of legume crops. We constructed a high-density linkage map and performed quantitative trait loci (QTLs) mapping for resistance to these insect species in zombi pea. An F2 population of 198 individuals from a cross between 'TVNu 240' (resistant) and 'TVNu 1623' (susceptible) varieties was used to construct a linkage map of 6,529 single nucleotide polymorphism markers generated from sequencing amplified fragments of specific loci. The map comprised 11 linkage groups, spanning 1,740.9 cM, with an average of 593.5 markers per linkage group and an average distance of 0.27 cM between markers. High levels of micro-synteny between V. vexillata and cowpea (Vigna unguiculata), mungbean (Vigna radiata), azuki bean (Vigna angularis) and common bean (Phaseolus vulgaris) were found. One major and three minor QTLs for C. chinensis resistance and one major and one minor QTLs for C. maculatus resistance were identified. The major QTLs for resistance to C. chinensis and C. maculatus appeared to be the same locus. The linkage map developed in this study will facilitate the identification of useful genes/QTLs in zombi pea.


Subject(s)
Genetic Linkage , Genome, Plant , Quantitative Trait Loci , Vigna/genetics , Vigna/immunology , Weevils/pathogenicity , Animals , Chromosome Mapping , Crops, Agricultural , Crosses, Genetic , Female , Herbivory/physiology , Male , Phaseolus/genetics , Phaseolus/immunology , Phaseolus/parasitology , Polymorphism, Single Nucleotide , Synteny , Vigna/parasitology , Weevils/physiology
11.
J Chem Ecol ; 45(7): 570-578, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31209625

ABSTRACT

The brown spiny bug, Clavigralla tomentosicollis Stål (Hemiptera: Coreidae) is a key pest of leguminous crops in many countries in Africa, causing significant yield losses especially in cowpea, pigeon pea and common beans. Although C. tomentosicollis uses olfaction to aggregate, little is known about the identity of the aggregation pheromone. This study aimed to identify the aggregation pheromone of C. tomentosicollis and to test its potential role in the behavior of its egg parasitoid, Gryon sp. In Y-tube olfactometer bioassays, only male volatiles strongly attracted both sexes of C. tomentosicollis. Coupled gas chromatography/electroantennographic detection (GC/EAD) and GC/mass spectrometry were used to identify antennally-active compounds from male volatiles. Antennae of both sexes detected identical components including a male-specific component, identified as isopentyl butanoate, which was also detected by antenna of the egg parasitoid. In olfactometer bioassays, both sexes of C. tomentosicollis and the egg parasitoid responded to isopentyl butanoate. These results suggest that isopentyl butanoate serves as an aggregation pheromone for both sexes of C. tomentosicollis and a useful kairomone to attract the parasitoid in the management of C. tomentosicollis.


Subject(s)
Butyrates/chemistry , Hemiptera/physiology , Hymenoptera/growth & development , Insect Hormones/chemistry , Pheromones/chemistry , Animals , Behavior, Animal/drug effects , Female , Gas Chromatography-Mass Spectrometry , Male , Ovum/chemistry , Ovum/metabolism , Pheromones/isolation & purification , Pheromones/pharmacology , Vigna/parasitology , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification
12.
Sci Rep ; 9(1): 6435, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015559

ABSTRACT

Bacteria inhabiting the gut of insects provide many benefits to their hosts, such as aiding in food digestion, reproduction, and immunity, tissue homeostasis, adaptation to environment and resistance to pathogen and pesticides. The cowpea beetle, Callosobruchus maculatus, is a serious cosmopolitan pest of pulses. This beetle has lent itself as a guinea pig for several ecological studies. It harbors a consortium of bacterial communities in its gut, but the evidence for their role in its physiology is fragmentary. In this work, we hypothesized that gut microbiota mediates C. maculatus resistance to dichlorvos (DDVP or O,O-dimethyl O-2,2-dichlorovinylphosphate) and represent the target of Lippia adoensis (Gambian Tea Bush) essential oil (EO). Symbiotic and aposymbiotic beetles were exposed to artificial cowpea seeds earlier treated with DDVP or EO. Adult mortality and changes in gut bacterial community composition and abundance were examined at F1 and F5 generations. The susceptibility of experimental beetles to DDVP was significantly affected by their symbiotic status. The adult mortality decreased across generations in DDVP treatments, and remained significantly higher in aposymbiotic groups. In EO treatments, the mortality was consistent irrespective of symbiotic status and experimental generations. When compared to DDVP and the Control, EO treatments had significantly lower bacterial richness and diversity, as well as lower abundance of Proteobacteria, Firmicutes, and Bacteroidetes. These results support our hypothesis and describe the responses of gut microbial communities to pesticide treatments. This could be of interest for developing new management strategies of this pest.


Subject(s)
Coleoptera/drug effects , Dichlorvos/pharmacology , Gastrointestinal Microbiome/drug effects , Insecticides/pharmacology , Lippia/chemistry , Oils, Volatile/pharmacology , Animals , Bacteroidetes/classification , Bacteroidetes/drug effects , Bacteroidetes/isolation & purification , Bacteroidetes/physiology , Coleoptera/microbiology , Coleoptera/physiology , Firmicutes/classification , Firmicutes/drug effects , Firmicutes/isolation & purification , Firmicutes/physiology , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/physiology , Insecticide Resistance/physiology , Longevity/drug effects , Oils, Volatile/isolation & purification , Proteobacteria/classification , Proteobacteria/drug effects , Proteobacteria/isolation & purification , Proteobacteria/physiology , Seeds/parasitology , Symbiosis/physiology , Vigna/parasitology
13.
Sci Rep ; 9(1): 3723, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30842484

ABSTRACT

Vigna unguiculata, one of the most important legumes, mainly in underdeveloped countries, is susceptible to post-harvest losses in storage by Callosobruchus maculatus (Fabricius, 1775) (Coleoptera: Chrysomelidae). The work evaluated the toxicity, inhibition of oviposition, instantaneous rate of population growth (ri) and the development of fumigated C. maculatus with the essential oil of Vanillosmopsis arborea and its major constituent, α-bisabolol. The experimental units consisted of 0.8 L flasks treated with concentrations of 1.2-11.2 µL L-1of air of the essential oil of V. arborea or its major constituent applied to disks of filter paper. α-Bisabolol was quantified as 409.33 mL L-1 of the essential oil. The development rate of C. maculatus was evaluated by daily adult counts. Oviposition was evaluated at lethal concentrations (LC50, LC25, LC10 and LC1). The LC50 and LC95 of the essential oil of V. arborea and α-bisabolol were 5.23 and 12.97 µL L-1 of air and 2.47 and 8.82 µL L-1 of air, respectively. At some concentrations, the α-bisabolol was more toxic to males than to females of the insect. Increased concentrations of the essential oil reduced the ri, rate of development, oviposition, and number of eggs of C. maculatus and therefore have potential for pest control.


Subject(s)
Asteraceae/chemistry , Insecticides/chemistry , Monocyclic Sesquiterpenes/chemistry , Oils, Volatile/chemistry , Animals , Coleoptera/drug effects , Coleoptera/pathogenicity , Female , Fumigation , Insecticides/pharmacology , Male , Monocyclic Sesquiterpenes/pharmacology , Oils, Volatile/pharmacology , Oviposition/drug effects , Plants, Medicinal/chemistry , Sex Characteristics , Vigna/drug effects , Vigna/parasitology
14.
Sci Rep ; 9(1): 3930, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30850726

ABSTRACT

Black gram (Vigna mungo var. mungo) is an important pulse crop in Asia. The cowpea weevil (Callosobruchus maculatus) is a stored-seed insect pest (seed weevil/bruchid) that causes serious postharvest losses in pulse crops, including black gram. In this study, we constructed a high-density linkage map for black gram and identified quantitative trait loci (QTLs) for C. maculatus resistance. A recombinant inbred line (RIL) population of 150 lines from a cross between BC48 [cultivated black gram (var. mungo); bruchid-susceptible] and TC2210 [wild black gram (var. silvestris); bruchid-resistant] were used to construct a linkage map of 3,675 SNP markers from specific-locus amplified fragment sequencing. The map comprised 11 linkage groups spanning 1,588.7 cM with an average distance between adjacent markers of 0.57 cM. Seeds of the RIL population grown in 2016 and 2017 were evaluated for C. maculatus resistance through two traits; the percentage of damaged seeds (PDS) and infestation severity progress (AUDPS). Inclusive composite interval mapping identified three QTLs each for PDS and AUDPS. Two QTLs, qVmunBr6.1 and qVmunBr6.2, mapped about 10 cM apart on linkage group 6 were common between PDS and AUDPS. Comparative genome analysis revealed that qVmunBr6.1 and qVmunBr6.2 are new loci for C. maculatus resistance in Vigna species and that genes encoding a lectin receptor kinase and chitinase are candidates for qVmunBr6.2. The high-density linkage map constructed and QTLs for bruchid resistance identified in this study will be useful for molecular breeding of black gram.


Subject(s)
Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/parasitology , Vigna/genetics , Vigna/parasitology , Weevils/pathogenicity , Animals , Chitinases/genetics , Chromosome Mapping , Crops, Agricultural/genetics , Crops, Agricultural/parasitology , Female , Genome, Plant , Plant Breeding , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Protein Kinases/genetics , Quantitative Trait Loci , Seeds/genetics , Seeds/parasitology
15.
G3 (Bethesda) ; 9(4): 1199-1209, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30819821

ABSTRACT

The root-knot nematode (RKN) species Meloidogyne incognita and M. javanica cause substantial root system damage and suppress yield of susceptible cowpea cultivars. The narrow-based genetic resistance conferred by the Rk gene, present in some commercial cultivars, is not effective against Rk-virulent populations found in several cowpea production areas. The dynamics of virulence within RKN populations require a broadening of the genetic base of resistance in elite cowpea cultivars. As part of this goal, F1 and F2 populations from the cross CB46-Null (susceptible) x FN-2-9-04 (resistant) were phenotyped for M. javanica induced root-galling (RG) and egg-mass production (EM) in controlled growth chamber and greenhouse infection assays. In addition, F[Formula: see text] families of the same cross were phenotyped for RG on field sites infested with Rk-avirulent M. incognita and M. javanica The response of F1 to RG and EM indicated that resistance to RKN in FN-2-9-04 is partially dominant, as supported by the degree of dominance in the F2 and F[Formula: see text] populations. Two QTL associated with both RG and EM resistance were detected on chromosomes Vu01 and Vu04. The QTL on Vu01 was most effective against aggressive M. javanica, whereas both QTL were effective against avirulent M. incognita Allelism tests with CB46 x FN-2-9-04 progeny indicated that these parents share the same RKN resistance locus on Vu04, but the strong, broad-based resistance in FN-2-9-04 is conferred by the additive effect of the novel resistance QTL on Vu01. This novel resistance in FN-2-9-04 is an important resource for broadening RKN resistance in elite cowpea cultivars.


Subject(s)
Disease Resistance/genetics , Nematoda/physiology , Vigna/genetics , Animals , Chromosome Mapping , Disease Susceptibility , Genetic Predisposition to Disease , Quantitative Trait Loci , Vigna/parasitology
16.
J Chem Ecol ; 45(4): 348-355, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30788655

ABSTRACT

Aggregation of the bean flower thrips, Megalurothrips sjostedti (Trybom) (Thysanoptera: Thripidae), has been observed on cowpea, Vigna unguiculata (L.) Walp. To understand the mechanism underpinning this behavior, we studied the responses of M. sjostedti to headspace volatiles from conspecifics in a four-arm olfactometer. Both male and female M. sjostedti were attracted to male, but not to female odor. Gas chromatography/mass spectrometry (GC/MS) analyses revealed the presence of two distinct compounds in male M. sjostedti headspace, namely (R)-lavandulyl 3-methylbutanoate (major compound) and (R)-lavandulol (minor compound); by contrast, both compounds were only present in trace amounts in female headspace collections. A behavioral assay using synthetic compounds showed that male M. sjostedti was attracted to both (R)-lavandulyl 3-methylbutanoate and (R)-lavandulol, while females responded only to (R)-lavandulyl 3-methylbutanoate. This is the first report of a male-produced aggregation pheromone in the genus Megalurothrips. The bean flower thrips is the primary pest of cowpea, which is widely grown in sub-Saharan Africa. The attraction of male and female M. sjostedti to these compounds offers an opportunity to develop ecologically sustainable management methods for M. sjostedti in Africa.


Subject(s)
Sex Attractants/metabolism , Thysanoptera/metabolism , Vigna/parasitology , Acyclic Monoterpenes , Animals , Female , Gas Chromatography-Mass Spectrometry , Male , Monoterpenes/metabolism , Sexual Behavior, Animal , Thysanoptera/physiology
17.
Sci Rep ; 8(1): 17302, 2018 11 23.
Article in English | MEDLINE | ID: mdl-30470775

ABSTRACT

Root-knot nematodes (Meloidogyne spp.) are an important group of plant parasitic nematodes that induce within host plant roots unique feeding site structures, termed giant cells, which supply nutrient flow to the nematode. A comparative in situ analysis of cell wall polysaccharides in the giant cells of three host species (Arabidopsis, maize and aduki bean) infected with Meloidogyne incognita has been carried out. Features common to giant cell walls of all three species include the presence of high-esterified pectic homogalacturonan, xyloglucan and pectic arabinan. The species-specific presence of xylan and mixed-linkage glucan (MLG) epitopes in giant cell walls of maize reflected that host's taxonomic group. The LM5 galactan and LM21 mannan epitopes were not detected in the giant cell walls of aduki bean but were detected in Arabidopsis and maize giant cell walls. The LM2 arabinogalactan-protein epitope was notable for its apparent global variations in root cell walls as a response to infection across the three host species. Additionally, a set of Arabidopsis cell wall mutants were used to determine any impacts of altered cell wall structures on M. incognita infection. Disruption of the arabinogalactan-protein 8 gene had the greatest impact and resulted in an increased infection rate.


Subject(s)
Arabidopsis/metabolism , Cell Wall/metabolism , Plant Roots/metabolism , Polysaccharides/metabolism , Tylenchoidea/physiology , Vigna/metabolism , Zea mays/metabolism , Animals , Arabidopsis/parasitology , Cell Wall/chemistry , Cell Wall/parasitology , Glucans/metabolism , Host-Parasite Interactions , Mannans/metabolism , Plant Diseases/parasitology , Plant Roots/chemistry , Plant Roots/parasitology , Vigna/parasitology , Xylans/metabolism , Zea mays/parasitology
18.
Sci Rep ; 8(1): 13603, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30206279

ABSTRACT

The flower thrips Frankliniella intonsa (Trybom) is one of the most economically important pests in cowpea greenhouses in China. Widespread pesticide resistance of thrips and the negative environmental effects limit the application of pesticides for thrips control. Two commercial cowpea greenhouse experiments were designed to determine the color preference of F. intonsa to colored cards, including white, pink, pale green, light yellow, powder blue, crimson, yellow green, deep sky blue, dark slate blue, dark orange, medium orchid, gold, and black. Clear pieces of plastic were used as the control cards. Additionally, the effects of placement height and orientation (cardinal direction) of the cards were also studied. Both greenhouse trials showed that white cards were significantly more attractive to F. intonsa than the other 13 card colors, followed by deep sky blue cards. White or deep sky blue cards placed low to the ground were found to be most attractive to F. intonsa. Orientation of the colored cards also affected the attractiveness to F. intonsa. The results indicate that white sticky cards were significantly more attractive to F. intonsa than blue cards and therefore can be recommended to monitor F. intonsa population densities and to control them in cowpea greenhouses as part of integrated pest management programs.


Subject(s)
Flowers/parasitology , Pest Control , Thysanoptera/physiology , Vigna/parasitology , Animals , China , Color , Flowers/growth & development , Humans , Pesticides/adverse effects , Population Density , Species Specificity , Thysanoptera/pathogenicity , Vigna/growth & development
19.
Anim Cogn ; 21(6): 805-812, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30167927

ABSTRACT

The use of conspecific cues as social information in decision making is widespread among animals; but, because this social information is indirect, it is error-prone. During resource acquisition, conspecific cues also indicate the presence of competitors; therefore, decision makers are expected to utilize direct information from resources and modify their responses to social information accordingly. Here, we show that, in a non-social insect, unattractive egg-laying resources alter the behavioural response to conspecific cues from avoidance to preference, leading to resource sharing. Females of the adzuki bean beetle Callosobruchus chinensis avoid laying eggs onto beans that already have conspecific eggs. However, when we provided females with bean-sized clean glass beads with and without conspecific eggs, the females preferred to add their eggs onto the beads with eggs. The glass beads, once coated with water extracts of adzuki beans, enabled the females to behave as if they were provided with the beans: the females preferred bean-odoured glass beads to clean glass beads and they avoided the substrates with eggs. When females are provided with unattractive egg-laying substrates only, joining behaviour (i.e. copying) might be advantageous, as it takes advantage of information about positive attributes of the substrate that the focal animal might have missed. Our results suggest that given only unsatisfactory options, the benefits of copying outweigh the costs of resource competition. Our study highlights the importance of integrating multiple information sources in animal decision making.


Subject(s)
Coleoptera/physiology , Decision Making , Host-Seeking Behavior , Oviposition , Animals , Cues , Female , Vigna/parasitology
20.
An. acad. bras. ciênc ; 90(1): 311-323, Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-886887

ABSTRACT

ABSTRACT Population dynamics of aphids have been studied in sole and intercropping systems. These studies have required the use of more precise analytical tools in order to better understand patterns in quantitative data. Mathematical models are among the most important tools to explain the dynamics of insect populations. This study investigated the population dynamics of aphids Aphis gossypii and Aphis craccivora over time, using mathematical models composed of a set of differential equations as a helpful analytical tool to understand the population dynamics of aphids in arrangements of cotton and cowpea. The treatments were sole cotton, sole cowpea, and three arrangements of cotton intercropped with cowpea (t1, t2 and t3). The plants were infested with two aphid species and were evaluated at 7, 14, 28, 35, 42, and 49 days after the infestations. Mathematical models were used to fit the population dynamics of two aphid species. There were good fits for aphid dynamics by mathematical model over time. The highest population peak of both species A. gossypii and A. craccivora was found in the sole crops, and the lowest population peak was found in crop system t2. These results are important for integrated management programs of aphids in cotton and cowpea.


Subject(s)
Animals , Aphids/physiology , Crops, Agricultural/parasitology , Gossypium/parasitology , Vigna/parasitology , Reference Values , Species Specificity , Time Factors , Wings, Animal/physiology , Population Dynamics , Population Density , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...