Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
Article in English | MEDLINE | ID: mdl-38669775

ABSTRACT

Filamentous hemagglutinin (FHA) is a critical adhesion molecule produced by Bordetella pertussis (BP), the causative agent of highly contagious respiratory infection known as whooping cough. FHA plays a pivotal role in the pathogenesis of whooping cough and is a key component of acellular pertussis vaccines (aPV). However, conventional purification methods for FHA often involve labor-intensive processes and result in low purity and recovery rates. Therefore, this study explores the use of monoclonal and polyclonal antibodies as specific tools to achieve highly pure and efficient FHA purification. To generate FHA-specific antibodies, polyclonal antibodies were produced by immunizing sheep and monoclonal antibodies (MAbs) were generated by immunizing mice with recombinant and native FHA. The MAbs were selected based on affinity, isotypes, and specificity, which were assessed through ELISA and Western blot assays. Two immunoaffinity columns, one monoclonal and one polyclonal, were prepared for FHA antigen purification. The purity and recovery rates of these purifications were determined using ELISA, SDS-PAGE, and immunoblotting. Furthermore, the MAbs were employed to develop an ELISA assay for FHA antigen concentration determination. The study's findings revealed that immunoaffinity column-based purification of FHA resulted in a highly pure antigen with recovery rates of approximately 57% ± 6.5% and 59% ± 7.9% for monoclonal and polyclonal columns, respectively. Additionally, the developed ELISA exhibited appropriate reactivity for determining FHA antigen concentration. This research demonstrates that affinity chromatography is a viable and advantageous method for purifying FHA, offering superior purity and recovery rates compared to traditional techniques. This approach provides a practical alternative for FHA purification in the context of aPV development.


Subject(s)
Antibodies, Monoclonal , Bordetella pertussis , Chromatography, Affinity , Virulence Factors, Bordetella , Chromatography, Affinity/methods , Animals , Bordetella pertussis/immunology , Bordetella pertussis/chemistry , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/immunology , Mice , Virulence Factors, Bordetella/immunology , Virulence Factors, Bordetella/chemistry , Adhesins, Bacterial/immunology , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/isolation & purification , Mice, Inbred BALB C , Sheep , Antibodies, Bacterial/immunology , Antibodies, Bacterial/chemistry , Enzyme-Linked Immunosorbent Assay/methods
2.
Biophys J ; 122(14): 2988-2995, 2023 07 25.
Article in English | MEDLINE | ID: mdl-36960532

ABSTRACT

Autotransporters are a large family of virulence factors found in Gram-negative bacteria that play important roles in their pathogenesis. The passenger domain of autotransporters is almost always composed of a large ß-helix, with only a small portion of it being relevant to its virulence function. This has led to the hypothesis that the folding of the ß-helical structure aids the secretion of the passenger domain across the Gram-negative outer membrane. In this study, we used molecular dynamics simulations and enhanced sampling methods to investigate the stability and folding of the passenger domain of pertactin, an autotransporter from Bordetella pertussis. Specifically, we employed steered molecular dynamics to simulate the unfolding of the entire passenger domain as well as self-learning adaptive umbrella sampling to compare the energetics of folding rungs of the ß-helix independently ("isolated folding") versus folding rungs on top of a previously folded rung ("vectorial folding"). Our results showed that vectorial folding is highly favorable compared with isolated folding; moreover, our simulations showed that the C-terminal rung of the ß-helix is the most resistant to unfolding, in agreement with previous studies that found the C-terminal half of the passenger domain to be more stable than the N-terminal one. Overall, this study provides new insights into the folding process of an autotransporter passenger domain and its potential role in secretion across the outer membrane.


Subject(s)
Escherichia coli Proteins , Type V Secretion Systems , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Protein Folding , Virulence Factors, Bordetella/chemistry , Bacterial Outer Membrane Proteins/chemistry , Escherichia coli Proteins/chemistry
3.
J Biol Chem ; 298(5): 101892, 2022 05.
Article in English | MEDLINE | ID: mdl-35378130

ABSTRACT

Bordetella pertussis is the causative agent of whooping cough, a highly contagious respiratory disease. Pertussis toxin (PT), a major virulence factor secreted by B. pertussis, is an AB5-type protein complex topologically related to cholera toxin. The PT protein complex is internalized by host cells and follows a retrograde trafficking route to the endoplasmic reticulum, where it subsequently dissociates. The released enzymatic S1 subunit is then translocated from the endoplasmic reticulum into the cytosol and subsequently ADP-ribosylates the inhibitory alpha-subunits (Gαi) of heterotrimeric G proteins, thus promoting dysregulation of G protein-coupled receptor signaling. However, the mechanistic details of the ADP-ribosylation activity of PT are not well understood. Here, we describe crystal structures of the S1 subunit in complex with nicotinamide adenine dinucleotide (NAD+), with NAD+ hydrolysis products ADP-ribose and nicotinamide, with NAD+ analog PJ34, and with a novel NAD+ analog formed upon S1 subunit crystallization with 3-amino benzamide and NAD+, which we name benzamide amino adenine dinucleotide. These crystal structures provide unprecedented insights into pre- and post-NAD+ hydrolysis steps of the ADP-ribosyltransferase activity of PT. We propose that these data may aid in rational drug design approaches and further development of PT-specific small-molecule inhibitors.


Subject(s)
NAD , Pertussis Toxin/chemistry , Virulence Factors, Bordetella/chemistry , ADP-Ribosylation , Adenosine Diphosphate Ribose/metabolism , Bordetella pertussis , Cytosol/metabolism , NAD/metabolism
4.
J Biol Chem ; 298(3): 101715, 2022 03.
Article in English | MEDLINE | ID: mdl-35151691

ABSTRACT

Infection by the bacterium Bordetella pertussis continues to cause considerable morbidity and mortality worldwide. Many current acellular pertussis vaccines include the antigen pertactin, which has presumptive adhesive and immunomodulatory activities, but is rapidly lost from clinical isolates after the introduction of these vaccines. To better understand the contributions of pertactin antibodies to protection and pertactin's role in pathogenesis, we isolated and characterized recombinant antibodies binding four distinct epitopes on pertactin. We demonstrate that four of these antibodies bind epitopes that are conserved across all three classical Bordetella strains, and competition assays further showed that antibodies binding these epitopes are also elicited by B. pertussis infection of baboons. Surprisingly, we found that representative antibodies binding each epitope protected mice against experimental B. pertussis infection. A cocktail of antibodies from each epitope group protected mice against a subsequent lethal dose of B. pertussis and greatly reduced lung colonization levels after sublethal challenge. Each antibody reduced B. pertussis lung colonization levels up to 100-fold when administered individually, which was significantly reduced when antibody effector functions were impaired, with no antibody mediating antibody-dependent complement-induced lysis. These data suggest that antibodies binding multiple pertactin epitopes protect primarily by the same bactericidal mechanism, which overshadows contributions from blockade of other pertactin functions. These antibodies expand the available tools to further dissect pertactin's role in infection and understand the impact of antipertactin antibodies on bacterial fitness.


Subject(s)
Antibodies , Bacterial Outer Membrane Proteins , Bordetella pertussis , Virulence Factors, Bordetella , Whooping Cough , Animals , Antibodies/immunology , Antibodies, Bacterial/immunology , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/metabolism , Epitopes , Mice , Pertussis Vaccine/immunology , Virulence Factors, Bordetella/chemistry , Virulence Factors, Bordetella/immunology , Virulence Factors, Bordetella/metabolism , Whooping Cough/prevention & control
5.
PLoS Pathog ; 17(9): e1009920, 2021 09.
Article in English | MEDLINE | ID: mdl-34547035

ABSTRACT

RTX leukotoxins are a diverse family of prokaryotic virulence factors that are secreted by the type 1 secretion system (T1SS) and target leukocytes to subvert host defenses. T1SS substrates all contain a C-terminal RTX domain that mediates recruitment to the T1SS and drives secretion via a Brownian ratchet mechanism. Neutralizing antibodies against the Bordetella pertussis adenylate cyclase toxin, an RTX leukotoxin essential for B. pertussis colonization, have been shown to target the RTX domain and prevent binding to the αMß2 integrin receptor. Knowledge of the mechanisms by which antibodies bind and neutralize RTX leukotoxins is required to inform structure-based design of bacterial vaccines, however, no structural data are available for antibody binding to any T1SS substrate. Here, we determine the crystal structure of an engineered RTX domain fragment containing the αMß2-binding site bound to two neutralizing antibodies. Notably, the receptor-blocking antibodies bind to the linker regions of RTX blocks I-III, suggesting they are key neutralization-sensitive sites within the RTX domain and are likely involved in binding the αMß2 receptor. As the engineered RTX fragment contained these key epitopes, we assessed its immunogenicity in mice and showed that it elicits similar neutralizing antibody titers to the full RTX domain. The results from these studies will support the development of bacterial vaccines targeting RTX leukotoxins, as well as next-generation B. pertussis vaccines.


Subject(s)
Adenylate Cyclase Toxin/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Protozoan/chemistry , Pertussis Vaccine , Virulence Factors, Bordetella/chemistry , Adenylate Cyclase Toxin/immunology , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/chemistry , Antigens, Protozoan/immunology , Bordetella pertussis , Mice , Protein Domains/immunology , Virulence Factors, Bordetella/immunology , Whooping Cough/immunology , Whooping Cough/prevention & control
6.
Proc Natl Acad Sci U S A ; 117(38): 23356-23364, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32879005

ABSTRACT

Much attention is being paid to conformational biases in the ensembles of intrinsically disordered proteins. However, it is currently unknown whether or how conformational biases within the disordered ensembles of foldable proteins affect function in vivo. Recently, we demonstrated that water can be a good solvent for unfolded polypeptide chains, even those with a hydrophobic and charged sequence composition typical of folded proteins. These results run counter to the generally accepted model that protein folding begins with hydrophobicity-driven chain collapse. Here we investigate what other features, beyond amino acid composition, govern chain collapse. We found that local clustering of hydrophobic and/or charged residues leads to significant collapse of the unfolded ensemble of pertactin, a secreted autotransporter virulence protein from Bordetella pertussis, as measured by small angle X-ray scattering (SAXS). Sequence patterns that lead to collapse also correlate with increased intermolecular polypeptide chain association and aggregation. Crucially, sequence patterns that support an expanded conformational ensemble enhance pertactin secretion to the bacterial cell surface. Similar sequence pattern features are enriched across the large and diverse family of autotransporter virulence proteins, suggesting sequence patterns that favor an expanded conformational ensemble are under selection for efficient autotransporter protein secretion, a necessary prerequisite for virulence. More broadly, we found that sequence patterns that lead to more expanded conformational ensembles are enriched across water-soluble proteins in general, suggesting protein sequences are under selection to regulate collapse and minimize protein aggregation, in addition to their roles in stabilizing folded protein structures.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Bacterial Proteins/chemistry , Bordetella pertussis/metabolism , Protein Unfolding , Virulence Factors, Bordetella/chemistry , Amino Acid Sequence , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bordetella pertussis/chemistry , Bordetella pertussis/genetics , Protein Conformation , Protein Folding , Scattering, Small Angle , Virulence Factors, Bordetella/genetics , Virulence Factors, Bordetella/metabolism
7.
Vaccine ; 36(38): 5738-5746, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30107994

ABSTRACT

Determination of protein concentration in vaccines containing aluminum salt adjuvant typically necessitates desorption of the protein prior to analysis. Here we describe a method based on the intrinsic fluorescence of tyrosine and tryptophan that requires no desorption of proteins. Adjuvanted formulations of three model Bordetella pertussis antigens were excited at 280 nm and their emission spectra collected from 290 to 400 nm. Emission spectra of protein antigens in the presence of aluminum salt adjuvants were able to be detected, the effects of adjuvants on the spectra were analyzed, and linear regressions were calculated. The fluorescence method proved to be very sensitive with a limit of quantification between 0.4 and 4.4 µg/mL and limit of linearity between 100 and 200 µg/mL, across the formulations tested. The fluorescence method was found to be influenced by adjuvant presence, type of adjuvant, adjuvant concentration, buffer and pH conditions. The method also demonstrated ability to monitor the percent adsorption of antigens to the adjuvants. Furthermore, intrinsic fluorescence showed good correlation with micro-Kjeldahl elemental assay in quantifying protein concentration. Being a non-invasive, quick and sensitive method, intrinsic fluorescence has the potential to be utilized as a high throughput tool for vaccine development and conceivably implemented in-line, using in-line fluorimeters, to monitor antigen concentration during formulation processing.


Subject(s)
Adjuvants, Immunologic/chemistry , Aluminum Hydroxide/chemistry , Antigens, Bacterial/analysis , Bacterial Proteins/analysis , Bordetella pertussis/chemistry , Luminescent Measurements/methods , Adhesins, Bacterial/analysis , Adhesins, Bacterial/chemistry , Bacterial Outer Membrane Proteins/analysis , Bacterial Outer Membrane Proteins/chemistry , Fimbriae, Bacterial/chemistry , Fluorescence , Humans , Tryptophan/chemistry , Tyrosine/chemistry , Vaccines/immunology , Virulence Factors, Bordetella/analysis , Virulence Factors, Bordetella/chemistry
8.
Science ; 358(6360): 238-241, 2017 10 13.
Article in English | MEDLINE | ID: mdl-29026044

ABSTRACT

A substantial fraction of the proteome is intrinsically disordered, and even well-folded proteins adopt non-native geometries during synthesis, folding, transport, and turnover. Characterization of intrinsically disordered proteins (IDPs) is challenging, in part because of a lack of accurate physical models and the difficulty of interpreting experimental results. We have developed a general method to extract the dimensions and solvent quality (self-interactions) of IDPs from a single small-angle x-ray scattering measurement. We applied this procedure to a variety of IDPs and found that even IDPs with low net charge and high hydrophobicity remain highly expanded in water, contrary to the general expectation that protein-like sequences collapse in water. Our results suggest that the unfolded state of most foldable sequences is expanded; we conjecture that this property was selected by evolution to minimize misfolding and aggregation.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Protein Folding , Scattering, Small Angle , Water/chemistry , X-Ray Diffraction/methods , Bacterial Outer Membrane Proteins/chemistry , Hydrophobic and Hydrophilic Interactions , Protein Conformation, alpha-Helical , Protein Domains , Virulence Factors, Bordetella/chemistry
9.
J Immunol ; 199(1): 263-270, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28539433

ABSTRACT

Tracheal cytotoxin (TCT), a monomer of DAP-type peptidoglycan from Bordetella pertussis, causes cytopathology in the respiratory epithelia of mammals and robustly triggers the Drosophila Imd pathway. PGRP-LE, a cytosolic innate immune sensor in Drosophila, directly recognizes TCT and triggers the Imd pathway, yet the mechanisms by which TCT accesses the cytosol are poorly understood. In this study, we report that CG8046, a Drosophila SLC46 family transporter, is a novel transporter facilitating cytosolic recognition of TCT, and plays a crucial role in protecting flies against systemic Escherichia coli infection. In addition, mammalian SLC46A2s promote TCT-triggered NOD1 activation in human epithelial cell lines, indicating that SLC46As is a conserved group of peptidoglycan transporter contributing to cytosolic immune recognition.


Subject(s)
Cytosol/immunology , Drosophila Proteins/metabolism , Immunity, Innate , Peptidoglycan/immunology , Symporters/metabolism , Virulence Factors, Bordetella/immunology , Animals , Cell Line , Cell Wall/immunology , Cell Wall/metabolism , Cytosol/metabolism , Drosophila/immunology , Drosophila/microbiology , Escherichia coli/physiology , HEK293 Cells , Humans , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Signal Transduction , Virulence Factors, Bordetella/chemistry , Virulence Factors, Bordetella/metabolism
10.
Vaccine ; 34(34): 4032-9, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27302339

ABSTRACT

Development of acellular pertussis vaccine (aPV) requires purification of several components from Bordetella pertussis. While the components pertussis toxin (PT) and filamentous hemagglutinin (FHA) have been successfully purified, the third component, pertactin, proves to be a difficult target due to its very low concentration. In order to solve its purification problem, we performed the surface potential analysis with GRASP2 program. The results demonstrated that there are two major charge patches, one negative and one positive, which are located separately on this linear protein. For this special feature, we designed a dual ion exchange chromatography strategy including an anionic exchange and a cationic exchange process for separation of pertactin from the heat extract of B. pertussis. The initial anionic exchange chromatography concentrated the product from 1.7% to 14.6%, with recovery of 80%. The second cationic exchange chromatography increased the purity to 33%, with recovery of 83%. The final purification was accomplished by hydrophobic interaction chromatography, yielding a purity of 96%. The total recovery of the three columns was 61%. Characterization of the purified antigen was performed with CD, intrinsic fluorescence, HP-SEC and western-blot, showing that the purified protein kept its natural conformation and immune-reactivity. The rationally designed process proved to be feasible, and it is suitable for large-scale preparation of the third aPV component pertactin.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/isolation & purification , Pertussis Vaccine/chemistry , Virulence Factors, Bordetella/chemistry , Virulence Factors, Bordetella/isolation & purification , Bordetella pertussis , Chromatography, Ion Exchange , Static Electricity
11.
Vaccine ; 34(8): 1040-6, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26784684

ABSTRACT

Vaccines characterization is required to ensure physical, chemical, and biological integrity of antigens and adjuvants. Current analytical methods mostly require complete antigen desorption from aluminum-based adjuvants and are not always suitable to distinguish individual antigens in multivalent formulations. Here, Luminex technology is proposed to improve the analytics of vaccine characterization. As proof of concept, TdaP (tetanus, diphtheria and acellular pertussis) combination, adjuvanted with aluminum hydroxide, was chosen as model formulation to quantify and determine the level of adsorption of acellular pertussis (aP) antigens onto adjuvant surface at the same time. The assay used specific antibodies bound to magnetic microspheres presenting unique digital signatures for each pertussis antigen, allowing the simultaneous recognition of respective antigens in the whole vaccine, avoiding laborious procedures for adjuvant separation. Accurate and reproducible quantification of aP antigens in TdaP vaccine has been achieved in the range 0.78-50 ng/mL, providing simultaneously information on antigen identity, quantity, and degree of adsorption to aluminum hydroxide. The current study could further be considered as a model to set up in vitro potency assays thus supporting the replacement of animal tests accordingly to the 3Rs concept.


Subject(s)
Adjuvants, Immunologic/chemistry , Antigens, Bacterial/chemistry , Immunoassay/methods , Pertussis Vaccine/chemistry , Adhesins, Bacterial/chemistry , Bacterial Outer Membrane Proteins/chemistry , Microspheres , Pertussis Toxin/chemistry , Vaccines, Combined/chemistry , Virulence Factors, Bordetella/chemistry
12.
ACS Nano ; 9(9): 9050-61, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26302243

ABSTRACT

To evaluate the physical parameters governing translocation of an unfolded protein across a lipid bilayer, we studied protein transport through aerolysin, a passive protein channel, at the single-molecule level. The protein model used was the passenger domain of pertactin, an autotransporter virulence protein. Transport of pertactin through the aerolysin nanopore was detected as transient partial current blockades as the unfolded protein partially occluded the aerolysin channel. We compared the dynamics of entry and transport for unfolded pertactin and a covalent end-to-end dimer of the same protein. For both the monomer and the dimer, the event frequency of current blockades increased exponentially with the applied voltage, while the duration of each event decreased exponentially as a function of the electrical potential. The blockade time was twice as long for the dimer as for the monomer. The calculated activation free energy includes a main enthalpic component that we attribute to electrostatic interactions between pertactin and the aerolysin nanopore (despite the low Debye length), plus an entropic component due to confinement of the unfolded chain within the narrow pore. Comparing our experimental results to previous studies and theory suggests that unfolded proteins cross the membrane by passing through the nanopore in a somewhat compact conformation according to the "blob" model of Daoud and de Gennes.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Nanopores , Protein Transport , Protein Unfolding , Virulence Factors, Bordetella/chemistry , Bacterial Outer Membrane Proteins/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Nanotechnology , Protein Denaturation , Virulence Factors, Bordetella/metabolism
13.
mBio ; 6(4)2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26286694

ABSTRACT

UNLABELLED: Bordetella filamentous hemagglutinin (FHA), a primary component of acellular pertussis vaccines, contributes to virulence, but how it functions mechanistically is unclear. FHA is first synthesized as an ~370-kDa preproprotein called FhaB. Removal of an N-terminal signal peptide and a large C-terminal prodomain (PD) during secretion results in "mature" ~250-kDa FHA, which has been assumed to be the biologically active form of the protein. Deletion of two C-terminal subdomains of FhaB did not affect production of functional FHA, and the mutant strains were indistinguishable from wild-type bacteria for their ability to adhere to the lower respiratory tract and to suppress inflammation in the lungs of mice. However, the mutant strains, which produced altered FhaB molecules, were eliminated from the lower respiratory tract much faster than wild-type B. bronchiseptica, suggesting a defect in resistance to early immune-mediated clearance. Our results revealed, unexpectedly, that full-length FhaB plays a critical role in B. bronchiseptica persistence in the lower respiratory tract. IMPORTANCE: The Bordetella filamentous hemagglutinin (FHA) is a primary component of the acellular pertussis vaccine and an important virulence factor. FHA is initially produced as a large protein that is processed during secretion to the bacterial surface. As with most processed proteins, the mature form of FHA has been assumed to be the functional form of the protein. However, our results indicate that the full-length form plays an essential role in virulence in vivo. Furthermore, we have found that FHA contains intramolecular regulators of processing and that this control of processing is integral to its virulence activities. This report highlights the advantage of studying protein maturation and function simultaneously, as a role for the full-length form of FHA was evident only from in vivo infection studies and not from in vitro studies on the production or maturation of FHA or even from in vitro virulence-associated activity assays.


Subject(s)
Adhesins, Bacterial/chemistry , Adhesins, Bacterial/metabolism , Bordetella bronchiseptica/metabolism , Bordetella bronchiseptica/pathogenicity , Respiratory Mucosa/microbiology , Virulence Factors, Bordetella/chemistry , Virulence Factors, Bordetella/metabolism , Adhesins, Bacterial/genetics , Animals , Bacterial Adhesion , Bordetella bronchiseptica/genetics , Bordetella bronchiseptica/immunology , Diphtheria-Tetanus-acellular Pertussis Vaccines/chemistry , Female , Lung/microbiology , Mice , Mutation , Protein Structure, Tertiary , Sequence Alignment , Virulence/genetics , Virulence Factors, Bordetella/genetics
14.
J Biol Chem ; 290(16): 10104-16, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25670852

ABSTRACT

Autotransporter (AT) proteins are a broad class of virulence proteins from Gram-negative bacterial pathogens that require their own C-terminal transmembrane domain to translocate their N-terminal passenger across the bacterial outer membrane (OM). But given the unavailability of ATP or a proton gradient across the OM, it is unknown what energy source(s) drives this process. Here we used a combination of computational and experimental approaches to quantitatively compare proposed AT OM translocation mechanisms. We show directly for the first time that when translocation was blocked an AT passenger remained unfolded in the periplasm. We demonstrate that AT secretion is a kinetically controlled, non-equilibrium process coupled to folding of the passenger and propose a model connecting passenger conformation to secretion kinetics. These results reconcile seemingly contradictory reports regarding the importance of passenger folding as a driving force for OM translocation but also reveal that another energy source is required to initiate translocation.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Bordetella pertussis/metabolism , Bordetella pertussis/pathogenicity , Plasmids/chemistry , Virulence Factors, Bordetella/chemistry , beta-Lactamases/chemistry , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bordetella pertussis/chemistry , Bordetella pertussis/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Kinetics , Molecular Dynamics Simulation , Mutation , Periplasm/chemistry , Periplasm/metabolism , Plasmids/metabolism , Promoter Regions, Genetic , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Transport , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thermodynamics , Virulence , Virulence Factors, Bordetella/genetics , Virulence Factors, Bordetella/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism
15.
Future Microbiol ; 9(12): 1339-60, 2014.
Article in English | MEDLINE | ID: mdl-25517899

ABSTRACT

The filamentous hemagglutinin of pathogenic Bordetellae is a prototype of a large two-partner-system-secreted and ß-structure-rich bacterial adhesin. It exhibits several binding activities that may facilitate bacterial adherence to airway mucosa and host phagocytes in the initial phases of infection. Despite three decades of research on filamentous hemagglutinin, there remain many questions on its structure-function relationships, integrin interactions and possible immunomodulatory signaling capacity. Here we review the state of knowledge on this important virulence factor and acellular pertussis vaccine component. Specific emphasis is placed on outstanding questions that are yet to be answered.


Subject(s)
Adhesins, Bacterial/immunology , Bordetella pertussis/immunology , Bordetella pertussis/pathogenicity , Immunologic Factors , Virulence Factors, Bordetella/immunology , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Animals , CD47 Antigen/metabolism , Diphtheria-Tetanus-acellular Pertussis Vaccines , Humans , Virulence Factors, Bordetella/chemistry , Virulence Factors, Bordetella/genetics , Virulence Factors, Bordetella/metabolism , Whooping Cough/immunology , Whooping Cough/microbiology , Whooping Cough/prevention & control
16.
Microbes Infect ; 16(7): 562-70, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24801497

ABSTRACT

In addition to antibodies, Th1-type T cell responses are also important for long-lasting protection against pertussis. However, upon immunization with the current acellular vaccines, many children fail to induce Th1-type responses, potentially due to immunomodulatory effects of some vaccine antigens, such as filamentous haemagglutinin (FHA). We therefore analysed the ability of FHA to modulate immune functions of human monocyte-derived dendritic cells (MDDC). FHA was purified from pertussis toxin (PTX)-deficient or from PTX- and adenylate cyclase-deficient Bordetella pertussis strains, and residual endotoxin was neutralized with polymyxin B. FHA from both strains induced phenotypic maturation of human MDDC and cytokine secretion (IL-10, IL-12p40, IL-12p70, IL-23 and IL-6). To identify the FHA domains responsible for MDDC immunomodulation, MDDC were stimulated with FHA containing a Gly→Ala substitution at its RGD site (FHA-RAD) or with an 80-kDa N-terminal moiety of FHA (Fha44), containing its heparin-binding site. Whereas FHA-RAD induced maturation and cytokine production comparable to those of FHA, Fha44 did not induce IL-10 production, but maturated MDDC at least partially. Nevertheless, Fha44 induced the secretion of IL-12p40, IL-12p70, IL-23 and IL-6 by MDDC, albeit at lower levels than FHA. Thus, FHA can modulate MDDC responses in multiple ways, and IL-10 induction can be dissociated from the induction of other cytokines.


Subject(s)
Adhesins, Bacterial/pharmacology , Bordetella pertussis/immunology , Cytokines/immunology , Dendritic Cells/immunology , Virulence Factors, Bordetella/pharmacology , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/immunology , Bordetella pertussis/pathogenicity , Cells, Cultured , Cytokines/metabolism , Dendritic Cells/cytology , Dendritic Cells/drug effects , Dendritic Cells/microbiology , Humans , Phenotype , Virulence Factors, Bordetella/chemistry , Virulence Factors, Bordetella/immunology
17.
Article in Russian | MEDLINE | ID: mdl-24738289

ABSTRACT

AIM: Study of Bordetella pertussis lipopolysaccharide (LPS) immunobiological properties in the acellular pertussis vaccine. MATERIALS AND METHODS: Experimental series of acellular pertussis vaccines (APV), lyophilized LPS were used. Antibody titers against LPS in mice sera were evaluated by using EIA with peroxidase conjugate of anti-species antibodies against mice IgG. LPS activity in B. pertussis antigen complex preparations was determined in quantitative chromogenic LAL-test by end point. APV protective activity was determined in mice test during intracerebral infection by B. pertussis strain No. 18323 virulent culture. APV safety was determined in the mice body weight change test. RESULTS: The presence of LPS in APV was shown in immune electrophoresis with purified B. pertussis LPS preparation as a control. Formalin treatment changes immunochemical properties of APV LPS that lead to the shift of precipitation bands with pertussis agglutinating sera from the start zone into cathode. The quantity of LPS in pertussis culture supernatants was on average 49050 +/- 6774 endotoxin units per ml (EU/ml). In APV preparations the quantity of LPS was on average 906 +/- 90 EU/ml, i.e. decreased by more than 50 times. An increase of antibody titers against B. pertussis LPS in mice sera after the APV immunization was shown in EIA, which gives evidence of its presence in immunogenic form in the complex preparations. The preclinical studies carried out show protective activity and specific safety of the experimental APV series. CONCLUSION: Formalin-neutralized APV preparation is a complex of protein antigens in association with LPS. Formalin treatment results in modification of LPS molecule that retains antigenic properties but is significantly less toxic.


Subject(s)
Antigens, Bacterial/immunology , Bordetella pertussis/immunology , Lipopolysaccharides/immunology , Pertussis Vaccine/immunology , Animals , Antigens, Bacterial/chemistry , Antigens, Bacterial/pharmacology , Bordetella pertussis/chemistry , Humans , Lipopolysaccharides/chemistry , Lipopolysaccharides/pharmacology , Mice , Pertussis Vaccine/chemistry , Pertussis Vaccine/pharmacology , Vaccines, Acellular/chemistry , Vaccines, Acellular/immunology , Vaccines, Acellular/pharmacology , Virulence Factors, Bordetella/chemistry , Virulence Factors, Bordetella/immunology , Virulence Factors, Bordetella/pharmacology , Whooping Cough/immunology , Whooping Cough/prevention & control
18.
J Pept Sci ; 20(4): 235-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24599619

ABSTRACT

Synthetic mimics of discontinuous epitopes may have a wide range of potential applications, including synthetic vaccines and inhibition of protein-protein interactions. However, synthetic access to these relatively complex peptide molecular constructs is limited. This paper describes a versatile convergent strategy for the construction of protein mimics presenting three different cyclic peptides. Using an orthogonal alkyne protection strategy, peptide loops were introduced successively onto a triazacyclophane scaffold via Cu(I)-catalyzed azide alkyne cycloaddition. This method provides rapid access to protein mimics requiring different peptide segments for their interaction and activity.


Subject(s)
Azides/chemistry , Bacterial Outer Membrane Proteins/chemistry , Bordetella pertussis/chemistry , Copper/chemistry , Cycloaddition Reaction , Molecular Mimicry , Peptides, Cyclic/chemical synthesis , Virulence Factors, Bordetella/chemistry , Alkynes/chemistry , Spectrometry, Mass, Electrospray Ionization
19.
Mol Microbiol ; 86(4): 988-1006, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23035892

ABSTRACT

Two-partner secretion (TPS) systems use ß-barrel proteins of the Omp85-TpsB superfamily to transport large exoproteins across the outer membranes of Gram-negative bacteria. The Bordetella FHA/FhaC proteins are prototypical of TPS systems in which the exoprotein contains a large C-terminal prodomain that is removed during translocation. Although it is known that the FhaB prodomain is required for FHA function in vivo, its role in FHA maturation has remained mysterious. We show here that the FhaB prodomain is required for the extracellularly located mature C-terminal domain (MCD) of FHA to achieve its proper conformation. We show that the C-terminus of the prodomain is retained intracellularly and that sequences within the N-terminus of the prodomain are required for this intracellular localization. We also identify sequences at the C-terminus of the MCD that are required for release of mature FHA from the cell surface. Our data support a model in which the intracellularly located prodomain affects the final conformation of the extracellularly located MCD. We hypothesize that maturation triggers cleavage and degradation of the prodomain.


Subject(s)
Adhesins, Bacterial/metabolism , Protein Processing, Post-Translational , Virulence Factors, Bordetella/metabolism , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/physiology , Animals , Bacterial Adhesion , Epithelial Cells/microbiology , Models, Biological , Protein Conformation , Proteolysis , Rats , Virulence Factors, Bordetella/chemistry
20.
Curr Top Microbiol Immunol ; 361: 113-29, 2012.
Article in English | MEDLINE | ID: mdl-22411430

ABSTRACT

Atrophic rhinitis is a widespread and economically important swine disease caused by Pasteurella multocida and Bordetella bronchiseptica. The disease is characterized by atrophy of the nasal turbinate bones, which results in a shortened and deformed snout in severe cases. P. multocida toxin and B. bronchiseptica dermonecrotic toxin have been considered to independently or cooperatively disturb the osteogenesis of the turbinate bone by inhibiting osteoblastic differentiation and/or stimulating bone resorption by osteoclasts. Recently, the intracellular targets and molecular actions of both toxins have been clarified, enabling speculation on the intracellular signals leading to the inhibition of osteogenesis.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Bordetella Infections/metabolism , Bordetella bronchiseptica/metabolism , Pasteurella multocida/metabolism , Rhinitis, Atrophic/metabolism , Swine Diseases/metabolism , Transglutaminases/metabolism , Virulence Factors, Bordetella/metabolism , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Bone Resorption/microbiology , Bone Resorption/pathology , Bordetella Infections/genetics , Bordetella Infections/microbiology , Bordetella bronchiseptica/genetics , Bordetella bronchiseptica/pathogenicity , Coinfection , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Humans , Pasteurella multocida/genetics , Pasteurella multocida/pathogenicity , Rhinitis, Atrophic/genetics , Rhinitis, Atrophic/microbiology , Signal Transduction , Swine , Swine Diseases/microbiology , Swine Diseases/pathology , Transglutaminases/chemistry , Transglutaminases/genetics , Turbinates/microbiology , Turbinates/pathology , Virulence Factors, Bordetella/chemistry , Virulence Factors, Bordetella/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...