Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.388
Filter
1.
Nucleus ; 15(1): 2350178, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38717150

ABSTRACT

Paraspeckles are non-membranous subnuclear bodies, formed through the interaction between the architectural long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) and specific RNA-binding proteins, including the three Drosophila Behavior/Human Splicing (DBHS) family members (PSPC1 (Paraspeckle Component 1), SFPQ (Splicing Factor Proline and Glutamine Rich) and NONO (Non-POU domain-containing octamer-binding protein)). Paraspeckle components were found to impact viral infections through various mechanisms, such as induction of antiviral gene expression, IRES-mediated translation, or viral mRNA polyadenylation. A complex involving NEAT1 RNA and paraspeckle proteins was also found to modulate interferon gene transcription after nuclear DNA sensing, through the activation of the cGAS-STING axis. This review aims to provide an overview on how these elements actively contribute to the dynamics of viral infections.


Subject(s)
Virus Diseases , Humans , Virus Diseases/metabolism , Virus Diseases/genetics , Virus Diseases/virology , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
2.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674036

ABSTRACT

CX3CL1, also named fractalkine or neurotactin, is the only known member of the CX3C chemokine family that can chemoattract several immune cells. CX3CL1 exists in both membrane-anchored and soluble forms, with each mediating distinct biological activities. CX3CL1 signals are transmitted through its unique receptor, CX3CR1, primarily expressed in the microglia of the central nervous system (CNS). In the CNS, CX3CL1 acts as a regulator of microglia activation in response to brain disorders or inflammation. Recently, there has been a growing interest in the role of CX3CL1 in regulating cell adhesion, chemotaxis, and host immune response in viral infection. Here, we provide a comprehensive review of the changes and function of CX3CL1 in various viral infections, such as human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and cytomegalovirus (CMV) infection, to highlight the emerging roles of CX3CL1 in viral infection and associated diseases.


Subject(s)
Chemokine CX3CL1 , Virus Diseases , Chemokine CX3CL1/metabolism , Humans , Virus Diseases/metabolism , Virus Diseases/immunology , Virus Diseases/virology , Animals , COVID-19/virology , COVID-19/metabolism , COVID-19/immunology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Microglia/metabolism , Microglia/virology , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics
3.
Life Sci ; 346: 122643, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614308

ABSTRACT

Lectins are protein or glycoprotein molecules with a specific ability to bind to carbohydrates. From viruses to mammals, they are found in various organisms and exhibit remarkable diverse structures and functions. They are significant contributors to defense mechanisms against microbial attacks in plants. They are also involved in functions such as controlling lymphocyte migration, regulating glycoprotein biosynthesis, cell-cell recognition, and embryonic development in animals. In addition, lectins serve as invaluable molecular tools in various biological and medical disciplines due to their reversible binding ability and enable the monitoring of cell membrane changes in physiological and pathological contexts. Microbial lectins, often referred to as adhesins, play an important role in microbial colonization, pathogenicity, and interactions among microorganisms. Viral lectins are located in the bilayered viral membrane, whereas bacterial lectins are found intracellularly and on the bacterial cell surface. Microfungal lectins are typically intracellular and have various functions in host-parasite interaction, and in fungal growth and morphogenesis. Although microbial lectin studies are less extensive than those of plants and animals, they provide insights into the infection mechanisms and potential interventions. Glycan specificity, essential functions in infectious diseases, and applications in the diagnosis and treatment of viral and bacterial infections are critical aspects of microbial lectin research. In this review, we will discuss the application and therapeutic potential of viral, bacterial and microfungal lectins.


Subject(s)
Lectins , Humans , Lectins/metabolism , Animals , Bacterial Infections/drug therapy , Bacterial Infections/metabolism , Virus Diseases/drug therapy , Virus Diseases/metabolism , Bacteria/metabolism , Viruses/metabolism , Viruses/pathogenicity
4.
Am J Reprod Immunol ; 91(4): e13844, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38627916

ABSTRACT

Preeclampsia is one of the most common disorders that poses threat to both mothers and neonates and a major contributor to perinatal morbidity and mortality worldwide. Viral infection during pregnancy is not typically considered to cause preeclampsia; however, syndromic nature of preeclampsia etiology and the immunomodulatory effects of viral infections suggest that microbes could trigger a subset of preeclampsia. Notably, SARS-CoV-2 infection is associated with an increased risk of preeclampsia. Herein, we review the potential role of viral infections in this great obstetrical syndrome. According to in vitro and in vivo experimental studies, viral infections can cause preeclampsia by introducing poor placentation, syncytiotrophoblast stress, and/or maternal systemic inflammation, which are all known to play a critical role in the development of preeclampsia. Moreover, clinical and experimental investigations have suggested a link between several viruses and the onset of preeclampsia via multiple pathways. However, the results of experimental and clinical research are not always consistent. Therefore, future studies should investigate the causal link between viral infections and preeclampsia to elucidate the mechanism behind this relationship and the etiology of preeclampsia itself.


Subject(s)
Pre-Eclampsia , Virus Diseases , Viruses , Pregnancy , Infant, Newborn , Female , Humans , Pre-Eclampsia/metabolism , Placentation , Trophoblasts/metabolism , Virus Diseases/complications , Virus Diseases/metabolism , Placenta/metabolism
5.
Cell Rep ; 43(4): 114095, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38613787

ABSTRACT

Interferon (IFN) contributes to the host's antiviral response by inducing IFN-stimulated genes (ISGs). However, their functional targets and the mechanism of action remain elusive. Here, we report that one such ISG, TRIM21, interacts with and degrades the TRPV2 channel in myeloid cells, reducing its expression and providing host protection against viral infections. Moreover, viral infection upregulates TRIM21 in paracrine and autocrine manners, downregulating TRPV2 in neighboring cells to prevent viral spread to uninfected cells. Consistently, the Trim21-/- mice are more susceptible to HSV-1 and VSV infection than the Trim21+/+ littermates, in which viral susceptibility is rescued by inhibition or deletion of TRPV2. Mechanistically, TRIM21 catalyzes the K48-linked ubiquitination of TRPV2 at Lys295. TRPV2K295R is resistant to viral-infection-induced TRIM21-dependent ubiquitination and degradation, promoting viral infection more profoundly than wild-type TRPV2 when reconstituted into Lyz2-Cre;Trpv2fl/fl myeloid cells. These findings characterize targeting the TRIM21-TRPV2 axis as a conducive strategy to control viral spread to bystander cells.


Subject(s)
Ribonucleoproteins , TRPV Cation Channels , Ubiquitination , Virus Diseases , Animals , Humans , Mice , Down-Regulation , HEK293 Cells , Herpesvirus 1, Human/physiology , Interferons/metabolism , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/metabolism , Ribonucleoproteins/metabolism , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Virus Diseases/metabolism
6.
Exp Mol Med ; 56(4): 799-808, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658699

ABSTRACT

The dynamic spatial organization of genomes across time, referred to as the four-dimensional nucleome (4DN), is a key component of gene regulation and biological fate. Viral infections can lead to a reconfiguration of viral and host genomes, impacting gene expression, replication, latency, and oncogenic transformation. This review provides a summary of recent research employing three-dimensional genomic methods such as Hi-C, 4C, ChIA-PET, and HiChIP in virology. We review how viruses induce changes in gene loop formation between regulatory elements, modify chromatin accessibility, and trigger shifts between A and B compartments in the host genome. We highlight the central role of cellular chromatin organizing factors, such as CTCF and cohesin, that reshape the 3D structure of both viral and cellular genomes. We consider how viral episomes, viral proteins, and viral integration sites can alter the host epigenome and how host cell type and conditions determine viral epigenomes. This review consolidates current knowledge of the diverse host-viral interactions that impact the 4DN.


Subject(s)
Genome, Viral , Humans , Animals , Host-Pathogen Interactions , Viruses/metabolism , Viruses/genetics , Chromatin/metabolism , Virus Diseases/virology , Virus Diseases/metabolism
7.
Life Sci ; 347: 122653, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38663839

ABSTRACT

Autophagy is a cellular degradation system that recycles or degrades damaged organelles, viral particles, and aggregated proteins through the lysosomal pathway. Autophagy plays an indispensable role in cellular homeostasis and communication processes. An interesting aspect is that autophagy also mediates the secretion of cellular contents, a process known as secretory autophagy. Secretory autophagy differs from macroautophagy, which sequesters recruited proteins, organelles, or viral particles into autophagosomes and degrades these sequesters in lysosomes, while the secretory autophagy pathway participates in the extracellular export of cellular contents sequestered by autophagosomes through autophagy and endosomal modulators. Recent evidence reveals that secretory autophagy is pivotal in the occurrence and progression of diseases. In this review, we summarize the molecular mechanisms of secretory autophagy. Furthermore, we review the impact of secretory autophagy on diseases, including cancer, viral infectious diseases, neurodegenerative diseases, and cardiovascular diseases. Considering the pleiotropic actions of secretory autophagy on diseases, studying the mechanism of secretory autophagy may help to understand the relevant pathophysiological processes.


Subject(s)
Autophagy , Humans , Autophagy/physiology , Animals , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neoplasms/pathology , Neoplasms/metabolism , Virus Diseases/metabolism , Virus Diseases/pathology , Autophagosomes/metabolism , Lysosomes/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Cardiovascular Diseases/physiopathology
8.
Front Immunol ; 15: 1379777, 2024.
Article in English | MEDLINE | ID: mdl-38504985

ABSTRACT

CD8+ T cells are critical mediators of pathogen clearance and anti-tumor immunity. Although signaling pathways leading to the activation of NF-κB transcription factors have crucial functions in the regulation of immune responses, the CD8+ T cell-autonomous roles of the different NF-κB subunits, are still unresolved. Here, we investigated the function of the ubiquitously expressed transcription factor RelA in CD8+ T-cell biology using a novel mouse model and gene-edited human cells. We found that CD8+ T cell-specific ablation of RelA markedly altered the transcriptome of ex vivo stimulated cells, but maintained the proliferative capacity of both mouse and human cells. In contrast, in vivo experiments showed that RelA deficiency did not affect the CD8+ T-cell response to acute viral infection or transplanted tumors. Our data suggest that in CD8+ T cells, RelA is dispensable for their protective activity in pathological contexts.


Subject(s)
Neoplasms , Virus Diseases , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/metabolism , Neoplasms/metabolism , NF-kappa B/metabolism , NF-kappa B p50 Subunit/metabolism , Transcription Factor RelA/metabolism , Virus Diseases/metabolism
9.
Nat Cell Biol ; 26(3): 450-463, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38326554

ABSTRACT

Memory CD8+ T cells play a crucial role in infection and cancer and mount rapid responses to repeat antigen exposure. Although memory cell transcriptional programmes have been previously identified, the regulatory mechanisms that control the formation of CD8+ T cells have not been resolved. Here we report ECSIT as an essential mediator of memory CD8+ T cell differentiation. Ablation of ECSIT in T cells resulted in loss of fumarate synthesis and abrogated TCF-1 expression via demethylation of the TCF-1 promoter by the histone demethylase KDM5, thereby impairing memory CD8+ T cell development in a cell-intrinsic manner. In addition, ECSIT expression correlated positively with stem-like memory progenitor exhausted CD8+ T cells and the survival of patients with cancer. Our study demonstrates that ECSIT-mediated fumarate synthesis stimulates TCF-1 activity and memory CD8+ T cell development during viral infection and tumorigenesis and highlights the utility of therapeutic fumarate analogues and PD-L1 inhibition for tumour immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Virus Diseases , Humans , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Transformation, Neoplastic/metabolism , Promoter Regions, Genetic , Virus Diseases/metabolism
10.
Cell Death Differ ; 31(3): 280-291, 2024 03.
Article in English | MEDLINE | ID: mdl-38383887

ABSTRACT

Detection of cytosolic nucleic acids by pattern recognition receptors, including STING and RIG-I, leads to the activation of multiple signalling pathways that culminate in the production of type I interferons (IFNs) which are vital for host survival during virus infection. In addition to protective immune modulatory functions, type I IFNs are also associated with autoimmune diseases. Hence, it is important to elucidate the mechanisms that govern their expression. In this study, we identified a critical regulatory function of the DUSP4 phosphatase in innate immune signalling. We found that DUSP4 regulates the activation of TBK1 and ERK1/2 in a signalling complex containing DUSP4, TBK1, ERK1/2 and IRF3 to regulate the production of type I IFNs. Mice deficient in DUSP4 were more resistant to infections by both RNA and DNA viruses but more susceptible to malaria parasites. Therefore, our study establishes DUSP4 as a regulator of nucleic acid sensor signalling and sheds light on an important facet of the type I IFN regulatory system.


Subject(s)
Interferon Type I , Membrane Proteins , Protein Tyrosine Phosphatases , Receptors, Cell Surface , Roundabout Proteins , Virus Diseases , Animals , Mice , Immunity, Innate , Interferon Type I/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Virus Diseases/immunology , Virus Diseases/metabolism , Membrane Proteins/metabolism , Roundabout Proteins/metabolism , Protein Tyrosine Phosphatases/metabolism , Receptors, Cell Surface/metabolism
11.
Front Cell Infect Microbiol ; 14: 1349221, 2024.
Article in English | MEDLINE | ID: mdl-38357444

ABSTRACT

Viruses, despite their simple structural composition, engage in intricate and complex interactions with their hosts due to their parasitic nature. A notable demonstration of viral behavior lies in their exploitation of lysosomes, specialized organelles responsible for the breakdown of biomolecules and clearance of foreign substances, to bolster their own replication. The man-nose-6-phosphate (M6P) pathway, crucial for facilitating the proper transport of hydrolases into lysosomes and promoting lysosome maturation, is frequently exploited for viral manipulation in support of replication. Recently, the discovery of lysosomal enzyme trafficking factor (LYSET) as a pivotal regulator within the lysosomal M6P pathway has introduced a fresh perspective on the intricate interplay between viral entry and host factors. This groundbreaking revelation illuminates unexplored dimensions of these interactions. In this review, we endeavor to provide a thorough overview of the M6P pathway and its intricate interplay with viral factors during infection. By consolidating the current understanding in this field, our objective is to establish a valuable reference for the development of antiviral drugs that selectively target the M6P pathway.


Subject(s)
Hydrolases , Virus Diseases , Humans , Hydrolases/metabolism , Mannosephosphates/analysis , Mannosephosphates/chemistry , Mannosephosphates/metabolism , Virus Diseases/metabolism , Lysosomes/metabolism
12.
Virulence ; 15(1): 2299182, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38193514

ABSTRACT

Newcastle disease virus (NDV) typically induces severe illness in poultry and results in significant economic losses for the worldwide poultry sector. NDV, an RNA virus with a single-stranded negative-sense genome, is susceptible to mutation and immune evasion during viral transmission, thus imposing enormous challenges to avian health and poultry production. NDV is composed of six structural proteins and two nonstructural proteins that exert pivotal roles in viral infection and antiviral responses by interacting with host proteins. Nowadays, there is a particular focus on the mechanisms of virus-host protein interactions in NDV research, yet a comprehensive overview of such research is still lacking. Herein, we briefly summarize the mechanisms regarding the effects of virus-host protein interaction on viral infection, pathogenesis, and host immune responses. This review can not only enhance the present comprehension of the mechanism underlying NDV and host interplay, but also furnish a point of reference for the advancement of antiviral measures.


Subject(s)
Host Microbial Interactions , Newcastle disease virus , Virus Diseases , Animals , Antiviral Agents , Immune Evasion , Newcastle disease virus/metabolism , Virus Diseases/metabolism
13.
Mol Syst Biol ; 20(3): 242-275, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38273161

ABSTRACT

Isogenic cells respond in a heterogeneous manner to interferon. Using a micropatterning approach combined with high-content imaging and spatial analyses, we characterized how the population context (position of a cell with respect to neighboring cells) of epithelial cells affects their response to interferons. We identified that cells at the edge of cellular colonies are more responsive than cells embedded within colonies. We determined that this spatial heterogeneity in interferon response resulted from the polarized basolateral interferon receptor distribution, making cells located in the center of cellular colonies less responsive to ectopic interferon stimulation. This was conserved across cell lines and primary cells originating from epithelial tissues. Importantly, cells embedded within cellular colonies were not protected from viral infection by apical interferon treatment, demonstrating that the population context-driven heterogeneous response to interferon influences the outcome of viral infection. Our data highlights that the behavior of isolated cells does not directly translate to their behavior in a population, placing the population context as one important factor influencing heterogeneity during interferon response in epithelial cells.


Subject(s)
Interferons , Virus Diseases , Humans , Interferons/pharmacology , Interferons/metabolism , Epithelial Cells/metabolism , Cell Line , Virus Diseases/metabolism
14.
J Dairy Sci ; 107(4): 2253-2267, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37806633

ABSTRACT

Bovine respiratory disease causes morbidity and mortality in cattle of all ages. Supplementing with postbiotic products from Saccharomyces cerevisiae fermentation (SCFP) has been reported to improve growth and provide metabolic support required for immune activation in calves. The objective of this study was to determine effects of SCFP supplementation on the transcriptional response to coinfection with bovine respiratory syncytial virus (BRSV) and Pasteurella multocida in the lung using RNA sequencing. Twenty-three calves were enrolled and assigned to 2 treatment groups: control (n = 12) or SCFP-treated (n = 11, fed 1 g/d SmartCare in milk and 5 g/d NutriTek on starter grain; both from Diamond V Mills Inc.). Calves were infected with ∼104 median tissue culture infectious dose per milliliter of BRSV, followed 6 d later by intratracheal inoculation with ∼1010 cfu of Pasteurella multocida (strain P1062). Calves were euthanized on d 10 after viral infection. Blood cells were collected and assayed on d 0 and 10 after viral infection. Bronchoalveolar lavage (BAL) cells were collected and assayed on d 14 of the feeding period (preinfection) and d 10 after viral infection. Blood and BAL cells were assayed for proinflammatory cytokine production in response to stimulation with lipopolysaccharide (LPS) or a combination of polyinosinic:polycytidylic acid and imiquimod, and BAL cells were evaluated for phagocytic and reactive oxygen species production capacity. Antemortem and postmortem BAL and lesioned and nonlesioned lung tissue samples collected at necropsy were subjected to RNA extraction and sequencing. Sequencing reads were aligned to the bovine reference genome (UMD3.1) and edgeR version 3.32.1 used for differential gene expression analysis. Supplementation with SCFP did not affect the respiratory burst activity or phagocytic activity of either lung or blood immune cells. Immune cells from the peripheral blood of SCFP-supplemented calves produced increased quantities of IL-6 in response to toll-like receptor stimulation, whereas cells from the BAL of SCFP-treated calves secreted fewer proinflammatory cytokines and less tumor necrosis factor-α (TNF-α) and IL-6 in response to the same stimuli. Transcriptional responses in lung tissues and BAL samples from SCFP-fed calves differed from the control group. The top enriched pathways in SCFP-treated lungs were associated with decreased expression of inflammatory responses and increased expression of plasminogen and genes involved in glutathione metabolism, supporting effective lung repair. Our results indicate that supplementing with SCFP postbiotics modulates both systemic and mucosal immune responses, leading to increased resistance to bovine respiratory disease.


Subject(s)
Cattle Diseases , Coinfection , Virus Diseases , Animals , Cattle , Diet/veterinary , Saccharomyces cerevisiae/metabolism , Fermentation , Coinfection/veterinary , Interleukin-6/metabolism , Transcriptome , Lung , Virus Diseases/metabolism , Virus Diseases/veterinary , Immunity , Cattle Diseases/metabolism
15.
J Virol ; 98(1): e0117623, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38054609

ABSTRACT

The ubiquitin-proteasome system is one of the most important protein stability regulation systems. It can precisely regulate host immune responses by targeting signaling proteins. TRAF6 is a crucial E3 ubiquitin ligase in host antiviral signaling pathway. Here, we discovered that EF-hand domain-containing protein D2 (EFHD2) collaborated with the E3 ubiquitin ligase Smurf1 to potentiate the degradation of TRAF6, hence facilitating RNA virus Siniperca chuatsi rhabdovirus infection. The mechanism analysis revealed that EFHD2 interacted with Smurf1 and enhanced its protein stability by impairing K48-linked polyubiquitination of Smurf1, thereby promoting Smurf1-catalyzed degradation of TRAF6. This study initially demonstrated a novel mechanism by which viruses utilize host EFHD2 to achieve immune escape and provided a new perspective on the exploration of mammalian innate immunity.IMPORTANCEViruses induce host cells to activate several antiviral signaling pathways. TNF receptor-associated factor 6 (TRAF6) plays an essential role in these pathways. Numerous studies have been done on the mechanisms of TRAF6-mediated resistance to viral invasion. However, little is known about the strategies that viruses employ to antagonize TRAF6-mediated antiviral signaling pathway. Here, we discovered that EFHD2 functions as a host factor to promote viral replication. Mechanistically, EFHD2 potentiates Smurf1 to catalyze the ubiquitin-proteasomal degradation of TRAF6 by promoting the deubiquitination and stability of Smurf1, which in turn inhibits the production of proinflammatory cytokines and interferons. Our study also provides a new perspective on mammalian resistance to viral invasion.


Subject(s)
Calcium-Binding Proteins , Fish Diseases , Rhabdoviridae , TNF Receptor-Associated Factor 6 , Ubiquitin-Protein Ligases , Virus Diseases , Animals , Antiviral Agents , Mammals , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Virus Diseases/metabolism , Virus Diseases/virology , Rhabdoviridae/metabolism , Fishes , Fish Diseases/metabolism , Fish Diseases/virology , Calcium-Binding Proteins/metabolism
16.
Glia ; 72(4): 665-676, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37933494

ABSTRACT

The inner ear, including the cochlea, used to be regarded as an immune-privileged site because of its immunologically isolated environment caused by the blood-labyrinthine barrier. Cochlear resident macrophages, which originate from the yolk sac or fetal liver during the embryonic stage and are maintained after birth, are distributed throughout various regions of the cochlear duct. Intriguingly, these cells are absent in the organ of Corti, where hair cells (HCs) and supporting cells (SCs) are located, except for a limited number of ionized calcium-binding adapter molecule 1 (Iba1)-positive cells. Instead, SCs exert glial functions varying from a quiescent to an emergency state. Notably, SCs acquire the nature of macrophages and begin to secrete inflammatory cytokines during viral infection in the organ of Corti, which is ostensibly unprotected owing to the lack of general resident macrophages. This review provides an overview of both positive and negative functions of SCs enabled to acquire macrophage phenotypes upon viral infection focusing on the signaling pathways that regulate these functions. The former function protects HCs from viral infection by inducting type I interferons, and the latter function induces HC death by necroptosis, leading to sensorineural hearing loss. Thus, SCs play contradictory roles as immune cells with acquired macrophage phenotypes; thereby, they are favorable and unfavorable to HCs, which play a pivotal role in hearing function.


Subject(s)
Cochlea , Virus Diseases , Humans , Cochlea/physiology , Hair Cells, Auditory/metabolism , Signal Transduction/physiology , Virus Diseases/metabolism , Immunity
17.
Methods Mol Biol ; 2724: 139-163, 2024.
Article in English | MEDLINE | ID: mdl-37987904

ABSTRACT

Translation is a key step in control of gene expression, yet most analyses of global responses to a stimulus focus on transcription and the transcriptome. For RNA viruses in particular, which have no DNA-templated transcriptional control, control of viral and host translation is crucial. Here, we describe the method of ribosome profiling (ribo-seq) in plants, applied to virus infection. Ribo-seq is a deep sequencing technique that reveals the translatome by presenting a snapshot of the positions and relative amounts of translating ribosomes on all mRNAs in the cell. In contrast to RNA-seq, a crude cell extract is first digested with ribonuclease to degrade all mRNA not protected by a translating 80S ribosome. The resulting ribosome-protected fragments (RPFs) are deep sequenced. The number of reads mapping to a specific mRNA compared to the standard RNA-seq reads reveals the translational efficiency of that mRNA. Moreover, the precise positions of ribosome pause sites, previously unknown translatable open reading frames, and noncanonical translation events can be characterized quantitatively using ribo-seq. As this technique requires meticulous technique, here we present detailed step-by-step instructions for cell lysate preparation by flash freezing of samples, nuclease digestion of cell lysate, monosome collection by sucrose cushion ultracentrifugation, size-selective RNA extraction and rRNA depletion, library preparation for sequencing and finally quality control of sequenced data. These experimental methods apply to many plant systems, with minor nuclease digestion modifications depending on the plant tissue and species. This protocol should be valuable for studies of plant virus gene expression, and the global translational response to virus infection, or any other biotic or abiotic stress, by the host plant.


Subject(s)
Protein Biosynthesis , Virus Diseases , Humans , Ribosome Profiling , Ribosomes/genetics , Ribosomes/metabolism , RNA, Messenger/genetics , Virus Diseases/metabolism
18.
Sci Rep ; 13(1): 22068, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38086949

ABSTRACT

Of those infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ~ 10% develop the chronic post-viral debilitating condition, long COVID (LC). Although LC is a heterogeneous condition, about half of cases have typical post-viral fatigue with onset and symptoms that are very similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). A key question is whether these conditions are closely related. ME/CFS is a post-stressor fatigue condition that arises from multiple triggers. To investigate the pathophysiology of LC, a pilot study of patients (n = 6) and healthy controls (n = 5) has used quantitative proteomics to discover changes in peripheral blood mononuclear cell (PBMC) proteins. A principal component analysis separated all long COVID patients from healthy controls. Analysis of 3131 proteins identified 162 proteins differentially regulated, of which 37 were related to immune functions, and 21 to mitochondrial functions. Markov cluster analysis identified clusters involved in immune system processes, and two aspects of gene expression-spliceosome and transcription. These results were compared with an earlier dataset of 346 differentially regulated proteins in PBMC's from ME/CFS patients (n = 9) analysed by the same methodology. There were overlapping protein clusters and enriched molecular pathways particularly in immune functions, suggesting the two conditions have similar immune pathophysiology as a prominent feature, and mitochondrial functions involved in energy production were affected in both conditions.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Virus Diseases , Humans , Leukocytes, Mononuclear/metabolism , Proteome/metabolism , Post-Acute COVID-19 Syndrome , Pilot Projects , SARS-CoV-2 , COVID-19/metabolism , Virus Diseases/metabolism
19.
Viruses ; 15(12)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38140552

ABSTRACT

Nuclear bodies (NBs) are dynamic structures present in eukaryotic cell nuclei. They are not bounded by membranes and are often considered biomolecular condensates, defined structurally and functionally by the localisation of core components. Nuclear architecture can be reorganised during normal cellular processes such as the cell cycle as well as in response to cellular stress. Many plant and animal viruses target their proteins to NBs, in some cases triggering their structural disruption and redistribution. Although not all such interactions have been well characterised, subversion of NBs and their functions may form a key part of the life cycle of eukaryotic viruses that require the nucleus for their replication. This review will focus on Cajal bodies (CBs) and the viruses that target them. Since CBs are dynamic structures, other NBs (principally nucleoli and promyelocytic leukaemia, PML and bodies), whose components interact with CBs, will also be considered. As well as providing important insights into key virus-host cell interactions, studies on Cajal and associated NBs may identify novel cellular targets for development of antiviral compounds.


Subject(s)
Virus Diseases , Viruses , Animals , Nuclear Proteins/metabolism , Coiled Bodies/metabolism , Cell Nucleus , Viruses/metabolism , Virus Diseases/metabolism , Promyelocytic Leukemia Protein/metabolism
20.
Viruses ; 15(12)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38140621

ABSTRACT

Mitochondria have been identified as the "powerhouse" of the cell, generating the cellular energy, ATP, for almost seven decades. Research over time has uncovered a multifaceted role of the mitochondrion in processes such as cellular stress signaling, generating precursor molecules, immune response, and apoptosis to name a few. Dysfunctional mitochondria resulting from a departure in homeostasis results in cellular degeneration. Viruses hijack host cell machinery to facilitate their own replication in the absence of a bonafide replication machinery. Replication being an energy intensive process necessitates regulation of the host cell oxidative phosphorylation occurring at the electron transport chain in the mitochondria to generate energy. Mitochondria, therefore, can be an attractive therapeutic target by limiting energy for viral replication. In this review we focus on the physiology of oxidative phosphorylation and on the limited studies highlighting the regulatory effects viruses induce on the electron transport chain.


Subject(s)
Oxidative Phosphorylation , Virus Diseases , Humans , Mitochondria/metabolism , Apoptosis/physiology , Signal Transduction , Virus Diseases/metabolism , Phosphorylation , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...