Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 461
Filter
1.
Curr Biol ; 34(11): 2418-2433.e4, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38749425

ABSTRACT

A primary cilium is a membrane-bound extension from the cell surface that contains receptors for perceiving and transmitting signals that modulate cell state and activity. Primary cilia in the brain are less accessible than cilia on cultured cells or epithelial tissues because in the brain they protrude into a deep, dense network of glial and neuronal processes. Here, we investigated cilia frequency, internal structure, shape, and position in large, high-resolution transmission electron microscopy volumes of mouse primary visual cortex. Cilia extended from the cell bodies of nearly all excitatory and inhibitory neurons, astrocytes, and oligodendrocyte precursor cells (OPCs) but were absent from oligodendrocytes and microglia. Ultrastructural comparisons revealed that the base of the cilium and the microtubule organization differed between neurons and glia. Investigating cilia-proximal features revealed that many cilia were directly adjacent to synapses, suggesting that cilia are poised to encounter locally released signaling molecules. Our analysis indicated that synapse proximity is likely due to random encounters in the neuropil, with no evidence that cilia modulate synapse activity as would be expected in tetrapartite synapses. The observed cell class differences in proximity to synapses were largely due to differences in external cilia length. Many key structural features that differed between neuronal and glial cilia influenced both cilium placement and shape and, thus, exposure to processes and synapses outside the cilium. Together, the ultrastructure both within and around neuronal and glial cilia suggest differences in cilia formation and function across cell types in the brain.


Subject(s)
Cilia , Animals , Cilia/ultrastructure , Mice , Microscopy, Electron, Transmission , Mice, Inbred C57BL , Neurons/ultrastructure , Neurons/physiology , Visual Cortex/ultrastructure , Visual Cortex/physiology , Neuroglia/ultrastructure , Neuroglia/physiology , Female , Synapses/ultrastructure , Synapses/physiology , Male
2.
Neuroimage ; 271: 120019, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36914108

ABSTRACT

Studies of resting-state functional connectivity (rsFC) have provided rich insights into the structures and functions of the human brain. However, most rsFC studies have focused on large-scale brain connectivity. To explore rsFC at a finer scale, we used intrinsic signal optical imaging to image the ongoing activity of the anesthetized macaque visual cortex. Differential signals from functional domains were used to quantify network-specific fluctuations. In 30-60 min resting-state imaging, a series of coherent activation patterns were observed in all three visual areas we examined (V1, V2, and V4). These patterns matched the known functional maps (ocular dominance, orientation, color) obtained in visual stimulation conditions. These functional connectivity (FC) networks fluctuated independently over time and exhibited similar temporal characteristics. Coherent fluctuations, however, were observed from orientation FC networks in different areas and even across two hemispheres. Thus, FC in the macaque visual cortex was fully mapped both on a fine scale and over a long range. Hemodynamic signals can be used to explore mesoscale rsFC in a submillimeter resolution.


Subject(s)
Connectome , Macaca fascicularis , Rest , Visual Cortex , Macaca fascicularis/physiology , Visual Cortex/blood supply , Visual Cortex/physiology , Visual Cortex/ultrastructure , Male , Animals , Rest/physiology , Photic Stimulation , Optical Imaging , Hemodynamics
3.
Elife ; 102021 12 01.
Article in English | MEDLINE | ID: mdl-34851292

ABSTRACT

Inhibitory neurons in mammalian cortex exhibit diverse physiological, morphological, molecular, and connectivity signatures. While considerable work has measured the average connectivity of several interneuron classes, there remains a fundamental lack of understanding of the connectivity distribution of distinct inhibitory cell types with synaptic resolution, how it relates to properties of target cells, and how it affects function. Here, we used large-scale electron microscopy and functional imaging to address these questions for chandelier cells in layer 2/3 of the mouse visual cortex. With dense reconstructions from electron microscopy, we mapped the complete chandelier input onto 153 pyramidal neurons. We found that synapse number is highly variable across the population and is correlated with several structural features of the target neuron. This variability in the number of axo-axonic ChC synapses is higher than the variability seen in perisomatic inhibition. Biophysical simulations show that the observed pattern of axo-axonic inhibition is particularly effective in controlling excitatory output when excitation and inhibition are co-active. Finally, we measured chandelier cell activity in awake animals using a cell-type-specific calcium imaging approach and saw highly correlated activity across chandelier cells. In the same experiments, in vivo chandelier population activity correlated with pupil dilation, a proxy for arousal. Together, these results suggest that chandelier cells provide a circuit-wide signal whose strength is adjusted relative to the properties of target neurons.


Subject(s)
Pyramidal Cells/ultrastructure , Synapses/ultrastructure , Visual Cortex/ultrastructure , Animals , Female , Male , Mice , Microscopy, Electron, Transmission
4.
Cereb Cortex ; 31(5): 2610-2624, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33350443

ABSTRACT

Synapses are the fundamental elements of the brain's complicated neural networks. Although the ultrastructure of synapses has been extensively studied, the difference in how synaptic inputs are organized onto distinct neuronal types is not yet fully understood. Here, we examined the cell-type-specific ultrastructure of proximal processes from the soma of parvalbumin-positive (PV+) and somatostatin-positive (SST+) GABAergic neurons in comparison with a pyramidal neuron in the mouse primary visual cortex (V1), using serial block-face scanning electron microscopy. Interestingly, each type of neuron organizes excitatory and inhibitory synapses in a unique way. First, we found that a subset of SST+ neurons are spiny, having spines on both soma and dendrites. Each of those spines has a highly complicated structure that has up to eight synaptic inputs. Next, the PV+ and SST+ neurons receive more robust excitatory inputs to their perisoma than does the pyramidal neuron. Notably, excitatory synapses on GABAergic neurons were often multiple-synapse boutons, making another synapse on distal dendrites. On the other hand, inhibitory synapses near the soma were often single-targeting multiple boutons. Collectively, our data demonstrate that synaptic inputs near the soma are differentially organized across cell types and form a network that balances inhibition and excitation in the V1.


Subject(s)
GABAergic Neurons/ultrastructure , Pyramidal Cells/ultrastructure , Synapses/ultrastructure , Visual Cortex/ultrastructure , Animals , GABAergic Neurons/metabolism , Imaging, Three-Dimensional , Mice , Microscopy, Electron, Scanning , Parvalbumins/metabolism , Pyramidal Cells/metabolism , Somatostatin/metabolism
5.
Invest Ophthalmol Vis Sci ; 61(10): 55, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32866269

ABSTRACT

Purpose: To determine alteration of dendritic spines and associated changes in the primary visual cortex (V1 region) related to unilateral optic nerve crush (ONC) in adult mice. Methods: Adult unilateral ONC mice were established. Retinal nerve fiber layer (RNFL) thickness was measured by spectral-domain optical coherence tomography. Visual function was estimated by flash visual evoked potentials (FVEPs). Dendritic spines were observed in the V1 region contralateral to the ONC eye by two-photon imaging in vivo. The neurons, reactive astrocytes, oligodendrocytes, and activated microglia were assessed by NeuN, glial fibrillary acidic protein, CNPase, and CD68 in immunohistochemistry, respectively. Tropomyosin receptor kinase B (TrkB) and the markers in TrkB trafficking were estimated using western blotting and co-immunoprecipitation. Transmission electron microscopy and western blotting were used to evaluate autophagy. Results: The amplitude and latency of FVEPs were decreased and delayed at 3 days, 1 week, 2 weeks, and 4 weeks after ONC, and RNFL thickness was decreased at 2 and 4 weeks after ONC. Dendritic spines were reduced in the V1 region contralateral to the ONC eye at 2, 3, and 4 weeks after ONC, with an unchanged number of neurons. Reactive astrocyte staining was increased at 2 and 4 weeks after ONC, but oligodendrocyte and activated microglia staining remained unchanged. TrkB was reduced with changes in the major trafficking proteins, and enhanced autophagy was observed in the V1 region contralateral to the ONC eye. Conclusions: Dendritic spines were reduced in the V1 region contralateral to the ONC eye in adult mice. Reactive astrocytes and decreased TrkB may be associated with the reduced dendritic spines.


Subject(s)
Dendritic Spines/pathology , Optic Nerve Injuries/pathology , Visual Cortex/pathology , Animals , Blotting, Western , Crush Injuries/pathology , Dendritic Spines/ultrastructure , Evoked Potentials, Visual , Female , Immunoprecipitation , Male , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Optic Disk/pathology , Optic Disk/ultrastructure , Optic Nerve/pathology , Optic Nerve Injuries/physiopathology , Tomography, Optical Coherence , Visual Cortex/physiopathology , Visual Cortex/ultrastructure
6.
Folia Histochem Cytobiol ; 58(2): 61-72, 2020.
Article in English | MEDLINE | ID: mdl-32490536

ABSTRACT

INTRODUCTION: In order to enhance our understanding of bat vision, we investigated tyrosine hydroxylase (TH)-immunoreactive (IR) fibers in the visual cortex of the microbat. MATERIAL AND METHODS: The study was conducted on 12 freshly-caught adult bats (Rhinolophus ferrumequinum, both sexes, weighing 15-20 g). We used standard immunocytochemistry and confocal microscopy. RESULTS: TH-IR fibers were distributed throughout all layers of the visual cortex, with the highest density in layer I. Two types of TH-IR fibers were observed: small and large varicose fibers. TH-IR cells were not found in the microbat visual cortex. The microbat substantia nigra and ventral tegmental areas, previously identified sources of TH-IR fibers in the mammalian visual cortex, all contained strongly labeled TH-IR cells. The average diameters of TH-IR cells in the substantia nigra and the ventral tegmental areas were 14.39 ± 0.13 µm (mean ± SEM) and 11.85 ± 0.13 µm, respectively. CONCLUSIONS: Our results suggest that the microbat has a well-constructed neurochemical organization of THIR fibers. This observation should provide fundamental insights into a better understanding of the nocturnal, echolocating bat visual system.


Subject(s)
Tyrosine 3-Monooxygenase/metabolism , Visual Cortex/ultrastructure , Animals , Chiroptera , Female , Male , Neurons/metabolism , Visual Cortex/chemistry
7.
Science ; 364(6447): 1275-1279, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31249057

ABSTRACT

Previous studies support the textbook model that shape and color are extracted by distinct neurons in primate primary visual cortex (V1). However, rigorous testing of this model requires sampling a larger stimulus space than previously possible. We used stable GCaMP6f expression and two-photon calcium imaging to probe a very large spatial and chromatic visual stimulus space and map functional microarchitecture of thousands of neurons with single-cell resolution. Notable proportions of V1 neurons strongly preferred equiluminant color over achromatic stimuli and were also orientation selective, indicating that orientation and color in V1 are mutually processed by overlapping circuits. Single neurons could precisely and unambiguously code for both color and orientation. Further analyses revealed systematic spatial relationships between color tuning, orientation selectivity, and cytochrome oxidase histology.


Subject(s)
Color Perception/physiology , Orientation/physiology , Spatial Behavior/physiology , Visual Cortex/physiology , Animals , Electron Transport Complex IV/metabolism , Female , Macaca fascicularis , Neuroimaging , Neurons , Visual Cortex/ultrastructure
8.
Sci Rep ; 9(1): 3075, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30816175

ABSTRACT

Two main types of cortical terminals have been identified in the cat thalamus. Large (type II) have been proposed to drive the response properties of thalamic cells while smaller (type I) are believed to modulate those properties. Among the cat's visual cortical areas, the anterior ectosylvian visual area (AEV) is considered as one of the highest areas in the hierarchical organization of the visual system. Whereas the connections from the AEV to the thalamus have been recognized, their nature (type I or II) is presently not known. In this study, we assessed and compared the relative contribution of type I and type II inputs to thalamic nuclei originating from the AEV. The anterograde tracer BDA was injected in the AEV of five animals. Results show that (1) both type I and II terminals from AEV are present in the Lateral Posterior- Pulvinar complex, the lateral median suprageniculate complex and the medial and dorsal geniculate nuclei (2) type I terminals significantly outnumber the type II terminals in almost all nuclei studied. Our results indicate that neurons in the AEV are more likely to modulate response properties in the thalamus rather than to determine basic organization of receptive fields of thalamic cells.


Subject(s)
Cats , Thalamus/ultrastructure , Animals , Brain Mapping , Cats/anatomy & histology , Neural Pathways/ultrastructure , Pulvinar/ultrastructure , Thalamic Nuclei/ultrastructure , Visual Cortex/ultrastructure
9.
Cereb Cortex ; 29(1): 134-149, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29190326

ABSTRACT

One of the underlying principles of how mammalian circuits are constructed is the relative influence of feedforward to recurrent synaptic drive. It has been dogma in sensory systems that the thalamic feedforward input is relatively weak and that there is a large amplification of the input signal by recurrent feedback. Here we show that in trichromatic primates there is a major feedforward input to layer 4C of primary visual cortex. Using a combination of 3D-electron-microscopy and 3D-confocal imaging of thalamic boutons we found that the average feedforward contribution was about 20% of the total excitatory input in the parvocellular (P) pathway, about 3 times the currently accepted values for primates. In the magnocellular (M) pathway it was around 15%, nearly twice the currently accepted values. New methods showed the total synaptic and cell densities were as much as 150% of currently accepted values. The new estimates of contributions of feedforward synaptic inputs into visual cortex call for a major revision of the design of the canonical cortical circuit.


Subject(s)
Thalamus/physiology , Visual Cortex/physiology , Visual Pathways/physiology , Animals , Female , Macaca fascicularis , Male , Presynaptic Terminals/physiology , Presynaptic Terminals/ultrastructure , Primates , Thalamus/ultrastructure , Visual Cortex/ultrastructure , Visual Pathways/ultrastructure
10.
J Comp Neurol ; 527(4): 833-842, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30255935

ABSTRACT

The superior colliculus (SC) is a major site of sensorimotor integration in which sensory inputs are processed to initiate appropriate motor responses. Projections from the primary visual cortex (V1) to the SC have been shown to exert a substantial influence on visually induced behavior, including "freezing." However, it is unclear how V1 corticotectal terminals affect SC circuits to mediate these effects. To investigate this, we used anatomical and optogenetic techniques to examine the synaptic properties of V1 corticotectal terminals. Electron microscopy revealed that V1 corticotectal terminals labeled by anterograde transport primarily synapse (93%) on dendrites that do not contain gamma aminobutyric acid (GABA). This preference was confirmed using optogenetic techniques to photoactivate V1 corticotectal terminals in slices of the SC maintained in vitro. In a mouse line in which GABAergic SC interneurons express green fluorescent protein (GFP), few GFP-labeled cells (11%) responded to activation of corticotectal terminals. In contrast, 67% of non-GABAergic cells responded to activation of V1 corticotectal terminals. Biocytin-labeling of recorded neurons revealed that wide-field vertical (WFV) and non-WFV cells were activated by V1 corticotectal inputs. However, WFV cells were activated in the most uniform manner; 85% of these cells responded with excitatory postsynaptic potentials (EPSPs) that maintained stable amplitudes when activated with light trains at 1-20 Hz. In contrast, in the majority of non-WFV cells, the amplitude of evoked EPSPs varied across trials. Our results suggest that V1 corticotectal projections may initiate freezing behavior via uniform activation of the WFV cells, which project to the pulvinar nucleus.


Subject(s)
Presynaptic Terminals/ultrastructure , Visual Cortex/ultrastructure , Visual Pathways/ultrastructure , Animals , Female , Male , Mice , Mice, Inbred C57BL , Optogenetics
11.
J Biosci ; 43(3): 471-484, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30002267

ABSTRACT

Fluorescence microscopy, especially confocal microscopy, has revolutionized the field of biological imaging. Breaking the optical diffraction barrier of conventional light microscopy, through the advent of super-resolution microscopy, has ushered in the potential for a second revolution through unprecedented insight into nanoscale structure and dynamics in biological systems. Stimulated emission depletion (STED) microscopy is one such super-resolution microscopy technique which provides real-time enhanced-resolution imaging capabilities. In addition, it can be easily integrated with well-established fluorescence-based techniques such as fluorescence correlation spectroscopy (FCS) in order to capture the structure of cellular membranes at the nanoscale with high temporal resolution. In this review, we discuss the theory of STED and different modalities of operation in order to achieve the best resolution. Various applications of this technique in cell imaging, especially that of neuronal cell imaging, are discussed as well as examples of application of STED imaging in unravelling structure formation on biological membranes. Finally, we have discussed examples from some of our recent studies on nanoscale structure and dynamics of lipids in model membranes, due to interaction with proteins, as revealed by combination of STED and FCS techniques.


Subject(s)
Cell Membrane/ultrastructure , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Neurons/ultrastructure , Spectrometry, Fluorescence/methods , Visual Cortex/ultrastructure , Animals , Bacteria/metabolism , Bacteria/ultrastructure , Cell Membrane/chemistry , Cell Membrane/metabolism , Fluorescent Dyes/chemistry , Fungi/metabolism , Fungi/ultrastructure , Humans , Lipid Bilayers/metabolism , Membrane Proteins/metabolism , Mice , Microscopy, Confocal , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Neurons/cytology , Neurons/metabolism , Spectrometry, Fluorescence/instrumentation , Visual Cortex/cytology , Visual Cortex/metabolism
12.
Brain Struct Funct ; 223(4): 1811-1828, 2018 May.
Article in English | MEDLINE | ID: mdl-29234889

ABSTRACT

Pyramidal cells in the superficial layers of the neocortex provide a major excitatory projection to layer 5, which contains the pyramidal cells that project to subcortical motor-related targets. Both structurally and functionally rather little is known about this interlaminar pathway, especially in higher mammals. Here, we made sparse ultrastructural reconstructions of the projection to layer 5 of three pyramidal neurons from layer 3 in cat V1 whose morphology, physiology, and synaptic connections with layers 2 and 3 were known. The dominant targets of the 74 identified synapses in layer 5 were the dendritic spines of pyramidal cells. The fractions of target spiny dendrites were 59, 61, and 84% for the three cells, with the remaining targets being dendrites of smooth neurons. These fractions were similar to the distribution of targets of unlabeled asymmetric synapses in the surrounding neuropil. Serial section reconstructions revealed that the target dendrites were heterogenous in morphology, indicating that different cell types are innervated. This new evidence indicates that the descending projection from the superficial layer pyramidal cells does not simply drive the output pyramidal cells that project to cortical and subcortical targets, but participates in the complex circuitry of the deep cortical layers.


Subject(s)
Pyramidal Cells/ultrastructure , Synapses/ultrastructure , Visual Cortex/cytology , Animals , Axons/ultrastructure , Cats , Computer Simulation , Dendrites/ultrastructure , Horseradish Peroxidase/metabolism , Horseradish Peroxidase/ultrastructure , Microscopy, Electron, Transmission , Models, Neurological , Nerve Net/ultrastructure , Visual Cortex/ultrastructure
13.
Sci Rep ; 7(1): 14897, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29097694

ABSTRACT

Numerous studies have reported age-dependent degradation of neuronal function in the visual cortex and have attributed this functional decline to weakened intracortical inhibition, especially GABAergic inhibition. However, whether this type of functional decline is linked to compromised GABAergic inhibition has not been fully confirmed. Here, we compared the neuronal response properties and markers of GABAergic inhibition in the primary visual cortex (V1) of young adult and senescent rats. Compared with those of young adult rats, old rats' V1 neurons exhibited significantly increased visually evoked responses and spontaneous activity, a decreased signal-to-noise ratio and reduced response selectivity for the stimulus orientation and motion direction. Additionally, the ratio of GABA-positive neurons to total cortical neurons in old rats was significantly decreased compared with that in young rats. Expression of the key GABA-synthesizing enzyme GAD67 was significantly lower in old rats than in young rats, although GAD65 expression showed a marginal difference between the two age groups. Further, expression of an important GABAA receptor subunit, GABAAR α1, was significantly attenuated in old rats relative to young ones. These results demonstrate that ageing may result in decreased GABAergic inhibition in the visual cortex and that this decrease in GABAergic inhibition accompanies neuronal function degradation.


Subject(s)
Aging , GABAergic Neurons/physiology , Receptors, GABA-A/metabolism , Visual Cortex/physiology , Animals , GABAergic Neurons/cytology , GABAergic Neurons/ultrastructure , Glutamate Decarboxylase/analysis , Glutamate Decarboxylase/metabolism , Male , Neural Inhibition , Orientation , Rats , Receptors, GABA-A/analysis , Visual Cortex/cytology , Visual Cortex/ultrastructure
14.
Brain Res Bull ; 132: 199-203, 2017 06.
Article in English | MEDLINE | ID: mdl-28602762

ABSTRACT

In our previous study, we found that the normalized levels of the synaptosomal filament actin (F-actin) to monomeric global actin (G-actin) ratio in the primary visual cortex (V1) of rats was significantly lower on postnatal day (P) 45 compared with P30, however, the synaptic density in the monocular area of primary visual cortex (V1M) maintained a stable high level from P30 to P45. The mechanisms underlying the different patterned of change in synaptic density and actin rearrangements from P30 to P45 are unclear. During visual development, there is a synaptic pruning process in the binocular segment of primates' visual cortex (V1B) and we suppose the pruning activity may contribute to the decreased synaptosomal F-actin to G-actin ratio. To address this issue, first, samples were derived from the region of V1B for TEM analysis but no significant difference was demonstrated between the P30 and P45 groups. In addition, the expression of PSD-95 detected by immunobloting in the synaptosomes of V1 at P30 and P45 also showed no significant difference. Combined with the previous results of actin dynamics in the V1 and synaptic density in the V1M, we conclude that the synaptic density and actin dynamics in the rats' primary visual cortex are inter-related but not absolutely identical. This study suggests actin cytoskeleton not only provides the structural basis but also regulates a various array of cellular activities underlying synaptic function. Besides, it highlights a further research of synaptic pruning.


Subject(s)
Actins/metabolism , Synapses/physiology , Visual Cortex/growth & development , Visual Cortex/physiology , Animals , Blotting, Western , Disks Large Homolog 4 Protein/metabolism , Gene Expression Regulation, Developmental , Microscopy, Electron , Pyramidal Cells/physiology , Pyramidal Cells/ultrastructure , Rats, Sprague-Dawley , Synapses/ultrastructure , Synaptosomes/metabolism , Synaptosomes/ultrastructure , Visual Cortex/ultrastructure
15.
J Comp Neurol ; 525(9): 2175-2191, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28256708

ABSTRACT

The excitatory glutamatergic synapse is the principal site of communication between cortical pyramidal neurons and their targets, a key locus of action of many drugs, and highly vulnerable to dysfunction and loss in neurodegenerative disease. A detailed knowledge of the structure of these synapses in distinct cortical areas and across species is a prerequisite for understanding the anatomical underpinnings of cortical specialization and, potentially, selective vulnerability in neurological disorders. We used serial electron microscopy to assess the ultrastructural features of excitatory (asymmetric) synapses in the layers 2-3 (L2-3) neuropil of visual (V1) and frontal (FC) cortices of the adult mouse and compared findings to those in the rhesus monkey (V1 and lateral prefrontal cortex [LPFC]). Analyses of multiple ultrastructural variables revealed four organizational features. First, the density of asymmetric synapses does not differ between frontal and visual cortices in either species, but is significantly higher in mouse than in monkey. Second, the structural properties of asymmetric synapses in mouse V1 and FC are nearly identical, by stark contrast to the significant differences seen between monkey V1 and LPFC. Third, while the structural features of postsynaptic entities in mouse and monkey V1 do not differ, the size of presynaptic boutons are significantly larger in monkey V1. Fourth, both presynaptic and postsynaptic entities are significantly smaller in the mouse FC than in the monkey LPFC. The diversity of synaptic ultrastructural features demonstrated here have broad implications for the nature and efficacy of glutamatergic signaling in distinct cortical areas within and across species.


Subject(s)
Frontal Lobe/ultrastructure , Macaca mulatta/anatomy & histology , Mice/anatomy & histology , Synapses/ultrastructure , Visual Cortex/ultrastructure , Analysis of Variance , Animals , Female , Frontal Lobe/metabolism , Imaging, Three-Dimensional , Male , Microscopy, Immunoelectron , Neurons/metabolism , Neurons/ultrastructure , Neuropil/metabolism , Neuropil/ultrastructure , Presynaptic Terminals/ultrastructure , Species Specificity , Synapses/classification , Synapses/metabolism , Visual Cortex/metabolism
16.
J Comp Neurol ; 525(6): 1403-1420, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-26971364

ABSTRACT

The tree shrew (Tupaia belangeri) striate cortex is reciprocally connected with the dorsal lateral geniculate nucleus (dLGN), the ventral pulvinar nucleus (Pv), and the claustrum. In the Pv or the dLGN, striate cortex projections are thought to either strongly "drive", or more subtly "modulate" activity patterns respectively. To provide clues to the function of the claustrum, we compare the synaptic arrangements of striate cortex projections to the dLGN, Pv, and claustrum, using anterograde tracing and electron microscopy. Tissue was additionally stained with antibodies against γ-aminobutyric acid (GABA) to identify GABAergic interneurons and non-GABAergic projection cells. The striate cortex terminals were largest in the Pv (0.94 ± 0.08 µm2 ), intermediate in the claustrum (0.34 ± 0.02 µm2 ), and smallest in the dLGN (0.24 ± 0.01 µm2 ). Contacts on interneurons were most common in the Pv (39%), intermediate in the claustrum (15%), and least common in the dLGN (12%). In the claustrum, non-GABAergic terminals (0.34 ± 0.01 µm2 ) and striate cortex terminals were not significantly different in size. The largest terminals in the claustrum were GABAergic (0.51 ± 0.02 µm2 ), and these terminals contacted dendrites and somata that were significantly larger (1.90 ± 0.30 µm2 ) than those contacted by cortex or non-GABAergic terminals (0.28 ± 0.02 µm2 and 0.25 ± 0.02 µm2 , respectively). Our results indicate that the synaptic organization of the claustrum does not correspond to a driver/modulator framework. Instead, the circuitry of the claustrum suggests an integration of convergent cortical inputs, gated by GABAergic circuits. J. Comp. Neurol. 525:1403-1420, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Basal Ganglia/ultrastructure , Geniculate Bodies/ultrastructure , Neural Pathways/ultrastructure , Tupaiidae/anatomy & histology , Visual Cortex/ultrastructure , Animals , Blotting, Western , Female , Immunohistochemistry , Male , Microscopy, Electron, Transmission , Synapses/ultrastructure
17.
Methods Mol Biol ; 1474: 171-85, 2016.
Article in English | MEDLINE | ID: mdl-27515080

ABSTRACT

Two-photon (2P) imaging has proven to be a powerful tool for investigating neural structure and function both in brain slices and in intact systems. In vivo 2P imaging presents significant challenges in sample preparation, which are exacerbated in non-murine species. Here, we describe procedures for the effective virally mediated labeling of neurons and for the implantation of cranial windows for imaging. The procedures described here are applicable to a range of species, including mice, and are routinely used in ferrets and tree shrews to provide large-scale labeling of cortical volumes and high-quality imaging data.


Subject(s)
Dependovirus/genetics , Microscopy, Fluorescence, Multiphoton/methods , Neocortex/ultrastructure , Neurons/ultrastructure , Skull/surgery , Visual Cortex/ultrastructure , Animals , Calcium/metabolism , Calcium Signaling , Craniotomy/methods , Dependovirus/metabolism , Ferrets , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Mice , Neocortex/metabolism , Neurons/metabolism , Stereotaxic Techniques , Tupaiidae , Visual Cortex/metabolism
18.
Synapse ; 70(8): 307-16, 2016 08.
Article in English | MEDLINE | ID: mdl-27085090

ABSTRACT

Brain extracellular space (ECS) is an interconnected channel that allows diffusion-mediated transport of signaling molecules, metabolites, and drugs. We tested the hypothesis that ß-adrenergic receptor (ßAR) activation impacts extracellular diffusion-mediated transport of molecules through alterations in the morphology of astrocytes. Two structural parameters of ECS-volume fraction and tortuosity-govern extracellular diffusion. Volume fraction (α) is the volume of ECS relative to the total tissue volume. Tortuosity (λ) is a measure of the hindrance that molecules experience in the ECS, compared to a free medium. The real-time iontophoretic (RTI) method revealed that treatment of acutely prepared visual cortical slices of adult female rats with a ßAR agonist, DL-isoproterenol (ISO), decreases α significantly, from 0.22 ± 0.03 (mean ± SD) for controls without agonist to 0.18 ± 0.03 with ISO, without altering λ (control: 1.64 ± 0.04; ISO: 1.63 ± 0.04). Electron microscopy revealed that the ISO treatment significantly increased the cytoplasmic area of astrocytic distal endings per unit area of neuropil by 54%. These findings show that norepinephrine decreases α, in part, through an increase in astrocytic volume following ßAR activation. Norepinephrine is recognized to be released within the brain during the awake state and increase neurons' signal-to-noise ratio through modulation of neurons' biophysical properties. Our findings uncover a new mechanism for noradrenergic modulation of neuronal signals. Through astrocytic activation leading to a reduction of α, noradrenergic modulation increases extracellular concentration of neurotransmitters and neuromodulators, thereby facilitating neuronal interactions, especially during wakefulness. Synapse 70:307-316, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Astrocytes/drug effects , Extracellular Space/drug effects , Receptors, Adrenergic, beta/metabolism , Visual Cortex/drug effects , Adrenergic beta-Agonists/pharmacology , Animals , Astrocytes/metabolism , Extracellular Space/metabolism , Female , Isoproterenol/pharmacology , Neuropil/drug effects , Neuropil/metabolism , Neuropil/ultrastructure , Rats , Rats, Sprague-Dawley , Visual Cortex/metabolism , Visual Cortex/ultrastructure
19.
Nature ; 532(7599): 370-4, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27018655

ABSTRACT

Circuits in the cerebral cortex consist of thousands of neurons connected by millions of synapses. A precise understanding of these local networks requires relating circuit activity with the underlying network structure. For pyramidal cells in superficial mouse visual cortex (V1), a consensus is emerging that neurons with similar visual response properties excite each other, but the anatomical basis of this recurrent synaptic network is unknown. Here we combined physiological imaging and large-scale electron microscopy to study an excitatory network in V1. We found that layer 2/3 neurons organized into subnetworks defined by anatomical connectivity, with more connections within than between groups. More specifically, we found that pyramidal neurons with similar orientation selectivity preferentially formed synapses with each other, despite the fact that axons and dendrites of all orientation selectivities pass near (<5 µm) each other with roughly equal probability. Therefore, we predict that mechanisms of functionally specific connectivity take place at the length scale of spines. Neurons with similar orientation tuning formed larger synapses, potentially enhancing the net effect of synaptic specificity. With the ability to study thousands of connections in a single circuit, functional connectomics is proving a powerful method to uncover the organizational logic of cortical networks.


Subject(s)
Visual Cortex/anatomy & histology , Visual Cortex/physiology , Visual Pathways/cytology , Visual Pathways/physiology , Animals , Axons/physiology , Calcium/analysis , Dendrites/physiology , Male , Mice , Mice, Inbred C57BL , Photons , Pyramidal Cells/cytology , Pyramidal Cells/physiology , Synapses/metabolism , Visual Cortex/cytology , Visual Cortex/ultrastructure , Visual Pathways/anatomy & histology , Visual Pathways/ultrastructure
20.
J Comp Neurol ; 524(6): 1292-306, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26399201

ABSTRACT

To determine whether thalamocortical synaptic circuits differ across cortical areas, we examined the ultrastructure of geniculocortical terminals in the tree shrew striate cortex to compare directly the characteristics of these terminals with those of pulvinocortical terminals (examined previously in the temporal cortex of the same species; Chomsung et al. [] Cereb Cortex 20:997-1011). Tree shrews are considered to represent a prototype of early prosimian primates but are unique in that sublaminae of striate cortex layer IV respond preferentially to light onset (IVa) or offset (IVb). We examined geniculocortical inputs to these two sublayers labeled by tracer or virus injections or an antibody against the type 2 vesicular glutamate antibody (vGLUT2). We found that layer IV geniculocortical terminals, as well as their postsynaptic targets, were significantly larger than pulvinocortical terminals and their postsynaptic targets. In addition, we found that 9-10% of geniculocortical terminals in each sublamina contacted GABAergic interneurons, whereas pulvinocortical terminals were not found to contact any interneurons. Moreover, we found that the majority of geniculocortical terminals in both IVa and IVb contained dendritic protrusions, whereas pulvinocortical terminals do not contain these structures. Finally, we found that synaptopodin, a protein uniquely associated with the spine apparatus, and telencephalin (TLCN, or intercellular adhesion molecule type 5), a protein associated with maturation of dendritic spines, are largely excluded from geniculocortical recipient layers of the striate cortex. Together our results suggest major differences in the synaptic organization of thalamocortical pathways in striate and extrastriate areas.


Subject(s)
Geniculate Bodies/ultrastructure , Synapses/ultrastructure , Visual Cortex/ultrastructure , Visual Pathways/ultrastructure , Animals , Geniculate Bodies/chemistry , Synapses/chemistry , Tupaiidae , Vesicular Glutamate Transport Protein 2/analysis , Visual Cortex/chemistry , Visual Pathways/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...