Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.916
Filter
1.
Proc Natl Acad Sci U S A ; 121(20): e2402653121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38722808

ABSTRACT

The intrinsically disordered C-terminal peptide region of severe acute respiratory syndrome coronavirus 2 nonstructural protein-1 (Nsp1-CT) inhibits host protein synthesis by blocking messenger RNA (mRNA) access to the 40S ribosome entrance tunnel. Aqueous copper(II) ions bind to the disordered peptide with micromolar affinity, creating a possible strategy to restore protein synthesis during host infection. Electron paramagnetic resonance (EPR) and tryptophan fluorescence measurements on a 10-residue model of the disordered protein region (Nsp1-CT10), combined with advanced quantum mechanics calculations, suggest that the peptide binds to copper(II) as a multidentate ligand. Two optimized computational models of the copper(II)-peptide complexes were derived: One corresponding to pH 6.5 and the other describing the complex at pH 7.5 to 8.5. Simulated EPR spectra based on the calculated model structures are in good agreement with experimental spectra.


Subject(s)
Copper , Intrinsically Disordered Proteins , SARS-CoV-2 , Viral Nonstructural Proteins , Copper/chemistry , Copper/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Electron Spin Resonance Spectroscopy , Humans , Protein Binding , Models, Molecular , COVID-19/virology
2.
Sci Adv ; 10(18): eadm8275, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38691607

ABSTRACT

Flaviviruses encode a conserved, membrane-associated nonstructural protein 1 (NS1) with replication and immune evasion functions. The current knowledge of secreted NS1 (sNS1) oligomers is based on several low-resolution structures, thus hindering the development of drugs and vaccines against flaviviruses. Here, we revealed that recombinant sNS1 from flaviviruses exists in a dynamic equilibrium of dimer-tetramer-hexamer states. Two DENV4 hexameric NS1 structures and several tetrameric NS1 structures from multiple flaviviruses were solved at atomic resolution by cryo-EM. The stacking of the tetrameric NS1 and hexameric NS1 is facilitated by the hydrophobic ß-roll and connector domains. Additionally, a triacylglycerol molecule located within the central cavity may play a role in stabilizing the hexamer. Based on differentiated interactions between the dimeric NS1, two distinct hexamer models (head-to-head and side-to-side hexamer) and the step-by-step assembly mechanisms of NS1 dimer into hexamer were proposed. We believe that our study sheds light on the understanding of the NS1 oligomerization and contributes to NS1-based therapies.


Subject(s)
Cryoelectron Microscopy , Flavivirus , Models, Molecular , Protein Multimerization , Viral Nonstructural Proteins , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Flavivirus/metabolism , Flavivirus/chemistry , Protein Conformation
3.
J Chem Theory Comput ; 20(9): 3359-3378, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38703105

ABSTRACT

Despite the recent advancements by deep learning methods such as AlphaFold2, in silico protein structure prediction remains a challenging problem in biomedical research. With the rapid evolution of quantum computing, it is natural to ask whether quantum computers can offer some meaningful benefits for approaching this problem. Yet, identifying specific problem instances amenable to quantum advantage and estimating the quantum resources required are equally challenging tasks. Here, we share our perspective on how to create a framework for systematically selecting protein structure prediction problems that are amenable for quantum advantage, and estimate quantum resources for such problems on a utility-scale quantum computer. As a proof-of-concept, we validate our problem selection framework by accurately predicting the structure of a catalytic loop of the Zika Virus NS3 Helicase, on quantum hardware.


Subject(s)
Quantum Theory , Zika Virus/chemistry , Protein Conformation , Proteins/chemistry , Viral Nonstructural Proteins/chemistry , RNA Helicases/chemistry , RNA Helicases/metabolism
4.
Int J Biol Macromol ; 267(Pt 2): 131629, 2024 May.
Article in English | MEDLINE | ID: mdl-38631585

ABSTRACT

Current management of HCV infection is based on Direct-Acting Antiviral Drugs (DAAs). However, resistance-associated mutations, especially in the NS3 and NS5B regions are gradually decreasing the efficacy of DAAs. Among the most effective HCV NS3/4A protease drugs, Sofosbuvir also develops resistance due to mutations in the NS3 and NS5B regions. Four mutations at positions A156Y, L36P, Q41H, and Q80K are classified as high-level resistance mutations. The resistance mechanism of HCV NS3/4A protease toward Sofosbuvir caused by these mutations is still unclear, as there is less information available regarding the structural and functional effects of the mutations against Sofosbuvir. In this work, we combined molecular dynamics simulation, molecular mechanics/Generalized-Born surface area calculation, principal component analysis, and free energy landscape analysis to explore the resistance mechanism of HCV NS3/4A protease due to these mutations, as well as compare interaction changes in wild-type. Subsequently, we identified that the mutant form of HCV NS3/4A protease affects the activity of Sofosbuvir. In this study, the resistance mechanism of Sofosbuvir at the atomic level is proposed. The proposed drug-resistance mechanism will provide valuable guidance for the design of HCV drugs.


Subject(s)
Antiviral Agents , Drug Resistance, Viral , Hepacivirus , Molecular Dynamics Simulation , Mutation , Sofosbuvir , Viral Nonstructural Proteins , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , DEAD-box RNA Helicases , Drug Resistance, Viral/genetics , Hepacivirus/drug effects , Hepacivirus/genetics , Hepacivirus/enzymology , Nucleoside-Triphosphatase , Serine Endopeptidases , Serine Proteases , Sofosbuvir/pharmacology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Proteases
5.
J Virol ; 98(5): e0034924, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38639488

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel coronavirus severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), has rapidly spread worldwide since its emergence in late 2019. Its ongoing evolution poses challenges for antiviral drug development. Coronavirus nsp6, a multiple-spanning transmembrane protein, participates in the biogenesis of the viral replication complex, which accommodates the viral replication-transcription complex. The roles of its structural domains in viral replication are not well studied. Herein, we predicted the structure of the SARS-CoV-2 nsp6 protein using AlphaFold2 and identified a highly folded C-terminal region (nsp6C) downstream of the transmembrane helices. The enhanced green fluorescent protein (EGFP)-fused nsp6C was found to cluster in the cytoplasm and associate with membranes. Functional mapping identified a minimal membrane-associated element (MAE) as the region from amino acids 237 to 276 (LGV-KLL), which is mainly composed of the α-helix H1 and the α-helix H2; the latter exhibits characteristics of an amphipathic helix (AH). Mutagenesis studies and membrane flotation experiments demonstrate that AH-like H2 is required for MAE-mediated membrane association. This MAE was functionally conserved across MERS-CoV, HCoV-OC43, HCoV-229E, HCoV-HKU1, and HCoV-NL63, all capable of mediating membrane association. In a SARS-CoV-2 replicon system, mutagenesis studies of H2 and replacements of H1 and H2 with their homologous counterparts demonstrated requirements of residues on both sides of the H2 and properly paired H1-H2 for MAE-mediated membrane association and viral replication. Notably, mutations I266A and K274A significantly attenuated viral replication without dramatically affecting membrane association, suggesting a dual role of the MAE in viral replication: mediating membrane association as well as participating in protein-protein interactions.IMPORTANCESevere acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) assembles a double-membrane vesicle (DMV) by the viral non-structural proteins for viral replication. Understanding the mechanisms of the DMV assembly is of paramount importance for antiviral development. Nsp6, a multiple-spanning transmembrane protein, plays an important role in the DMV biogenesis. Herein, we predicted the nsp6 structure of SARS-CoV-2 and other human coronaviruses using AlphaFold2 and identified a putative membrane-associated element (MAE) in the highly conserved C-terminal regions of nsp6. Experimentally, we verified a functionally conserved minimal MAE composed of two α-helices, the H1, and the amphipathic helix-like H2. Mutagenesis studies confirmed the requirement of H2 for MAE-mediated membrane association and viral replication and demonstrated a dual role of the MAE in viral replication, by mediating membrane association and participating in residue-specific interactions. This functionally conserved MAE may serve as a novel anti-viral target.


Subject(s)
SARS-CoV-2 , Viral Nonstructural Proteins , Virus Replication , SARS-CoV-2/genetics , SARS-CoV-2/physiology , SARS-CoV-2/metabolism , Humans , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/chemistry , COVID-19/virology , Cell Membrane/metabolism , Animals , Chlorocebus aethiops , Betacoronavirus/genetics , Betacoronavirus/physiology , Betacoronavirus/metabolism , HEK293 Cells , Vero Cells , Pandemics , Amino Acid Sequence
6.
Phys Chem Chem Phys ; 26(18): 14046-14061, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38686454

ABSTRACT

The COVID-19 pandemic, driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), necessitates a profound understanding of the virus and its lifecycle. As an RNA virus with high mutation rates, SARS-CoV-2 exhibits genetic variability leading to the emergence of variants with potential implications. Among its key proteins, the RNA-dependent RNA polymerase (RdRp) is pivotal for viral replication. Notably, RdRp forms dimers via non-structural protein (nsp) subunits, particularly nsp7, crucial for efficient viral RNA copying. Similar to the main protease (Mpro) of SARS-CoV-2, there is a possibility that the nsp7 might also undergo mutational selection events to generate more stable and adaptable versions of nsp7 dimer during virus evolution. However, efforts to obtain such cohesive and comprehensive information are lacking. To address this, we performed this study focused on deciphering the molecular intricacies of nsp7 dimerization using a multifaceted approach. Leveraging computational protein design (CPD), machine learning (ML), AlphaFold v2.0-based structural analysis, and several related computational approaches, we aimed to identify critical residues and mutations influencing nsp7 dimer stability and adaptation. Our methodology involved identifying potential hotspot residues within the dimeric nsp7 interface using an interface-based CPD approach. Through Rosetta-based symmetrical protein design, we designed and modulated nsp7 dimerization, considering selected interface residues. Analysis of physicochemical features revealed acceptable structural changes and several structural and residue-specific insights emphasizing the intricate nature of such protein-protein complexes. Our ML models, particularly the random forest regressor (RFR), accurately predicted binding affinities and ML-guided sequence predictions corroborated CPD findings, elucidating potential nsp7 mutations and their impact on binding affinity. Validation against clinical sequencing data demonstrated the predictive accuracy of our approach. Moreover, AlphaFold v2.0 structural analyses validated optimal dimeric configurations of affinity-enhancing designs, affirming methodological precision. Affinity-enhancing designs exhibited favourable energetics and higher binding affinity as compared to their counterparts. The obtained physicochemical properties, molecular interactions, and sequence predictions advance our understanding of SARS-CoV-2 evolution and inform potential avenues for therapeutic intervention against COVID-19.


Subject(s)
Machine Learning , SARS-CoV-2 , Viral Nonstructural Proteins , SARS-CoV-2/genetics , SARS-CoV-2/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Humans , Protein Multimerization , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Coronavirus RNA-Dependent RNA Polymerase/chemistry , COVID-19/virology , Mutation , Amino Acid Sequence
7.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673962

ABSTRACT

In the global pandemic scenario, dengue and zika viruses (DENV and ZIKV, respectively), both mosquito-borne members of the flaviviridae family, represent a serious health problem, and considering the absence of specific antiviral drugs and available vaccines, there is a dire need to identify new targets to treat these types of viral infections. Within this drug discovery process, the protease NS2B/NS3 is considered the primary target for the development of novel anti-flavivirus drugs. The NS2B/NS3 is a serine protease that has a dual function both in the viral replication process and in the elusion of the innate immunity. To date, two main classes of NS2B/NS3 of DENV and ZIKV protease inhibitors have been discovered: those that bind to the orthosteric site and those that act at the allosteric site. Therefore, this perspective article aims to discuss the main features of the use of the most potent NS2B/NS3 inhibitors and their impact at the social level.


Subject(s)
Antiviral Agents , Dengue , Protease Inhibitors , Zika Virus Infection , Animals , Humans , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , DEAD-box RNA Helicases , Dengue/drug therapy , Dengue/virology , Dengue Virus/drug effects , Nucleoside-Triphosphatase , Protease Inhibitors/therapeutic use , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Serine Endopeptidases/metabolism , Serine Endopeptidases/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Viral Proteases , Zika Virus/drug effects , Zika Virus/enzymology , Zika Virus Infection/drug therapy , Zika Virus Infection/virology
8.
Sci Rep ; 14(1): 9801, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684706

ABSTRACT

The Covid-19 pandemic outbreak has accelerated tremendous efforts to discover a therapeutic strategy that targets severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to control viral infection. Various viral proteins have been identified as potential drug targets, however, to date, no specific therapeutic cure is available against the SARS-CoV-2. To address this issue, the present work reports a systematic cheminformatic approach to identify the potent andrographolide derivatives that can target methyltransferases of SARS-CoV-2, i.e. nsp14 and nsp16 which are crucial for the replication of the virus and host immune evasion. A consensus of cheminformatics methodologies including virtual screening, molecular docking, ADMET profiling, molecular dynamics simulations, free-energy landscape analysis, molecular mechanics generalized born surface area (MM-GBSA), and density functional theory (DFT) was utilized. Our study reveals two new andrographolide derivatives (PubChem CID: 2734589 and 138968421) as natural bioactive molecules that can form stable complexes with both proteins via hydrophobic interactions, hydrogen bonds and electrostatic interactions. The toxicity analysis predicts class four toxicity for both compounds with LD50 value in the range of 500-700 mg/kg. MD simulation reveals the stable formation of the complex for both the compounds and their average trajectory values were found to be lower than the control inhibitor and protein alone. MMGBSA analysis corroborates the MD simulation result and showed the lowest energy for the compounds 2734589 and 138968421. The DFT and MEP analysis also predicts the better reactivity and stability of both the hit compounds. Overall, both andrographolide derivatives exhibit good potential as potent inhibitors for both nsp14 and nsp16 proteins, however, in-vitro and in vivo assessment would be required to prove their efficacy and safety in clinical settings. Moreover, the drug discovery strategy aiming at the dual target approach might serve as a useful model for inventing novel drug molecules for various other diseases.


Subject(s)
Antiviral Agents , Diterpenes , Methyltransferases , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2 , Viral Nonstructural Proteins , Diterpenes/pharmacology , Diterpenes/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Methyltransferases/antagonists & inhibitors , Methyltransferases/chemistry , Methyltransferases/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Cheminformatics/methods , COVID-19/virology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , COVID-19 Drug Treatment
9.
Protein Sci ; 33(4): e4916, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38501598

ABSTRACT

Alongside vaccines and antiviral therapeutics, diagnostic tools are a crucial aid in combating the COVID-19 pandemic caused by the etiological agent SARS-CoV-2. All common assays for infection rely on the detection of viral sub-components, including structural proteins of the virion or fragments of the viral genome. Selective pressure imposed by human intervention of COVID-19 can, however, induce viral mutations that decrease the sensitivity of diagnostic assays based on biomolecular structure, leading to an increase in false-negative results. In comparison, mutations are unlikely to alter the function of viral proteins, and viral machinery is under less selective pressure from vaccines and therapeutics. Accordingly, diagnostic assays that rely on biomolecular function can be more robust than ones that rely on biopolymer structure. Toward this end, we used a split intein to create a circular ribonuclease zymogen that is activated by the SARS-CoV-2 main protease, 3CLpro . Zymogen activation by 3CLpro leads to a >300-fold increase in ribonucleolytic activity, which can be detected with a highly sensitive fluorogenic substrate. This coupled assay can detect low nanomolar concentrations of 3CLpro within a timeframe comparable to that of common antigen-detection protocols. More generally, the concept of detecting a protease by activating a ribonuclease could be the basis of diagnostic tools for other indications.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Vaccines , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Enzyme Precursors/genetics , Ribonucleases , Pandemics , Viral Nonstructural Proteins/chemistry , Protease Inhibitors/chemistry , Antiviral Agents/chemistry
10.
J Virol ; 98(4): e0125823, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38546211

ABSTRACT

Dengue fever, an infectious disease prevalent in subtropical and tropical regions, currently lacks effective small-molecule drugs as treatment. In this study, we used a fluorescence peptide cleavage assay to screen seven compounds to assess their inhibition of the dengue virus (DENV) NS2B-NS3 protease. DV-B-120 demonstrated superior inhibition of NS2B-NS3 protease activity and lower toxicity compared to ARDP0006. The selectivity index of DV-B-120 was higher than that of ARDP0006. In vivo assessments of the antiviral efficacy of DV-B-120 against DENV replication demonstrated delayed mortality of suckling mice treated with the compound, with 60-80% protection against life-threatening effects, compared to the outcomes of DENV-infected mice treated with saline. The lower clinical scores of DENV-infected mice treated with DV-B-120 indicated a reduction in acute-progressive illness symptoms, underscoring the potential therapeutic impact of DV-B-120. Investigations of DV-B-120's ability to restore the antiviral type I IFN response in the brain tissue of DENV-infected ICR suckling mice demonstrated its capacity to stimulate IFN and antiviral IFN-stimulated gene expression. DV-B-120 not only significantly delayed DENV-2-induced mortality and illness symptoms but also reduced viral numbers in the brain, ultimately restoring the innate antiviral response. These findings strongly suggest that DV-B-120 holds promise as a therapeutic agent against DENV infection and highlight its potential contribution in addressing the current lack of effective treatments for this infectious disease.IMPORTANCEThe prevalence of dengue virus (DENV) infection in tropical and subtropical regions is escalating due to factors like climate change and mosquito vector expansion. With over 300 million annual infections and potentially fatal outcomes, the urgent need for effective treatments is evident. While the approved Dengvaxia vaccine has variable efficacy, there are currently no antiviral drugs for DENV. This study explores seven compounds targeting the NS2B-NS3 protease, a crucial protein in DENV replication. These compounds exhibit inhibitory effects on DENV-2 NS2B-NS3, holding promise for disrupting viral replication and preventing severe manifestations. However, further research, including animal testing, is imperative to assess therapeutic efficacy and potential toxicity. Developing safe and potent treatments for DENV infection is critical in addressing the rising global health threat posed by this virus.


Subject(s)
Dengue Virus , Dengue , Piperidines , Animals , Mice , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Communicable Diseases , Dengue/drug therapy , Dengue Virus/physiology , Endopeptidases/pharmacology , Mice, Inbred ICR , Piperidines/administration & dosage , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/chemistry
11.
J Chem Inf Model ; 64(6): 1984-1995, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38472094

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main Protease (Mpro) is an enzyme that cleaves viral polyproteins translated from the viral genome and is critical for viral replication. Mpro is a target for anti-SARS-CoV-2 drug development, and multiple Mpro crystals complexed with competitive inhibitors have been reported. In this study, we aimed to develop an Mpro consensus pharmacophore as a tool to expand the search for inhibitors. We generated a consensus model by aligning and summarizing pharmacophoric points from 152 bioactive conformers of SARS-CoV-2 Mpro inhibitors. Validation against a library of conformers from a subset of ligands showed that our model retrieved poses that reproduced the crystal-binding mode in 77% of the cases. Using models derived from a consensus pharmacophore, we screened >340 million compounds. Pharmacophore-matching and chemoinformatics analyses identified new potential Mpro inhibitors. The candidate compounds were chemically dissimilar to the reference set, and among them, demonstrating the relevance of our model. We evaluated the effect of 16 candidates on Mpro enzymatic activity finding that seven have inhibitory activity. Three compounds (1, 4, and 5) had IC50 values in the midmicromolar range. The Mpro consensus pharmacophore reported herein can be used to identify compounds with improved activity and novel chemical scaffolds against Mpro. The method developed for its generation is provided as an open-access code (https://github.com/AngelRuizMoreno/ConcensusPharmacophore) and can be applied to other pharmacological targets.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Small Molecule Libraries/pharmacology , Pharmacophore , Consensus , Viral Nonstructural Proteins/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
12.
Biochem Biophys Res Commun ; 706: 149728, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38479246

ABSTRACT

Influenza A virus is the cause of a widespread human disease with high morbidity and mortality rates. The influenza virus encodes non-structural protein 1 (NS1), an exceedingly multifunctional virulence component. NS1 plays essential roles in viral replication and evasion of the cellular innate immune system. Protein kinase RNA-activated also known as protein kinase R (PKR) phosphorylates translation initiation factor eIF-2α on serine 51 to inhibit protein synthesis in virus-infected mammalian cells. Consequently, PKR activation inhibits mRNA translation, which results in the assert of both viral protein synthesis and cellular and possibly apoptosis in response to virus infection. Host signaling pathways are important in the replication of influenza virus, but the mechanisms involved remain to be characterized. Herein, the structure of NS1 and PKR complex was determined using Cryo-EM. We found the N91, E94, and G95 residues of PKR bind directly with N188, D125, and K126, respectively, of NS1. Furthermore, the study shows that PKR peptide offers a potential treatment for Influenza A virus infections.


Subject(s)
Influenza A virus , eIF-2 Kinase , Animals , Humans , eIF-2 Kinase/metabolism , Viral Nonstructural Proteins/chemistry , Influenza A virus/genetics , Cryoelectron Microscopy , Cell Line , Antiviral Agents/metabolism , Virus Replication , Mammals/metabolism
13.
Mikrochim Acta ; 191(4): 174, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38436801

ABSTRACT

Early diagnosis of dengue infection by detecting the dengue virus non-structural protein 1 (DENV-NS1) is important to the patients to initiate speedy treatment. Enzyme-linked immunosorbent assay (ELISA)-based NS1 detection and RT-PCR are time-consuming and too complex to be employed in remote areas of dengue-endemic countries. Meanwhile, those of NS1 rapid test by lateral flow assay suffer from low detection limit. Electrochemical-based biosensors using screen-printed gold electrodes (SPGEs) have become a reliable detection method to convey both ELISA's high sensitivity and rapid test portability. In this research, we developed an electrochemical biosensor for DENV-NS1 detection by employing polydopamine (PDA)-modified SPGE. The electrodeposition of PDA on the surface of SPGE serves as a bioconjugation avenue for anti-NS1 antibody through a simple and low-cost immobilization procedure. The biosensor performance was evaluated to detect DENV-NS1 protein in PBS and human serum through a differential pulse voltammetric (DPV) technique. The developed sensing platform displayed a low limit of detection (LOD) of 1.63 pg mL-1 and a wide linear range of 10 pg mL-1 to 1 ng mL-1 (R2 ∼ 0.969). The sensing platform also detected DEV-NS1 from four different serotypes in the clinical samples collected from dengue patients in India and Indonesia, with acceptable sensitivity, specificity, and accuracy values of 90.00%, 80.95%, and 87.65%, respectively. This result showcased the facile and versatile method of PDA coating onto the surface of screen-printed gold electrodes for a miniaturized point-of-care (PoC) detection device.


Subject(s)
Dengue Virus , Dengue , Indoles , Point-of-Care Systems , Polymers , Humans , Dengue/diagnosis , Electrodes , Gold , Viral Nonstructural Proteins/chemistry
14.
J Am Soc Mass Spectrom ; 35(5): 912-921, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38535992

ABSTRACT

Structure-based drug design, which relies on precise understanding of the target protein and its interaction with the drug candidate, is dramatically expedited by advances in computational methods for candidate prediction. Yet, the accuracy needs to be improved with more structural data from high throughput experiments, which are challenging to generate, especially for dynamic and weak associations. Herein, we applied native mass spectrometry (native MS) to rapidly characterize ligand binding of an allosteric heterodimeric complex of SARS-CoV-2 nonstructural proteins (nsp) nsp10 and nsp16 (nsp10/16), a complex essential for virus survival in the host and thus a desirable drug target. Native MS showed that the dimer is in equilibrium with monomeric states in solution. Consistent with the literature, well characterized small cosubstrate, RNA substrate, and product bind with high specificity and affinity to the dimer but not the free monomers. Unsuccessfully designed ligands bind indiscriminately to all forms. Using neutral gas collision, the nsp16 monomer with bound cosubstrate can be released from the holo dimer complex, confirming the binding to nsp16 as revealed by the crystal structure. However, we observed an unusual migration of the endogenous zinc ions bound to nsp10 to nsp16 after collisional dissociation. The metal migration can be suppressed by using surface collision with reduced precursor charge states, which presumably resulted in minimal gas-phase structural rearrangement and highlighted the importance of complementary techniques. With minimal sample input (∼µg), native MS can rapidly detect ligand binding affinities and locations in dynamic multisubunit protein complexes, demonstrating the potential of an "all-in-one" native MS assay for rapid structural profiling of protein-to-AI-based compound systems to expedite drug discovery.


Subject(s)
Mass Spectrometry , Methyltransferases , Protein Multimerization , SARS-CoV-2 , Viral Nonstructural Proteins , Viral Regulatory and Accessory Proteins , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , SARS-CoV-2/chemistry , Mass Spectrometry/methods , Allosteric Regulation , Protein Binding , Humans , Ligands , Models, Molecular
15.
J Virol ; 98(3): e0166023, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38421167

ABSTRACT

Rotavirus (RV) NSP2 is a multifunctional RNA chaperone that exhibits numerous activities that are essential for replication and viral genome packaging. We performed an in silico analysis that highlighted a distant relationship of NSP2 from rotavirus B (RVB) to proteins from other human RVs. We solved a cryo-electron microscopy structure of RVB NSP2 that shows structural differences with corresponding proteins from other human RVs. Based on the structure, we identified amino acid residues that are involved in RNA interactions. Anisotropy titration experiments showed that these residues are important for nucleic acid binding. We also identified structural motifs that are conserved in all RV species. Collectively, our data complete the structural characterization of rotaviral NSP2 protein and demonstrate its structural diversity among RV species.IMPORTANCERotavirus B (RVB), also known as adult diarrhea rotavirus, has caused epidemics of severe diarrhea in China, India, and Bangladesh. Thousands of people are infected in a single RVB epidemic. However, information on this group of rotaviruses remains limited. As NSP2 is an essential protein in the viral life cycle, including its role in the formation of replication factories, it may be a target for future antiviral strategy against viruses with similar mechanisms.


Subject(s)
RNA-Binding Proteins , Rotavirus , Viral Nonstructural Proteins , Adult , Humans , Cryoelectron Microscopy , Diarrhea/virology , RNA/metabolism , Rotavirus/metabolism , Rotavirus Infections/virology , Viral Nonstructural Proteins/chemistry , RNA-Binding Proteins/chemistry
16.
J Virol ; 98(3): e0175123, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38319105

ABSTRACT

Viruses exploit the host cell's energy metabolism system to support their replication. Mitochondria, known as the powerhouse of the cell, play a critical role in regulating cell survival and virus replication. Our prior research indicated that the classical swine fever virus (CSFV) alters mitochondrial dynamics and triggers glycolytic metabolic reprogramming. However, the role and mechanism of PKM2, a key regulatory enzyme of glycolytic metabolism, in CSFV replication remain unclear. In this study, we discovered that CSFV enhances PKM2 expression and utilizes PKM2 to inhibit pyruvate production. Using an affinity purification coupled mass spectrometry system, we successfully identified PKM as a novel interaction partner of the CSFV non-structural protein NS4A. Furthermore, we validated the interaction between PKM2 and both CSFV NS4A and NS5A through co-immunoprecipitation and confocal analysis. PKM2 was found to promote the expression of both NS4A and NS5A. Moreover, we observed that PKM2 induces mitophagy by activating the AMPK-mTOR signaling pathway, thereby facilitating CSFV proliferation. In summary, our data reveal a novel mechanism whereby PKM2, a metabolic enzyme, promotes CSFV proliferation by inducing mitophagy. These findings offer a new avenue for developing antiviral strategies. IMPORTANCE: Viruses rely on the host cell's material-energy metabolic system for replication, inducing host metabolic disorders and subsequent immunosuppression-a major contributor to persistent viral infections. Classical swine fever virus (CSFV) is no exception. Classical swine fever is a severe acute infectious disease caused by CSFV, resulting in significant economic losses to the global pig industry. While the role of the metabolic enzyme PKM2 (pyruvate dehydrogenase) in the glycolytic pathway of tumor cells has been extensively studied, its involvement in viral infection remains relatively unknown. Our data unveil a new mechanism by which the metabolic enzyme PKM2 mediates CSFV infection, offering novel avenues for the development of antiviral strategies.


Subject(s)
AMP-Activated Protein Kinases , Classical Swine Fever Virus , Mitophagy , Pyruvate Kinase , TOR Serine-Threonine Kinases , Viral Nonstructural Proteins , Virus Replication , Animals , AMP-Activated Protein Kinases/metabolism , Antiviral Agents , Classical Swine Fever/metabolism , Classical Swine Fever/virology , Classical Swine Fever Virus/growth & development , Classical Swine Fever Virus/physiology , Drug Design , Glycolysis , Pyruvate Kinase/chemistry , Pyruvate Kinase/metabolism , Pyruvates/metabolism , Signal Transduction , Swine/metabolism , Swine/virology , TOR Serine-Threonine Kinases/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
17.
Adv Biol (Weinh) ; 8(5): e2300570, 2024 May.
Article in English | MEDLINE | ID: mdl-38381052

ABSTRACT

Paritaprevir is an orally bioavailable, macrocyclic drug used for treating chronic Hepatitis C virus (HCV) infection. Its structures have been elusive to the public until recently when one of the crystal forms is solved by microcrystal electron diffraction (MicroED). In this work, the MicroED structures of two distinct polymorphic crystal forms of paritaprevir are reported from the same experiment. The different polymorphs show conformational changes in the macrocyclic core, as well as the cyclopropyl sulfonamide and methyl pyrazinamide substituents. Molecular docking shows that one of the conformations fits well into the active site pocket of the HCV non-structural 3/4A (NS3/4A) serine protease target, and can interact with the pocket and catalytic triad via hydrophobic interactions and hydrogen bonds. These results can provide further insight for optimization of the binding of acyl sulfonamide inhibitors to the HCV NS3/4A serine protease. In addition, this also demonstrates the opportunity to derive different polymorphs and distinct macrocycle conformations from the same experiments using MicroED.


Subject(s)
Cyclopropanes , Lactams, Macrocyclic , Molecular Docking Simulation , Proline , Sulfonamides , Sulfonamides/chemistry , Sulfonamides/pharmacology , Cyclopropanes/chemistry , Cyclopropanes/pharmacology , Lactams, Macrocyclic/chemistry , Lactams, Macrocyclic/pharmacology , Proline/analogs & derivatives , Proline/chemistry , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Hepacivirus/enzymology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
18.
Biophys Chem ; 307: 107176, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219420

ABSTRACT

One of the critical stages of the T-cell immune response is the dimerization of the intramembrane domains of T-cell receptors (TCR). Structural similarities between the immunosuppressive domains of viral proteins and the transmembrane domains of TCR have led several authors to hypothesize the mechanism of immune response suppression by highly pathogenic viruses: viral proteins embed themselves in the membrane and act on the intramembrane domain of the TCRalpha subunit, hindering its functional oligomerization. It has also been suggested that this mechanism is used by influenza A virus in NS1-mediated immunosuppression. We have shown that the peptide corresponding to the primary structure of the potential immunosuppressive domain of NS1 protein (G51) can reduce concanavalin A-induced proliferation of PBMC cells, as well as in vitro, G51 can affect the oligomerization of the core peptide corresponding to the intramembrane domain of TCR, using AFM and small-angle neutron scattering. The results obtained using in cellulo and in vitro model systems suggest the presence of functional interaction between the NS1 fragment and the intramembrane domain of the TCR alpha subunit. We have proposed a possible scheme for such interaction obtained by computer modeling. This suggests the existence of another NS1-mediated mechanism of immunosuppression in influenza.


Subject(s)
Influenza, Human , Humans , Leukocytes, Mononuclear/metabolism , Peptides/pharmacology , Immunity , Viral Proteins , Receptors, Antigen, T-Cell , Viral Nonstructural Proteins/chemistry
19.
Mol Pharm ; 21(3): 1149-1159, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38288708

ABSTRACT

The development of biomolecule delivery systems is essential for the treatment of various diseases such as cancer, immunological diseases, and metabolic disorders. For the first time, we found that SARS-CoV-2-encoded nonstructural protein 2 (NSP2) can be secreted from the cells, where it is synthesized. Brefeldin A and H89, inhibitors of ER/Golgi secretion pathways, did not inhibit NSP2 secretion. NSP2 is likely secreted via an unconventional secretory pathway. Moreover, both secreted and purified NSP2 proteins were able to traverse the plasma membrane barrier and enter both immortalized human umbilical vein endothelial cells and tumor cell lines. After entry, the NSP2 protein was localized in only the cytoplasm. Cytochalasin D, a potent inhibitor of actin polymerization, inhibited the entry of NSP2. NSP2 can carry other molecules into cells. Burkholderia lethal factor 1, a monomeric toxin from the intracellular pathogen Burkholderia pseudomallei, has demonstrated antitumor activity by targeting host eukaryotic initiation translation factor 4A. An NSP2-BLF1 fusion protein was translocated across the cellular membranes of Huh7 cells and mediated cell killing. By using different approaches, including protein purification, chemical inhibition, and cell imaging, we confirm that NSP2 is able to deliver heterologous proteins into cells. NSP2 can act as a potential delivery vehicle for proteins.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Endothelial Cells/metabolism , Cell Line, Tumor
20.
J Chem Inf Model ; 64(3): 874-891, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38277124

ABSTRACT

The emergence of the COVID-19 situation has become a global issue due to the lack of effective antiviral drugs for treatment. Flavonoids are a class of plant secondary metabolites that have antiviral activity against SARS-CoV-2 through inhibition of the main protease (3CLpro). In this study, 22 flavonoids obtained from natural sources and semisynthetic approaches were investigated for their inhibitory activity against SARS-CoV-2 3CLpro, along with cytotoxicity on Vero cells. The protein-ligand interactions were examined using molecular dynamics simulation. Moreover, QSAR analysis was conducted to clarify the structural effects on bioactivity. Accordingly, the in vitro investigation demonstrated that four flavonoids, namely, tectochrysin (7), 6″,6″-dimethylchromeno-[2″,3″:7,8]-flavone (9), panduratin A (19), and genistein (20), showed higher protease inhibitory activity compared to the standard flavonoid baicalein. Finally, our finding suggests that genistein (20), an isoflavone discovered in Millettia brandisiana, has potential for further development as a SARS-CoV-2 3CLpro inhibitor.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Chlorocebus aethiops , SARS-CoV-2/metabolism , Vero Cells , Genistein/pharmacology , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/chemistry , Peptide Hydrolases , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...