Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 693
Filter
1.
ACS Nano ; 18(20): 13214-13225, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717114

ABSTRACT

Facing the escalating threat of viruses worldwide, the development of efficient sensor elements for rapid virus detection has never been more critical. Traditional point-of-care (POC) sensors struggle due to their reliance on fragile biological receptors and limited adaptability to viral strains. In this study, we introduce a nanosensor design for receptor-free virus recognitions using near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) functionalized with a poly(ethylene glycol) (PEG)-phospholipid (PEG-lipid) array. Three-dimensional (3D) corona interfaces of the nanosensor array enable selective and sensitive detection of diverse viruses, including Ebola, Lassa, H3N2, H1N1, Middle East respiratory syndrome (MERS), severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), and SARS-CoV-2, even without any biological receptors. The PEG-lipid components, designed considering chain length, fatty acid saturation, molecular weight, and end-group moieties, allow for precise quantification of viral recognition abilities. High-throughput automated screening of the array demonstrates how the physicochemical properties of the PEG-lipid/SWCNT 3D corona interfaces correlate with viral detection efficiency. Utilizing molecular dynamics and AutoDock simulations, we investigated the impact of PEG-lipid components on 3D corona interface formation, such as surface coverage and hydrodynamic radius and specific molecular interactions based on chemical potentials. Our findings not only enhance detection specificity across various antigens but also accelerate the development of sensor materials for promptly identifying and responding to emerging antigen threats.


Subject(s)
Nanotubes, Carbon , Polyethylene Glycols , SARS-CoV-2 , Nanotubes, Carbon/chemistry , Polyethylene Glycols/chemistry , SARS-CoV-2/isolation & purification , Humans , COVID-19/virology , Phospholipids/chemistry , Biosensing Techniques/methods , Viruses/chemistry , Polymers/chemistry
2.
Curr Opin Struct Biol ; 86: 102787, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38458088

ABSTRACT

X-ray crystallography and cryo-electron microscopy have enabled the determination of structures of numerous viruses at high resolution and have greatly advanced the field of structural virology. These structures represent only a subset of snapshot end-state conformations, without describing all conformational transitions that virus particles undergo. Allostery plays a critical role in relaying the effects of varied perturbations both on the surface through environmental changes and protein (receptor/antibody) interactions into the genomic core of the virus. Correspondingly, allostery carries implications for communicating changes in genome packaging to the overall stability of the virus particle. Amide hydrogen/deuterium exchange mass spectrometry (HDXMS) of whole viruses is a powerful probe for uncovering virus allostery. Here we critically discuss advancements in understanding virus dynamics by HDXMS with single particle cryo-EM and computational approaches.


Subject(s)
Hydrogen Deuterium Exchange-Mass Spectrometry , Virion , Hydrogen Deuterium Exchange-Mass Spectrometry/methods , Virion/chemistry , Virion/metabolism , Allosteric Regulation , Amides/chemistry , Viruses/chemistry , Viruses/metabolism , Cryoelectron Microscopy/methods , Mass Spectrometry/methods , Deuterium Exchange Measurement
3.
Article in English | MEDLINE | ID: mdl-37619605

ABSTRACT

Living viruses characterized by distinctive biological functions including specific targeting, gene invasion, immune modulation, and so forth have been receiving intensive attention from researchers worldwide owing to their promising potential for producing numerous theranostic modalities against diverse pathological conditions. Nevertheless, concerns during applications, such as rapid immune clearance, altering immune activation modes, insufficient gene transduction efficiency, and so forth, highlight the crucial issues of excessive therapeutic doses and the associated biosafety risks. To address these concerns, synthetic nanomaterials featuring unique physical/chemical properties are frequently exploited as efficient drug delivery vehicles or treatments in biomedical domains. By constant endeavor, researchers nowadays can create adaptable living virus-based nanohybrids (LVN) that not only overcome the limitations of virotherapy, but also combine the benefits of natural substances and nanotechnology to produce novel and promising therapeutic and diagnostic agents. In this review, we discuss the fundamental physiochemical properties of the viruses, and briefly outline the basic construction methodologies of LVN. We then emphasize their distinct diagnostic and therapeutic performances for various diseases. Furthermore, we survey the foreseeable challenges and future perspectives in this interdisciplinary area to offer insights. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Subject(s)
Nanostructures , Viruses , Nanotechnology/methods , Nanostructures/therapeutic use , Nanostructures/chemistry , Precision Medicine , Drug Delivery Systems , Viruses/chemistry
4.
Nucleic Acids Res ; 52(D1): D817-D821, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37897348

ABSTRACT

ViralZone (http://viralzone.expasy.org) is a knowledge repository for viruses that links biological knowledge and databases. It contains data on virion structure, genome, proteome, replication cycle and host-virus interactions. The new update provides better access to the data through contextual popups and higher resolution images in Scalable Vector Graphics (SVG) format. These images are designed to be dynamic and interactive with human viruses to give users better access to the data. In addition, a new coronavirus-specific resource provides regularly updated data on variants and molecular biology of SARS-CoV-2. Other virus-specific resources have been added to the database, particularly for HIV, herpesviruses and poxviruses.


Subject(s)
Knowledge Bases , Viruses , Humans , Virion/chemistry , Virion/genetics , Virion/growth & development , Viruses/chemistry , Viruses/genetics , Viruses/growth & development
5.
Structure ; 31(11): 1348-1359, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37797619

ABSTRACT

Before the resolution revolution, cryoelectron microscopy (cryo-EM) single-particle analysis (SPA) already achieved resolutions beyond 4 Å for certain icosahedral viruses, enabling ab initio atomic model building of these viruses. As the only samples that achieved such high resolution at that time, cryo-EM method development was closely intertwined with the improvement of reconstructions of symmetrical viruses. Viral morphology exhibits significant diversity, ranging from small to large, uniform to non-uniform, and from containing single symmetry to multiple symmetries. Furthermore, viruses undergo conformational changes during their life cycle. Several methods, such as asymmetric reconstruction, Ewald sphere correction, cryoelectron tomography (cryo-ET), and sub-tomogram averaging (STA), have been developed and applied to determine virus structures in vivo and in vitro. This review outlines current advanced cryo-EM methods for high-resolution structure determination of viruses and summarizes accomplishments obtained with these approaches. Moreover, persisting challenges in comprehending virus structures are discussed and we propose potential solutions.


Subject(s)
Viruses , Cryoelectron Microscopy/methods , Viruses/chemistry , Viral Structures
7.
Biotechnol J ; 18(12): e2300265, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37641433

ABSTRACT

The removal of viruses by filtration is a critical unit operation to ensure the overall safety of monoclonal antibody (mAb) products. Many mAbs show very low filtrate flux during virus removal filtration, although there are still significant uncertainties regarding both the mechanisms and antibody properties that determine the filtration behavior. Experiments were performed with three highly purified mAbs through three different commercial virus filters (Viresolve Pro, Viresolve NFP, and Pegasus SV4) with different pore structures and chemistries. The flux decline observed during mAb filtration was largely reversible, even under conditions where the filtrate flux with the mAb was more than 100-fold smaller than the corresponding buffer flux. The extent of flux decline was highly correlated with the hydrodynamic diameter of the mAb as determined by dynamic light scattering (DLS). The mAb with the lowest filtrate flux for all three membranes showed the largest attractive intermolecular interactions and the greatest hydrophobicity, with the latter determined by binding to a butyl resin in an analytical hydrophobic interaction chromatography (HIC) column. These results strongly suggest that the flux behavior is dominated by reversible self-association of the mAbs, providing important insights into the design of more effective virus filtration processes and in the early identification of problematic mAbs/solution conditions.


Subject(s)
Antibodies, Monoclonal , Viruses , Antibodies, Monoclonal/chemistry , Filtration , Viruses/chemistry , Hydrodynamics , Hydrophobic and Hydrophilic Interactions
8.
J Struct Biol ; 215(3): 107993, 2023 09.
Article in English | MEDLINE | ID: mdl-37414374

ABSTRACT

Advancements in the field of cryo-electron microscopy (cryo-EM) have greatly contributed to our current understanding of virus structures and life cycles. In this review, we discuss the application of single particle cryo-electron microscopy (EM) for the structure elucidation of small enveloped icosahedral viruses, namely, alpha- and flaviviruses. We focus on technical advances in cryo-EM data collection, image processing, three-dimensional reconstruction, and refinement strategies for obtaining high-resolution structures of these viruses. Each of these developments enabled new insights into the alpha- and flavivirus architecture, leading to a better understanding of their biology, pathogenesis, immune response, immunogen design, and therapeutic development.


Subject(s)
Alphavirus , Flavivirus , Viruses , Cryoelectron Microscopy/methods , Viruses/chemistry , Image Processing, Computer-Assisted/methods
9.
J Phys Chem B ; 127(10): 2160-2168, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36881522

ABSTRACT

Recently, Maassen et al. measured an appreciable pH difference between the bulk solution and the solution in the lumen of virus-like particles, self-assembled in an aqueous buffer solution containing the coat proteins of a simple plant virus and polyanions (Maassen, S. J.; et al. Small 2018, 14, 1802081). They attribute this to the Donnan effect, caused by an imbalance between the number of negative charges on the encapsulated polyelectrolyte molecules and the number of positive charges on the RNA binding domains of the coat proteins that make up the virus shell or capsid. By applying Poisson-Boltzmann theory, we confirm this conclusion and show that simple Donnan theory is accurate even for the smallest of viruses and virus-like particles. This, in part, is due to the additional screening caused by the presence of a large number of immobile charges in the cavity of the shell. The presence of a net charge on the outer surface of the capsid we find in practice to not have a large effect on the pH shift. Hence, Donnan theory can indeed be applied to connect the local pH and the amount of encapsulated material. The large shifts up to a full pH unit that we predict must have consequences for applications of virus capsids as nanocontainers in bionanotechnology and artificial cell organelles.


Subject(s)
Viruses , Static Electricity , Viruses/chemistry , Capsid Proteins/chemistry , Capsid/metabolism , Virion/metabolism
11.
Klin Lab Diagn ; 67(8): 480-483, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36095086

ABSTRACT

It is difficult to overestimate the urgency of the problem of well-timed diagnosis of viral infections. According to the WHO, dozens of outbreaks of viral diseases are recorded annually, both in developing and developed countries. Moreover, the seasonal flu virus alone is capable of infecting up to 20% of the population, even in European countries with a high level of medicine. And the annual number of deaths due to viral infections, according to official statistics, exceeds 600 thousand people around the world. That's why the provision of a reliable and fairly rapid diagnosis of viruses, along with subsequent therapy, makes a significant contribution to reducing the incidence of mortality. Despite the fact that PCR-based methods currently remain the most common method for identifying viruses in clinical practice, as recent experience shows, in addition to the already known disadvantages, in the event of large outbreaks, such test systems may simply not be in the required amount. In this regard, it is necessary to supplement and improve the existing tools for identification and research of clinically significant viruses. The MALDI-TOF mass spectrometry method combines a degree of accuracy and versatility, sufficient both for the identification of clinical strains isolated from patients, and for the study of the phenotypic properties of viruses in research laboratories and centers. This article presents and summarizes the main data on the existing or potential application of the method of time-of-flight mass spectrometry with matrix-associated laser desorption / ionization for the identification or study of viruses.


Subject(s)
Virus Diseases , Viruses , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Virus Diseases/diagnosis , Viruses/chemistry , Viruses/genetics
12.
Biosensors (Basel) ; 12(7)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35884302

ABSTRACT

Gastroenteritis, as one of the main worldwide health challenges, especially in children, leads to 3-6 million deaths annually and causes nearly 20% of the total deaths of children aged ˂5 years, of which ~1.5 million gastroenteritis deaths occur in developing nations. Viruses are the main causative agent (~70%) of gastroenteritis episodes and their specific and early diagnosis via laboratory assays is very helpful for having successful antiviral therapy and reduction in infection burden. Regarding this importance, the present literature is the first review of updated improvements in the employing of different types of biosensors such as electrochemical, optical, and piezoelectric for sensitive, simple, cheap, rapid, and specific diagnosis of human gastroenteritis viruses. The Introduction section is a general discussion about the importance of viral gastroenteritis, types of viruses that cause gastroenteritis, and reasons for the combination of conventional diagnostic tests with biosensors for fast detection of viruses associated with gastroenteritis. Following the current laboratory detection tests for human gastroenteritis viruses and their limitations (with subsections: Electron Microscope (EM), Cell Culture, Immunoassay, and Molecular Techniques), structural features and significant aspects of various biosensing methods are discussed in the Biosensor section. In the next sections, basic information on viruses causing gastroenteritis and recent developments for fabrication and testing of different biosensors for each virus detection are covered, and the prospect of future developments in designing different biosensing platforms for gastroenteritis virus detection is discussed in the Conclusion and Future Directions section as well.


Subject(s)
Biosensing Techniques , Gastroenteritis , Viruses , Biosensing Techniques/methods , Child , Early Diagnosis , Gastroenteritis/diagnosis , Humans , Immunoassay , Viruses/chemistry
13.
Curr Opin Struct Biol ; 75: 102426, 2022 08.
Article in English | MEDLINE | ID: mdl-35868163

ABSTRACT

Liquid-electron microscopy (EM), the room temperature correlate to cryo-EM, is an exciting new technique delivering real-time data of dynamic reactions in solution. Here, we explain how liquid-EM gained popularity in recent years by examining key experiments conducted on viral assemblies and host-pathogen interactions. We describe developing workflows for specimen preparation, data collection, and computing processes that led to the first high-resolution virus structures in a liquid environment. Equally important, we review why liquid-electron tomography may become the next big thing in biomedical research due to its ability to monitor live viruses entering cells within seconds. Taken together, we pose the idea that liquid-EM can serve as a dynamic complement to current cryo-EM methods, inspiring the "real-time revolution" in nanoscale imaging.


Subject(s)
Electron Microscope Tomography , Viruses , Cryoelectron Microscopy/methods , Microscopy, Electron , Viral Structures , Viruses/chemistry
14.
Curr Opin Virol ; 54: 101230, 2022 06.
Article in English | MEDLINE | ID: mdl-35576774

ABSTRACT

Asymmetric structural elements are typically not readily visualized in icosahedral viruses that have other obvious symmetrical features and most asymmetry has gone unresolved for decades. Asymmetric features may be incorporated during assembly or maturation or develop during key steps in the infectious cycle of the virus. However, resolving asymmetric features requires abandoning capsid-wide symmetry averaging and relying on special applications during single-particle cryogenic electron microscopy (cryo-EM) analysis. Thanks to the advances in the cryo-EM field, we are learning more about asymmetry of viruses. Here we summarize some of what is currently known about asymmetric structural features using as examples members of the Togaviridae, Flaviviridae, Herpesviridae, Parvoviridae, and Papillomaviridae.


Subject(s)
Virion , Viruses , Capsid/chemistry , Capsid Proteins/chemistry , Cryoelectron Microscopy , Virion/chemistry , Viruses/chemistry , Viruses/genetics
15.
Chem Rev ; 122(17): 14055-14065, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35133794

ABSTRACT

While the application of cryogenic electron microscopy (cryo-EM) to helical polymers in biology has a long history, due to the huge number of helical macromolecular assemblies in viruses, bacteria, archaea, and eukaryotes, the use of cryo-EM to study synthetic soft matter noncovalent polymers has been much more limited. This has mainly been due to the lack of familiarity with cryo-EM in the materials science and chemistry communities, in contrast to the fact that cryo-EM was developed as a biological technique. Nevertheless, the relatively few structures of self-assembled peptide nanotubes and ribbons solved at near-atomic resolution by cryo-EM have demonstrated that cryo-EM should be the method of choice for a structural analysis of synthetic helical filaments. In addition, cryo-EM has also demonstrated that the self-assembly of soft matter polymers has enormous potential for polymorphism, something that may be obscured by techniques such as scattering and spectroscopy. These cryo-EM structures have revealed how far we currently are from being able to predict the structure of these polymers due to their chaotic self-assembly behavior.


Subject(s)
Polymers , Viruses , Cryoelectron Microscopy/methods , Macromolecular Substances , Viruses/chemistry
16.
Article in English | MEDLINE | ID: mdl-35121528

ABSTRACT

An efficient chromatography-based virus purification method has been developed and validated for the non-pathogenic infectious virus PRD1. Compared to the conventional method that consists of relatively time-consuming and labour-intensive precipitation and density gradient ultracentrifugation steps, the method developed here is performed in a single flow using tandem-coupled anion exchange and size exclusion chromatography (AIEX-SEC) columns. This inline approach helps to minimize the loss of virus in the process and streamlines time consumption, since no physical transfer of the sample is required between purification steps. In the development process, sample feed composition, dynamic binding capacity and elution conditions for the AIEX resin as well as different exclusion limits for SEC resins were optimized to achieve maximal yield of pure infectious viruses. Utilizing this new approach, a high-quality virus sample was produced from a lysate feed in 320 min with a total yield of 13 mg purified particles per litre of cell lysate, constituting a 3.5-fold yield increase as compared to the conventional method, without compromising the high specific infectivity of the product (6 × 1012 to 7 × 1012 pfu/mg of protein). The yield of infectious viruses of the lysate feed was 54%. The easy scalability of chromatography-based methods provide a direct route to industrial usage without any significant changes needed to be made to the purification regime. This is especially interesting as the method has high potential to be used for purification of various viruses and nanoparticles, including adenovirus.


Subject(s)
Chromatography, Gel/methods , Sepharose/chemistry , Virus Cultivation/methods , Viruses/isolation & purification , Bacteriophage PRD1/chemistry , Bacteriophage PRD1/isolation & purification , Chromatography, Ion Exchange/methods , Viruses/chemistry
17.
Biochim Biophys Acta Mol Basis Dis ; 1868(4): 166347, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35032594

ABSTRACT

As epitomised by the COVID-19 pandemic, diseases caused by viruses are one of the greatest health and economic burdens to human society. Viruses are 'nanostructures', and their small size (typically less than 200 nm in diameter) can make it challenging to obtain images of their morphology and structure. Recent advances in fluorescence microscopy have given rise to super-resolution techniques, which have enabled the structure of viruses to be visualised directly at a resolution in the order of 20 nm. This mini-review discusses how recent state-of-the-art super-resolution imaging technologies are providing new nanoscale insights into virus structure.


Subject(s)
Microscopy, Fluorescence , Viruses/chemistry , Humans , Imaging, Three-Dimensional , Virion/chemistry
18.
Biotechnol Prog ; 38(2): e3231, 2022 03.
Article in English | MEDLINE | ID: mdl-34994527

ABSTRACT

Virus removal filtration is a critical step in the manufacture of monoclonal antibody products, providing a robust size-based removal of both enveloped and non-enveloped viruses. Many monoclonal antibodies show very large reductions in filtrate flux during virus filtration, with the mechanisms governing this behavior and its dependence on the properties of the virus filter and antibody remaining largely unknown. Experiments were performed using the highly asymmetric Viresolve® Pro and the relatively homogeneous Pegasus™ SV4 virus filters using a highly purified monoclonal antibody. The filtrate flux for a 4 g/L antibody solution through the Viresolve® Pro decreased by about 10-fold when the filter was oriented with the skin side down but by more than 1000-fold when the asymmetric filter orientation was reversed and used with the skin side up. The very large flux decline observed with the skin side up could be eliminated by placing a large pore size prefilter directly on top of the virus filter; this improvement in filtrate flux was not seen when the prefilter was used inline or as a batch prefiltration step. The increase in flux due to the prefilter was not related to the removal of large protein aggregates or to an alteration in the extent of concentration polarization. Instead, the prefilter appears to transiently disrupt reversible associations of the antibodies caused by strong intermolecular attractions. These results provide important insights into the role of membrane morphology and antibody properties on the filtrate flux during virus filtration.


Subject(s)
Antibodies, Monoclonal , Viruses , Antibodies, Monoclonal/chemistry , Filtration/methods , Membranes, Artificial , Viruses/chemistry
19.
Comput Biol Chem ; 96: 107621, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34998080

ABSTRACT

Quantitative physicochemical perspective on life processes has been a great asset, in bioengineering and biotechnology. The quantitative physicochemical approach can be applied to practically all organisms, including viruses, if their chemical composition and thermodynamic properties are known. In this paper, a new method is suggested for determining elemental composition of viruses, based on atom counting. The atom counting method requires knowledge of genetic sequence, protein sequences and protein copy numbers. An algorithm was suggested for a program that finds elemental composition of various viruses (DNA or RNA, enveloped or non-enveloped). Except for the nucleic acid, capsid proteins, lipid bilayer and carbohydrates, this method includes membrane proteins, as well as spike proteins. The atom counting method has been compared with the existing molecular composition and geometric methods on 5 viruses of different morphology, as well as experimentally determined composition of the poliovirus. The atom counting method was found to be more accurate in most cases. The three methods were found to be complementary, since they require different kind of input information. Moreover, since the 3 methods rest on different assumptions, results of one model can be compared to those of the other two.


Subject(s)
Viruses/chemistry , Algorithms , Animals , Carbohydrates/chemistry , Chemical Phenomena , Computational Biology , DNA, Viral/chemistry , DNA, Viral/genetics , Elements , Environmental Science , Humans , Lipids/chemistry , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Thermodynamics , Viral Proteins/chemistry , Viral Proteins/genetics , Viruses/genetics
20.
Trends Biochem Sci ; 47(2): 173-186, 2022 02.
Article in English | MEDLINE | ID: mdl-34511334

ABSTRACT

Viruses are macromolecular machineries that hijack cellular metabolism for replication. Enveloped viruses comprise a large variety of RNA and DNA viruses, many of which are notorious human or animal pathogens. Despite their importance, the presence of lipid bilayers in their assembly has made most enveloped viruses too pleomorphic to be reconstructed as a whole by traditional structural biology methods. Furthermore, structural biology of the viral lifecycle was hindered by the sample thickness. Here, I review the recent advances in the applications of cryo-electron tomography (cryo-ET) on enveloped viral structures and intracellular viral activities.


Subject(s)
Electron Microscope Tomography , Viruses , Animals , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Lipid Bilayers , Viruses/chemistry , Viruses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...