Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.397
Filter
1.
Commun Biol ; 7(1): 563, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740899

ABSTRACT

Targeting the estrogen receptor alpha (ERα) pathway is validated in the clinic as an effective means to treat ER+ breast cancers. Here we present the development of a VHL-targeting and orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of ERα. In vitro studies with this PROTAC demonstrate excellent ERα degradation and ER antagonism in ER+ breast cancer cell lines. However, upon dosing the compound in vivo we observe an in vitro-in vivo disconnect. ERα degradation is lower in vivo than expected based on the in vitro data. Investigation into potential causes for the reduced maximal degradation reveals that metabolic instability of the PROTAC linker generates metabolites that compete for binding to ERα with the full PROTAC, limiting degradation. This observation highlights the requirement for metabolically stable PROTACs to ensure maximal efficacy and thus optimisation of the linker should be a key consideration when designing PROTACs.


Subject(s)
Estrogen Receptor alpha , Proteolysis , Von Hippel-Lindau Tumor Suppressor Protein , Humans , Estrogen Receptor alpha/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Female , Proteolysis/drug effects , Animals , Administration, Oral , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage
2.
J Clin Invest ; 134(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38618956

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is characterized by dysregulated hypoxia signaling and a tumor microenvironment (TME) highly enriched in myeloid and lymphoid cells. Loss of the von Hippel Lindau (VHL) gene is a critical early event in ccRCC pathogenesis and promotes stabilization of HIF. Whether VHL loss in cancer cells affects immune cells in the TME remains unclear. Using Vhl WT and Vhl-KO in vivo murine kidney cancer Renca models, we found that Vhl-KO tumors were more infiltrated by immune cells. Tumor-associated macrophages (TAMs) from Vhl-deficient tumors demonstrated enhanced in vivo glucose consumption, phagocytosis, and inflammatory transcriptional signatures, whereas lymphocytes from Vhl-KO tumors showed reduced activation and a lower response to anti-programmed cell death 1 (anti-PD-1) therapy in vivo. The chemokine CX3CL1 was highly expressed in human ccRCC tumors and was associated with Vhl deficiency. Deletion of Cx3cl1 in cancer cells decreased myeloid cell infiltration associated with Vhl loss to provide a mechanism by which Vhl loss may have contributed to the altered immune landscape. Here, we identify cancer cell-specific genetic features that drove environmental reprogramming and shaped the tumor immune landscape, with therapeutic implications for the treatment of ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Humans , Mice , Carcinogenesis/genetics , Carcinoma, Renal Cell/genetics , Cell Transformation, Neoplastic , Kidney , Kidney Neoplasms/genetics , Tumor Microenvironment , Von Hippel-Lindau Tumor Suppressor Protein/genetics
3.
EBioMedicine ; 103: 105070, 2024 May.
Article in English | MEDLINE | ID: mdl-38564827

ABSTRACT

BACKGROUND: Cholesteryl ester (CE) accumulation in intracellular lipid droplets (LDs) is an essential signature of clear cell renal cell carcinoma (ccRCC), but its molecular mechanism and pathological significance remain elusive. METHODS: Enabled by the label-free Raman spectromicroscopy, which integrated stimulated Raman scattering microscopy with confocal Raman spectroscopy on the same platform, we quantitatively analyzed LD distribution and composition at the single cell level in intact ccRCC cell and tissue specimens in situ without any processing or exogenous labeling. Since we found that commonly used ccRCC cell lines actually did not show the CE-rich signature, primary cancer cells were isolated from human tissues to retain the lipid signature of ccRCC with CE level as high as the original tissue, which offers a preferable cell model for the study of cholesterol metabolism in ccRCC. Moreover, we established a patient-derived xenograft (PDX) mouse model that retained the CE-rich phenotype of human ccRCC. FINDINGS: Surprisingly, our results revealed that CE accumulation was induced by tumor suppressor VHL mutation, the most common mutation of ccRCC. Moreover, VHL mutation was found to promote CE accumulation by upregulating HIFα and subsequent PI3K/AKT/mTOR/SREBPs pathway. Inspiringly, inhibition of cholesterol esterification remarkably suppressed ccRCC aggressiveness in vitro and in vivo with negligible toxicity, through the reduced membrane cholesterol-mediated downregulations of integrin and MAPK signaling pathways. INTERPRETATION: Collectively, our study improves current understanding of the role of CE accumulation in ccRCC and opens up new opportunities for treatment. FUNDING: This work was supported by National Natural Science Foundation of China (No. U23B2046 and No. 62027824), National Key R&D Program of China (No. 2023YFC2415500), Fundamental Research Funds for the Central Universities (No. YWF-22-L-547), PKU-Baidu Fund (No. 2020BD033), Peking University First Hospital Scientific and Technological Achievement Transformation Incubation Guidance Fund (No. 2022CX02), and Beijing Municipal Health Commission (No. 2020-2Z-40713).


Subject(s)
Carcinoma, Renal Cell , Cholesterol Esters , Kidney Neoplasms , Mutation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Von Hippel-Lindau Tumor Suppressor Protein , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cholesterol Esters/metabolism , Animals , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Mice , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Cell Line, Tumor , Disease Progression , Disease Models, Animal
5.
Biochem Biophys Res Commun ; 715: 150008, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38685186

ABSTRACT

In the last decade, much attention was given to the study of physiological amyloid fibrils. These structures include A-bodies, which are the nucleolar fibrillar formations that appear in the response to acidosis and heat shock, and disassemble after the end of stress. One of the proteins involved in the biogenesis of A-bodies, regardless of the type of stress, is Von-Hippel Lindau protein (VHL). Known also as a tumor suppressor, VHL is capable to form amyloid fibrils both in vitro and in vivo in response to the environment acidification. As with most amyloidogenic proteins fusion with various tags is used to increase the solubility of VHL. Here, we first performed AFM-study of fibrils formed by VHL protein and by VHL fused with GST-tag (GST-VHL) at acidic conditions. It was shown that formed by full-length VHL fibrils are short heterogenic structures with persistent length of 2400 nm and average contour length of 409 nm. GST-tag catalyzes VHL amyloid fibril formation, superimpose chirality, increases length and level of hierarchy, but decreases rigidity of amyloid fibrils. The obtained data indicate that tagging can significantly affect the fibrillogenesis of the target protein.


Subject(s)
Amyloid , Glutathione Transferase , Von Hippel-Lindau Tumor Suppressor Protein , Amyloid/metabolism , Amyloid/chemistry , Glutathione Transferase/metabolism , Glutathione Transferase/chemistry , Humans , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/chemistry , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Microscopy, Atomic Force
6.
Virulence ; 15(1): 2349027, 2024 12.
Article in English | MEDLINE | ID: mdl-38680083

ABSTRACT

Infectious spleen and kidney necrosis virus (ISKNV), a member of the genus Megalocytivirus in the family Iridoviridae, can infect over 50 fish species and cause significant economic losses in Asia. Our previous study showed that hypoxia triggers the hypoxia-inducible factor pathway (HIF-pathway), leading to increased replication of ISKNV through promoting the upregulation of viral hypoxic response genes like orf077r. This study delved into the molecular mechanism of how ISKNV manipulates the HIF-pathway to enhance its replication. In vitro and in vivo experiments confirmed that ISKNV infection activated the HIF-pathway, which in turn promoted ISKNV replication. These findings suggest that ISKNV actively manipulates the HIF-pathway. Co-immunoprecipitation experiments revealed that the ISKNV-encoded protein VP077R interacts with the Von Hippel-Lindau (VHL) protein at the HIF-binding region, competitively inhibiting the interaction of HIF-1α with VHL. This prevents HIF degradation and activates the HIF-pathway. Furthermore, VP077R interacts with factor-inhibiting HIF (FIH), recruiting FIH and S-phase kinase-associated protein 1 (Skp1) to form an FIH - VP077R - Skp1 complex. This complex promotes FIH protein degradation via ubiquitination, further activating the HIF-pathway. These findings indicated that ISKNV takes over the HIF-pathway by releasing two "brakes" on this pathway (VHL and FIH) via VP077R, facilitating virus replication. We speculate that hypoxia initiates a positive feedback loop between ISKNV VP077R and the HIF pathway, leading to the outbreak of ISKNV disease. This work offers valuable insights into the complex interactions between the environment, host, and virus.


Subject(s)
DNA Virus Infections , Fish Diseases , Iridoviridae , Virus Replication , Animals , Iridoviridae/physiology , Iridoviridae/genetics , DNA Virus Infections/virology , Fish Diseases/virology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Humans
7.
Nat Genet ; 56(5): 809-818, 2024 May.
Article in English | MEDLINE | ID: mdl-38671320

ABSTRACT

Here, in a multi-ancestry genome-wide association study meta-analysis of kidney cancer (29,020 cases and 835,670 controls), we identified 63 susceptibility regions (50 novel) containing 108 independent risk loci. In analyses stratified by subtype, 52 regions (78 loci) were associated with clear cell renal cell carcinoma (RCC) and 6 regions (7 loci) with papillary RCC. Notably, we report a variant common in African ancestry individuals ( rs7629500 ) in the 3' untranslated region of VHL, nearly tripling clear cell RCC risk (odds ratio 2.72, 95% confidence interval 2.23-3.30). In cis-expression quantitative trait locus analyses, 48 variants from 34 regions point toward 83 candidate genes. Enrichment of hypoxia-inducible factor-binding sites underscores the importance of hypoxia-related mechanisms in kidney cancer. Our results advance understanding of the genetic architecture of kidney cancer, provide clues for functional investigation and enable generation of a validated polygenic risk score with an estimated area under the curve of 0.65 (0.74 including risk factors) among European ancestry individuals.


Subject(s)
Carcinoma, Renal Cell , Genetic Predisposition to Disease , Genome-Wide Association Study , Kidney Neoplasms , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Humans , Kidney Neoplasms/genetics , Carcinoma, Renal Cell/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Case-Control Studies , White People/genetics
8.
Clin Cancer Res ; 30(9): 1750-1757, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38393723

ABSTRACT

PURPOSE: Primary analysis of the ongoing, single-arm, phase 2 LITESPARK-004 study (NCT03401788) showed clinically meaningful antitumor activity in von Hippel-Lindau (VHL) disease-associated renal cell carcinoma (RCC) and other neoplasms with belzutifan treatment. We describe results of belzutifan treatment for VHL disease-associated pancreatic lesions [pancreatic neuroendocrine tumors (pNET) and serous cystadenomas]. PATIENTS AND METHODS: Adults with VHL diagnosis based on germline VHL alteration, ≥1 measurable RCC tumor, no renal tumor >3 cm or other VHL neoplasm requiring immediate surgery, Eastern Cooperative Oncology Group performance status of 0 or 1, and no prior systemic anticancer treatment received belzutifan 120 mg once daily. End points included objective response rate (ORR), duration of response (DOR), progression-free survival (PFS), and linear growth rate (LGR) in all pancreatic lesions and pNETs per RECIST version 1.1 by independent review committee, and safety. RESULTS: All 61 enrolled patients (100%) had ≥1 pancreatic lesion and 22 (36%) had ≥1 pNET measurable at baseline. Median follow-up was 37.8 months (range, 36.1-46.1). ORR was 84% [51/61; 17 complete responses (CR)] in pancreatic lesions and 91% (20/22; 7 CRs) in pNETs. Median DOR and median PFS were not reached in pancreatic lesions or pNETs. After starting treatment, median LGR for pNETs was -4.2 mm per year (range, -7.9 to -0.8). Eleven patients (18%) had ≥1 grade 3 treatment-related adverse event (AE). No grade 4 or 5 treatment-related AEs occurred. CONCLUSIONS: Belzutifan continued to show robust activity and manageable safety in VHL disease-associated pNETs.


Subject(s)
Pancreatic Neoplasms , von Hippel-Lindau Disease , Humans , von Hippel-Lindau Disease/complications , von Hippel-Lindau Disease/drug therapy , von Hippel-Lindau Disease/pathology , Male , Female , Middle Aged , Adult , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Aged , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/pathology , Young Adult , Treatment Outcome , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Cystadenoma, Serous/drug therapy , Cystadenoma, Serous/pathology
9.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396737

ABSTRACT

In the realm of cancer therapeutics, targeting the hypoxia-inducible factor (HIF) pathway has emerged as a promising strategy. This study delves into the intricate web of HIF-associated mechanisms, exploring avenues for future anticancer therapies. Framing the investigation within the broader context of cancer progression and hypoxia response, this article aims to decipher the pivotal role played by HIF in regulating genes influencing angiogenesis, cell proliferation, and glucose metabolism. Employing diverse approaches such as HIF inhibitors, anti-angiogenic therapies, and hypoxia-activated prodrugs, the research methodologically intervenes at different nodes of the HIF pathway. Findings showcase the efficacy of agents like EZN-2968, Minnelide, and Acriflavine in modulating HIF-1α protein synthesis and destabilizing HIF-1, providing preliminary proof of HIF-1α mRNA modulation and antitumor activity. However, challenges, including toxicity, necessitate continued exploration and development, as exemplified by ongoing clinical trials. This article concludes by emphasizing the potential of targeted HIF therapies in disrupting cancer-related signaling pathways.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Vascular Endothelial Growth Factor A/metabolism , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/metabolism , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/genetics
10.
J Investig Med High Impact Case Rep ; 12: 23247096241231641, 2024.
Article in English | MEDLINE | ID: mdl-38344974

ABSTRACT

The Von-Hippel-Lindau (VHL) gene, acting as a tumor suppressor, plays a crucial role in the tumorigenesis of clear cell renal cell carcinoma (ccRCC). Approximately 90% of individuals with advanced ccRCC exhibit somatic mutations in the VHL gene. Belzutifan, orally administered small-molecule inhibitor of hypoxia-induced factor-2α, has demonstrated promising efficacy in solid tumors associated with germline loss-of-function mutations in VHL, including ccRCC. However, its impact on cases with somatic or sporadic VHL mutations remains unclear. Here, we present 2 cases where belzutifan monotherapy was employed in patients with advanced ccRCC and somatic loss-of-function mutations in VHL. Both patients exhibited a swift and sustained response, underscoring the potential role of belzutifan as a viable option in second or subsequent lines of therapy for individuals with somatic VHL mutations. Despite both patients experiencing a pulmonary crisis with respiratory compromise, their rapid response to belzutifan further emphasizes its potential utility in cases involving pulmonary or visceral crises. This report contributes valuable insights into the treatment landscape for advanced ccRCC with somatic VHL mutations.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Indenes , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Mutation
11.
EMBO J ; 43(6): 931-955, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38360997

ABSTRACT

The Von Hippel-Lindau (VHL) protein, which is frequently mutated in clear-cell renal cell carcinoma (ccRCC), is a master regulator of hypoxia-inducible factor (HIF) that is involved in oxidative stresses. However, whether VHL possesses HIF-independent tumor-suppressing activity remains largely unclear. Here, we demonstrate that VHL suppresses nutrient stress-induced autophagy, and its deficiency in sporadic ccRCC specimens is linked to substantially elevated levels of autophagy and correlates with poorer patient prognosis. Mechanistically, VHL directly binds to the autophagy regulator Beclin1, after its PHD1-mediated hydroxylation on Pro54. This binding inhibits the association of Beclin1-VPS34 complexes with ATG14L, thereby inhibiting autophagy initiation in response to nutrient deficiency. Expression of non-hydroxylatable Beclin1 P54A abrogates VHL-mediated autophagy inhibition and significantly reduces the tumor-suppressing effect of VHL. In addition, Beclin1 P54-OH levels are inversely correlated with autophagy levels in wild-type VHL-expressing human ccRCC specimens, and with poor patient prognosis. Furthermore, combined treatment of VHL-deficient mouse tumors with autophagy inhibitors and HIF2α inhibitors suppresses tumor growth. These findings reveal an unexpected mechanism by which VHL suppresses tumor growth, and suggest a potential treatment for ccRCC through combined inhibition of both autophagy and HIF2α.


Subject(s)
Beclin-1 , Carcinoma, Renal Cell , Kidney Neoplasms , Von Hippel-Lindau Tumor Suppressor Protein , Animals , Humans , Mice , Autophagy , Beclin-1/genetics , Beclin-1/metabolism , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Hydroxylation , Kidney Neoplasms/metabolism , Procollagen-Proline Dioxygenase/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
12.
Proc Natl Acad Sci U S A ; 121(7): e2310479121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38335255

ABSTRACT

Metabolic reprogramming is critical during clear cell renal cell carcinoma (ccRCC) tumorigenesis, manifested by accumulation of lipid droplets (LDs), organelles that have emerged as new hallmarks of cancer. Yet, regulation of their biogenesis is still poorly understood. Here, we demonstrate that MYC inhibition in ccRCC cells lacking the von Hippel Lindau (VHL) gene leads to increased triglyceride content potentiating LD formation in a glutamine-dependent manner. Importantly, the concurrent inhibition of MYC signaling and glutamine metabolism prevented LD accumulation and reduced tumor burden in vivo. Furthermore, we identified the hypoxia-inducible lipid droplet-associated protein (HILPDA) as the key driver for induction of MYC-driven LD accumulation and demonstrated that conversely, proliferation, LD formation, and tumor growth are impaired upon its downregulation. Finally, analysis of ccRCC tissue as well as healthy renal control samples postulated HILPDA as a specific ccRCC biomarker. Together, these results provide an attractive approach for development of alternative therapeutic interventions for the treatment of this type of renal cancer.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Lipid Droplets , Proto-Oncogene Proteins c-myc , Humans , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Glutamine/metabolism , Kidney Neoplasms/pathology , Lipid Droplets/drug effects , Lipid Droplets/metabolism , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Up-Regulation , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism
13.
Apoptosis ; 29(5-6): 681-692, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38281281

ABSTRACT

Kidney renal clear cell carcinoma (KIRC) is the most common histopathologic type of renal cell carcinoma. PANoptosis, a cell death pathway that involves an interplay between pyroptosis, apoptosis and necroptosis, is associated with cancer immunity and development. However, the prognostic significance of PANoptosis in KIRC remains unclear. RNA-sequencing expression and mutational profiles from 532 KIRC samples and 72 normal samples with sufficient clinical data were retrieved from the Cancer Genome Atlas (TCGA) database. A prognostic model was constructed using differentially expressed genes (DEGs) related to PANoptosis in the TCGA cohort and was validated in a Gene Expression Omnibus (GEO) cohorts. Incorporating various clinical features, the risk model remained an independent prognostic factor in multivariate analysis, and it demonstrated superior performance compared to unsupervised clustering of the 21 PANoptosis-related genes alone. Further mutational analysis showed fewer VHL and more BAP1 alterations in the high-risk group, with alterations in both genes also associated with patient prognosis. The high-risk group was characterized by an unfavorable immune microenvironment, marked by reduced levels of CD4 + T cells and natural killer cells, but increased M2 macrophages and regulatory T cells. Finally, the risk model was predictive of response to immune checkpoint blockade, as well as sensitivity to sunitinib and paclitaxel. The PANoptosis-related risk model developed in this study enables accurate prognostic prediction in KIRC patients. Its associations with the tumor immune microenvironment and drug efficacy may offer potential therapeutic targets and inform clinical decisions.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/diagnosis , Kidney Neoplasms/genetics , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Kidney Neoplasms/diagnosis , Prognosis , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Gene Expression Regulation, Neoplastic , Male , Pyroptosis/genetics , Female , Mutation , Biomarkers, Tumor/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Ubiquitin Thiolesterase/genetics , Middle Aged , Sunitinib/therapeutic use , Sunitinib/pharmacology , Tumor Suppressor Proteins/genetics
14.
Molecules ; 29(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38257395

ABSTRACT

Autophagy is a pivotal biological process responsible for maintaining the homeostasis of intracellular organelles. Yet the molecular intricacies of peroxisomal autophagy (pexophagy) remain largely elusive. From a ubiquitin-related chemical library for screening, we identified several inhibitors of the Von Hippel-Lindau (VHL) E3 ligase, including VH298, thereby serving as potent inducers of pexophagy. In this study, we observed that VH298 stimulates peroxisomal degradation by ATG5 dependently and escalates the ubiquitination of the peroxisomal membrane protein ABCD3. Interestingly, the ablation of NBR1 is similar to the curtailed peroxisomal degradation in VH298-treated cells. We also found that the pexophagy induced by VH298 is impeded upon the suppression of gene expression by the translation inhibitor cycloheximide. Beyond VHL inhibition, we discovered that roxadustat, a direct inhibitor of HIF-α prolyl hydroxylase, is also a potent inducer of pexophagy. Furthermore, we found that VH298-mediated pexophagy is blocked by silencing HIF-1α. In conclusion, our findings suggest that VH298 promotes pexophagy by modulating VHL-mediated HIF-α transcriptional activity.


Subject(s)
Autophagy , Cyclopropanes , Macroautophagy , Pyrrolidines , Thiazoles , Humans , HeLa Cells , Homeostasis , Von Hippel-Lindau Tumor Suppressor Protein/genetics
15.
J Biol Chem ; 300(1): 105535, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072043

ABSTRACT

Renal cell carcinoma (RCC) is a frequent malignancy of the urinary system with high mortality and morbidity. However, the molecular mechanisms underlying RCC progression are still largely unknown. In this study, we identified FOXA2, a pioneer transcription factor, as a driver oncogene for RCC. We show that FOXA2 was commonly upregulated in human RCC samples and promoted RCC proliferation, as evidenced by assays of cell viability, colony formation, migratory and invasive capabilities, and stemness properties. Mechanistically, we found that FOXA2 promoted RCC cell proliferation by transcriptionally activating HIF2α expression in vitro and in vivo. Furthermore, we found that FOXA2 could interact with VHL (von Hippel‒Lindau), which ubiquitinated FOXA2 and controlled its protein stability in RCC cells. We showed that mutation of lysine at position 264 to arginine in FOXA2 could mostly abrogate its ubiquitination, augment its activation effect on HIF2α expression, and promote RCC proliferation in vitro and RCC progression in vivo. Importantly, elevated expression of FOXA2 in patients with RCC positively correlated with the expression of HIF2α and was associated with shorter overall and disease-free survival. Together, these findings reveal a novel role of FOXA2 in RCC development and provide insights into the underlying molecular mechanisms of FOXA2-driven pathological processes in RCC.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Carcinoma, Renal Cell , Hepatocyte Nuclear Factor 3-beta , Kidney Neoplasms , Humans , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Transcription Factors/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Disease Progression
16.
Biochem Biophys Res Commun ; 690: 149250, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38039781

ABSTRACT

The von Hippel-Lindau protein (pVHL) is a tumor suppressor involved in oxygen regulation via dynamic nucleocytoplasmic shuttling. It plays a crucial role in cell survival by degrading hypoxia-inducible factors (HIFs). Mutations in the VHL gene cause angiogenic tumors, characterized as VHL syndrome. However, aggressive tumors involving wild-type pVHL have also been described but the underlying mechanism remains to be revealed. We have previously shown that pVHL possesses several short amyloid-forming motifs, making it aggregation-prone. In this study, using a series of biophysical assays, we demonstrated that a pVHL-derived fragment (pVHL104-140) that harbors the nuclear export motif and HIF binding site, forms amyloid-like fibrillar structures in vitro by following secondary-nucleation-based kinetics. The peptide also formed amyloids at acidic pH that mimics the tumor microenvironment. We, subsequently, validated the amyloid formation by pVHL in vitro. Using the Curli-dependent amyloid generator (C-DAG) expression system, we confirmed the amyloidogenesis of pVHL in bacterial cells. The pVHL amyloids are an attractive target for therapeutics of the VHL syndrome. Accordingly, we demonstrated in vitro that Purpurin is a potent inhibitor of pVHL fibrillation. The amyloidogenic behavior of wild-type pVHL and its inhibition provide novel insights into the molecular underpinning of the VHL syndrome and its possible treatment.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , von Hippel-Lindau Disease , Humans , Ubiquitin-Protein Ligases/metabolism , von Hippel-Lindau Disease/genetics , Transcription Factors/metabolism , Carcinoma, Renal Cell/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Genes, Tumor Suppressor , Amyloidogenic Proteins/genetics , Kidney Neoplasms/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Tumor Microenvironment
17.
Hum Mol Genet ; 33(3): 224-232, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-37883464

ABSTRACT

BACKGROUND: Mutations within the Von Hippel-Lindau (VHL) tumor suppressor gene are known to cause VHL disease, which is characterized by the formation of cysts and tumors in multiple organs of the body, particularly clear cell renal cell carcinoma (ccRCC). A major challenge in clinical practice is determining tumor risk from a given mutation in the VHL gene. Previous efforts have been hindered by limited available clinical data and technological constraints. METHODS: To overcome this, we initially manually curated the largest set of clinically validated VHL mutations to date, enabling a robust assessment of existing predictive tools on an independent test set. Additionally, we comprehensively characterized the effects of mutations within VHL using in silico biophysical tools describing changes in protein stability, dynamics and affinity to binding partners to provide insights into the structure-phenotype relationship. These descriptive properties were used as molecular features for the construction of a machine learning model, designed to predict the risk of ccRCC development as a result of a VHL missense mutation. RESULTS: Analysis of our model showed an accuracy of 0.81 in the identification of ccRCC-causing missense mutations, and a Matthew's Correlation Coefficient of 0.44 on a non-redundant blind test, a significant improvement in comparison to the previous available approaches. CONCLUSION: This work highlights the power of using protein 3D structure to fully explore the range of molecular and functional consequences of genomic variants. We believe this optimized model will better enable its clinical implementation and assist guiding patient risk stratification and management.


Subject(s)
Machine Learning , Mutation, Missense , von Hippel-Lindau Disease , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/metabolism , Mutation, Missense/genetics , von Hippel-Lindau Disease/genetics , von Hippel-Lindau Disease/pathology , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/chemistry , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
18.
J Med Genet ; 61(4): 378-384, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-37979962

ABSTRACT

BACKGROUND: The von Hippel-Lindau (VHL) disease is a hereditary tumour syndrome caused by germline mutations in VHL tumour suppressor gene. The identification of VHL variants requires accurate classification which has an impact on patient management and genetic counselling. METHODS: The TENGEN (French oncogenetics network of neuroendocrine tumors) and PREDIR (French National Cancer Institute network for Inherited predispositions to kidney cancer) networks have collected VHL genetic variants and clinical characteristics of all VHL-suspected patients analysed from 2003 to 2021 by one of the nine laboratories performing VHL genetic testing in France. Identified variants were registered in a locus-specific database, the Universal Mutation Database-VHL database (http://www.umd.be/VHL/). RESULTS: Here we report the expert classification of 164 variants, including all missense variants (n=124), all difficult interpretation variants (n=40) and their associated phenotypes. After initial American College of Medical Genetics classification, first-round classification was performed by the VHL expert group followed by a second round for discordant and ambiguous cases. Overall, the VHL experts modified the classification of 87 variants including 30 variants of uncertain significance that were as (likely)pathogenic variants for 19, and as likely benign for 11. CONCLUSION: Consequently, this work has allowed the diagnosis and influenced the genetic counselling of 45 VHL-suspected families and can benefit to the worldwide VHL community, through this review.


Subject(s)
Kidney Neoplasms , von Hippel-Lindau Disease , Humans , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Genetic Testing , Genetic Predisposition to Disease , von Hippel-Lindau Disease/genetics , von Hippel-Lindau Disease/pathology , Genetic Association Studies , Kidney Neoplasms/genetics , Germ-Line Mutation
19.
Semin Diagn Pathol ; 41(1): 20-27, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37980175

ABSTRACT

von Hippel-Lindau (VHL) disease is characterized by biallelic inactivation of the VHL gene leading to abnormal or absent VHL protein function, and constitutive activation of hypoxia-inducible factors (HIF) that leads to pro-tumorigenic signaling. Individuals with VHL disease develop numerous cysts and tumors involving multiple organs including the kidneys, central nervous system, endolymphatic sac, lungs, pancreatobiliary system, adrenal glands, epididymis, and/or broad ligament. On histologic examination, these lesions show morphologic overlap as they are frequently characterized by cells with clear cytoplasm and prominent vascularity. In addition to distinguishing non-renal tumors from metastatic clear cell renal cell carcinoma, understanding site-specific histopathologic and immunophenotypic features of these tumors has several applications. This includes distinguishing VHL-related tumors from those that arise sporadically and lack VHL gene alterations, guiding further genetic workup, and helping distinguish between different genetic predisposition syndromes. In this context, immunohistochemical studies for markers such as paired box 8 (PAX-8), carbonic anhydrase 9 (CA9), and glucose transporter 1 (GLUT-1) have an important role in routine clinical practice and represent cost-effective diagnostic tools. The recent development of targeted therapeutics directed against HIF-mediated signaling represents a significant milestone in the management of VHL disease and highlights the importance of accurately diagnosing and characterizing the wide spectrum of VHL disease-associated lesions.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , von Hippel-Lindau Disease , Male , Female , Humans , von Hippel-Lindau Disease/complications , von Hippel-Lindau Disease/diagnosis , von Hippel-Lindau Disease/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Carcinoma, Renal Cell/diagnosis , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/diagnosis , Kidney Neoplasms/genetics , Kidney/pathology
20.
Zhonghua Bing Li Xue Za Zhi ; 52(12): 1230-1236, 2023 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-38058039

ABSTRACT

Objective: To explore the potential pathogenesis of clear cell renal cell carcinoma (ccRCC) based on the HIF-1α/ACLY signaling pathway, as well as to provide new ideas for the treatment of ccRCC. Methods: Seventy-eight ccRCC cases diagnosed at the First Affiliated Hospital of Soochow University, Suzhou, China were collected. The VHL mutation was examined using exon sequencing. The expression of HIF-1α/ACLY in VHL-mutated ccRCC was evaluated using immunohistochemical staining and further validated in VHL-mutated ccRCC cell lines (786-O, A498, UM-RC-2, SNU-333, and Caki-2) using Western blot. The mRNA and protein levels of ACLY were detected using real-time quantitative PCR and Western blot after overexpression or interference with HIF-1α in ccRCC cell lines. HeLa cells were treated with CoCl2 and hypoxia (1%O2) to activate HIF-1α and then subject to the detection of the ACLY mRNA and protein levels. The potential molecular mechanism of HIF-1α-induced ACLY activation was explored through JASPAR database combined with chromatin immunoprecipitation assay (ChIP) and luciferase reporter gene assay. The effect of HIF-1α/ACLY regulation axis on lipid accumulation was detected using BODIPY staining and other cell biological techniques. The expression of ACLY was compared between patients with ccRCC and those with benign lesions, and the feasibility of ACLY as a prognostic indicator for ccRCC was explored through survival analysis. Results: Exon sequencing revealed that 55 (70.5%) of the 78 ccRCC patients harbored a VHL inactivation mutation, and HIF-1α expression was associated with ACLY protein levels. The protein levels of ACLY and HIF-1α in ccRCC cell lines carrying VHL mutation were also correlated to various degrees. Overexpression of HIF-1α in A498 cells increased the mRNA and protein levels of ACLY, and knockdown of HIF-1α in Caki-2 cells inhibited the mRNA and protein levels of ACLY (P<0.001 for all). CoCl2 and hypoxia treatment significantly increased the mRNA and protein levels of ACLY by activating HIF-1α (P<0.001 for all). The quantification of transcriptional activity of luciferase reporter gene and ChIP-qPCR results suggested that HIF-1α could directly bind to ACLY promoter region to transcriptionally activate ACLY expression and increase ACLY protein level (P<0.001 for all). The results of BODIPY staining suggested that the content of free fatty acids in cell lines was associated with the levels of HIF-1α and ACLY. The depletion of HIF-1α could effectively reduce the accumulation of lipid in cells, while the overexpression of ACLY could reverse this process. At the same time, cell function experiments showed that the proliferation rate of ccRCC cells with HIF-1α knockdown was significantly decreased, and overexpression of ACLY could restore proliferation of these tumor cells (P<0.001). Survival analysis further showed that compared with the ccRCC patients with low ACLY expression, the ccRCC patients with high ACLY expression had a poorer prognosis and a shorter median survival (P<0.001). Conclusions: VHL mutation-mediated HIF-1α overexpression in ccRCC promotes lipid synthesis and tumor progression by activating ACLY. Targeting the HIF-1α/ACLY signaling axis may provide a theoretical basis for the clinical diagnosis and treatment of ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , HeLa Cells , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Mutation , Signal Transduction , Luciferases/genetics , Luciferases/metabolism , Luciferases/therapeutic use , Hypoxia/genetics , RNA, Messenger , Lipids/therapeutic use , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL
...