Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.652
Filter
1.
J Agric Food Chem ; 72(19): 10828-10841, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691839

ABSTRACT

Chemosensory proteins (CSPs) constitute a class of olfactory proteins localized in insect sensory organs that serve a crucial function in decoding external chemical stimuli. This study aims to elucidate the involvement of CrufCSP3 in olfactory perception within the context of Cotesia ruficrus, an indigenous endoparasitoid targeting the invasive pest Spodoptera frugiperda. Through fluorescence-competitive binding assays and site-directed mutagenesis, we pinpointed four amino acids as pivotal residues involved in the interaction between CrufCSP3 and five host-related compounds. Subsequent RNA interference experiments targeting CrufCSP3 unveiled a reduced sensitivity to specific host-related compounds and a decline in the parasitism rate of the FAW larvae. These findings unequivocally indicate the essential role of CrufCSP3 in the chemoreception process of C. ruficrus. Consequently, our study not only sheds light on the functional importance of CSPs in parasitic wasp behavior but also contributes to the development of eco-friendly and efficacious wasp behavior modifiers for effectively mitigating pest population surges.


Subject(s)
Insect Proteins , Spodoptera , Wasps , Animals , Wasps/chemistry , Wasps/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Larva/growth & development , Host-Parasite Interactions , Olfactory Perception
2.
PLoS One ; 19(5): e0304220, 2024.
Article in English | MEDLINE | ID: mdl-38771894

ABSTRACT

There is increasing evidence that plant-associated microorganisms play important roles in defending plants against insect herbivores through both direct and indirect mechanisms. While previous research has shown that these microbes can modify the behaviour and performance of insect herbivores and their natural enemies, little is known about their effect on egg parasitoids which utilize oviposition-induced plant volatiles to locate their hosts. In this study, we investigated how root inoculation of sweet pepper (Capsicum annuum) with the plant-beneficial fungi Beauveria bassiana ARSEF 3097 or Trichoderma harzianum T22 influences the olfactory behaviour of the egg parasitoid Trissolcus basalis following egg deposition by its host Nezara viridula. Olfactometer assays showed that inoculation by T. harzianum significantly enhanced the attraction of the egg parasitoid, while B. bassiana had the opposite effect. However, no variation was observed in the chemical composition of plant volatiles. Additionally, fitness-related traits of the parasitoids (wasp body size) were not altered by any of the two fungi, suggesting that fungal inoculation did not indirectly affect host quality. Altogether, our results indicate that plant inoculation with T. harzianum T22 can be used to enhance attraction of egg parasitoids, which could be a promising strategy in manipulating early plant responses against pest species and improving sustainable crop protection. From a more fundamental point of view, our findings highlight the importance of taking into account the role of microorganisms when studying the intricate interactions between plants, herbivores and their associated egg parasitoids.


Subject(s)
Beauveria , Capsicum , Oviposition , Wasps , Animals , Beauveria/physiology , Capsicum/parasitology , Capsicum/microbiology , Wasps/physiology , Volatile Organic Compounds/metabolism , Female , Trichoderma/physiology , Host-Parasite Interactions , Ovum , Herbivory
3.
Curr Biol ; 34(10): R483-R488, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38772331

ABSTRACT

Parasitoids - insects that parasitize other insects - have fascinating biologies that have made them darlings of the science fiction genre, owing to their wide array of innovative and often gruesome strategies for living off other organisms. These insects do not sting, but rather lay eggs on or inside their hosts, typically another insect or spider. Unlike parasites, which feed off a host without killing it, parasitoids kill their hosts - and they typically do it slowly. Parasitoids carefully keep their hosts alive for extended periods while they feed on host hemolymph and/or tissues until they are close to completing their own development. The techniques parasitoids use to feed on and manipulate their hosts are wide ranging, demonstrating multiple evolutionary pathways to achieve successful development from egg to adult.


Subject(s)
Host-Parasite Interactions , Wasps , Animals , Wasps/physiology , Biological Evolution , Insecta/parasitology , Insecta/physiology
4.
Proc Biol Sci ; 291(2023): 20232501, 2024 May.
Article in English | MEDLINE | ID: mdl-38772421

ABSTRACT

Promoting urban green spaces is an effective strategy to increase biodiversity in cities. However, our understanding of how local and landscape factors influence trophic interactions in these urban contexts remains limited. Here, we sampled cavity-nesting bees and wasps and their natural enemies within 85 urban gardens in Zurich (Switzerland) to identify factors associated with the diversity and dissimilarity of antagonistic interactions in these communities. The proportions of built-up area and urban green area at small landscape scales (50 m radius), as well as the management intensity, sun exposure, plant richness and proportion of agricultural land at the landscape scale (250 m radius), were key drivers of interaction diversity. This increased interaction diversity resulted not only from the higher richness of host and natural enemy species, but also from species participating in more interactions. Furthermore, dissimilarity in community structure and interactions across gardens (beta-diversity) were primarily influenced by differences in built-up areas and urban green areas at the landscape scale, as well as by management intensity. Our study offers crucial insights for urban planning and conservation strategies, supporting sustainability goals by helping to understand the factors that shape insect communities and their trophic interactions in urban gardens.


Subject(s)
Biodiversity , Gardens , Wasps , Animals , Wasps/physiology , Bees/physiology , Switzerland , Cities , Food Chain
5.
Proc Natl Acad Sci U S A ; 121(23): e2322674121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38768327

ABSTRACT

Predators and prey benefit from detecting sensory cues of each other's presence. As they move through their environment, terrestrial animals accumulate electrostatic charge. Because electric charges exert forces at a distance, a prey animal could conceivably sense electrical forces to detect an approaching predator. Here, we report such a case of a terrestrial animal detecting its predators by electroreception. We show that predatory wasps are charged, thus emit electric fields, and that caterpillars respond to such fields with defensive behaviors. Furthermore, the mechanosensory setae of caterpillars are deflected by these electrostatic forces and are tuned to the wingbeat frequency of their insect predators. This ability unveils a dimension of the sensory interactions between prey and predators and is likely widespread among terrestrial animals.


Subject(s)
Predatory Behavior , Wasps , Animals , Predatory Behavior/physiology , Wasps/physiology , Air , Static Electricity
6.
PLoS Biol ; 22(5): e3002299, 2024 May.
Article in English | MEDLINE | ID: mdl-38713712

ABSTRACT

Activation of immune cells requires the remodeling of cell metabolism in order to support immune function. We study these metabolic changes through the infection of Drosophila larvae by parasitoid wasp. The parasitoid egg is neutralized by differentiating lamellocytes, which encapsulate the egg. A melanization cascade is initiated, producing toxic molecules to destroy the egg while the capsule also protects the host from the toxic reaction. We combined transcriptomics and metabolomics, including 13C-labeled glucose and trehalose tracing, as well as genetic manipulation of sugar metabolism to study changes in metabolism, specifically in Drosophila hemocytes. We found that hemocytes increase the expression of several carbohydrate transporters and accordingly uptake more sugar during infection. These carbohydrates are metabolized by increased glycolysis, associated with lactate production, and cyclic pentose phosphate pathway (PPP), in which glucose-6-phosphate is re-oxidized to maximize NADPH yield. Oxidative PPP is required for lamellocyte differentiation and resistance, as is systemic trehalose metabolism. In addition, fully differentiated lamellocytes use a cytoplasmic form of trehalase to cleave trehalose to glucose and fuel cyclic PPP. Intracellular trehalose metabolism is not required for lamellocyte differentiation, but its down-regulation elevates levels of reactive oxygen species, associated with increased resistance and reduced fitness. Our results suggest that sugar metabolism, and specifically cyclic PPP, within immune cells is important not only to fight infection but also to protect the host from its own immune response and for ensuring fitness of the survivor.


Subject(s)
Glucose , Hemocytes , Pentose Phosphate Pathway , Trehalose , Animals , Trehalose/metabolism , Glucose/metabolism , Hemocytes/metabolism , Larva/metabolism , Larva/parasitology , Drosophila melanogaster/metabolism , Drosophila melanogaster/parasitology , Disease Resistance , Glycolysis , Host-Parasite Interactions , Wasps/metabolism , Wasps/physiology , Cell Differentiation , Drosophila/metabolism , Drosophila/parasitology
7.
Insect Biochem Mol Biol ; 169: 104128, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657707

ABSTRACT

Social wasps exhibit a unique nutritional cycle in which adults feed larvae with prey, and larvae provide adults with larval secretions (LS). LS serves as a vital nutritional source for adults, contributing to the colony's health and reproductive success. The LS nutrient composition has been previously reported in various wasp species, yet these analyses focused solely on worker-destined larvae, overlooking the potential caste designation effects on LS composition. Using metabolomics techniques, we analysed and compared the metabolite and nutrient composition in LS of queen- and worker-destined larvae of the Oriental hornet. We found that queen-destined LS (QLS) contain greater amounts of most metabolites, including amino acids, and smaller amounts of sugars compared to worker-destined LS (WLS). The amino acid-to-sugar ratio in QLS was approximately tenfold higher than in WLS. Thus, as the colony transitions from the production of workers to the production of reproductives, it gradually experiences a nutritional shift that may influence the behaviour and physiology of the adult nest population. This caste-specific metabolite profile and nutrient composition of LS reflect the differences in the diet and physiological requirements of worker- and queen-destined larvae and may play a critical role in caste determination in social wasps.


Subject(s)
Larva , Metabolomics , Wasps , Animals , Larva/metabolism , Larva/growth & development , Wasps/metabolism , Wasps/physiology , Female , Amino Acids/metabolism , Animal Nutritional Physiological Phenomena
8.
PLoS One ; 19(4): e0298467, 2024.
Article in English | MEDLINE | ID: mdl-38630677

ABSTRACT

The giant honeybee Apis dorsata (Fabricius, 1793) is an evolutionarily ancient species that builds its nests in the open. The nest consists of a single honeycomb covered with the bee curtain which are several layers of worker bees that remain almost motionless with their heads up and abdomens down on the nest surface, except for the mouth area, the hub between inner- and outer-nest activities. A colony may change this semi-quiescence several times a day, depending on its reproductive state and ambient temperature, to enter the state of mass flight activity (MFA), in which nest organisation is restructured and defense ability is likely to be suppressed (predicted by the mass-flight-suspend-defensiveness hypothesis). For this study, three episode of MFA (mfa1-3) of a selected experimental nest were analysed in a case study with sequences of >60 000 images at 50 Hz, each comprise a short pre-MFA session, the MFA and the post-MFA phase of further 10 min. To test colony defensiveness under normative conditions, a dummy wasp was cyclically presented with a standardised motion programme (Pd) with intervening sessions without such a presentation (nPd). Motion activity at five selected surveillance zones (sz1-5) on the nest were analysed. In contrast to mfa1,2, in mfa3 the experimental regime started with the cyclic presentation of the dummy wasp only after the MFA had subsided. As a result, the MFA intensity in mfa3 was significantly lower than in mfa1-2, suggesting that a colony is able to perceive external threats during the MFA. Characteristic ripples appear in the motion profiles, which can be interpreted as a start signal for the transition to MFA. Because they are strongest in the mouth zone and shift to higher frequencies on their way to the nest periphery, it can be concluded that MFA starts earlier in the mouth zone than in the peripheral zones, also suggesting that the mouth zone is a control centre for the scheduling of MFA. In Pd phases of pre- and postMFA, the histogram-based motion spectra are biphasic, suggesting two cohorts in the process, one remaining at quiescence and the other involved in shimmering. Under MFA, nPd and Pd spectra were typically Gaussian, suggesting that the nest mates with a uniform workload shifted to higher motion activity. At the end of the MFA, the spectra shift back to the lower motion activities and the Pd spectra form a biphasic again. This happens a few minutes earlier in the peripheral zones than in the mouth zone. Using time profiles of the skewness of the Pd motion spectra, the mass-flight-suspend-defensiveness hypothesis is confirmed, whereby the inhibition of defense ability was found to increase progressively during the MFA. These sawtooth-like time profiles of skewness during MFA show that defense capability is recovered again quite quickly at the end of MFA. Finally, with the help of the Pd motion spectra, clear indications can be obtained that the giant honeybees engage in a decision in the sense of a tradeoff between MFA and collective defensiveness, especially in the regions in the periphery to the mouth zone.


Subject(s)
Porifera , Wasps , Bees , Animals , Motion , Wasps/physiology , Normal Distribution , Bedding and Linens
9.
BMC Biol ; 22(1): 89, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38644510

ABSTRACT

BACKGROUND: Innate immune responses can be activated by pathogen-associated molecular patterns (PAMPs), danger signals released by damaged tissues, or the absence of self-molecules that inhibit immunity. As PAMPs are typically conserved across broad groups of pathogens but absent from the host, it is unclear whether they allow hosts to recognize parasites that are phylogenetically similar to themselves, such as parasitoid wasps infecting insects. RESULTS: Parasitoids must penetrate the cuticle of Drosophila larvae to inject their eggs. In line with previous results, we found that the danger signal of wounding triggers the differentiation of specialized immune cells called lamellocytes. However, using oil droplets to mimic infection by a parasitoid wasp egg, we found that this does not activate the melanization response. This aspect of the immune response also requires exposure to parasite molecules. The unidentified factor enhances the transcriptional response in hemocytes and induces a specific response in the fat body. CONCLUSIONS: We conclude that a combination of danger signals and the recognition of nonself molecules is required to activate Drosophila's immune response against parasitic insects.


Subject(s)
Hemocytes , Host-Parasite Interactions , Immunity, Innate , Wasps , Animals , Wasps/physiology , Host-Parasite Interactions/immunology , Hemocytes/immunology , Drosophila melanogaster/parasitology , Drosophila melanogaster/immunology , Drosophila melanogaster/physiology , Larva/immunology , Larva/parasitology , Drosophila/parasitology , Drosophila/immunology
10.
Neotrop Entomol ; 53(3): 552-567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38684598

ABSTRACT

Solitary bees and wasps that nest in cavities in tree trunks are important components of terrestrial ecosystems, providing pollination services, and in the case of wasps, the regulation of their prey populations. However, little is known about the vertical strata where bees and wasps build their nests. This is especially the case of urban forest remnants in the Amazon, which is relevant in the context of the global crisis in insect losses. We investigated the existence of vertical stratification in the nesting of solitary bees and wasps in an urban forest in Rio Branco, state of Acre, in the western Brazilian Amazon. We focused on whether wood temperature, ants, and termites are predictors of bee and wasp nesting. We sampled bee and wasp nests in the forest using trap-nests made with wooden blocks containing cavities with three different diameters for twelve months. Trap-nests were installed randomly at three heights in the forest. We collected 145 nests of 25 species, belonging to 11 genera and 6 families. A higher number of nests and species were collected in the upper stratum of the forest, strengthening the hypothesis that there is vertical stratification in the assemblage of solitary bees and wasps. Wood surface temperature and termite attacks on trap-nests were significantly different between strata, which may explain the vertical stratification of bee and wasp assemblages. Considering the importance of these insects for tropical forest ecosystems, the conservation of structurally complex and stratified forests is of paramount importance to maintain the diversity of this insect group.


Subject(s)
Forests , Wasps , Animals , Brazil , Bees/classification , Wasps/physiology , Wasps/classification , Nesting Behavior , Temperature
11.
Neotrop Entomol ; 53(3): 514-530, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38687425

ABSTRACT

The concept of Ecosystem Services (ES) recognizes the importance of natural ecosystems in supporting human well-being. Hymenoptera, a diverse group of insects including ants, bees, and wasps, play crucial roles in providing ESs. Despite their significance, the provision of ESs by Hymenoptera is often undervalued, leading to ecosystem degradation and loss of important services. This study focuses on the association between Hymenoptera and a rupicolous bromeliad species (Encholirium spectabile) and explores the ESs promoted directly and indirectly by these insects. The study area is located in the Caatinga region of Brazil, characterized by irregular rainfall and a dry season. The results show that Hymenoptera, particularly bees, ants, and wasps, provide a range of ESs including pollination, honey production, pest control, cultural symbolism, and educational value. These services are vital for plant reproduction, food production, and ecosystem functioning in both seasons; there are no differences in species richness between seasons, but rather in species composition. Understanding the importance of Hymenoptera for ESs is crucial for informing conservation and management practices to ensure the sustainability of natural ecosystems. The study highlights the need for conservation actions to protect the intricate ecological relationships between Hymenoptera and bromeliads, which indirectly support ESs by providing habitat and resources, especially during droughts when resources are scarce in the region. By recognizing the importance of bromeliads in supporting Hymenopteran communities, conservation efforts can focus on preserving these critical ecological interactions and maintaining ES provision.


Subject(s)
Bromeliaceae , Ecosystem , Hymenoptera , Animals , Brazil , Hymenoptera/physiology , Pollination , Bees , Seasons , Wasps/physiology , Ants
12.
J Evol Biol ; 37(5): 548-554, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38596874

ABSTRACT

Sperm competition and male mating rate are two non-mutually exclusive key evolutionary pressures selecting for larger testes within and across animal taxa. A few studies have tried to test the role of mating rate in the absence of sperm competition. Under the mating rate hypothesis, particular phenotypes of a given population that are expected to gain more mates (e.g., more ornamented males) are expected to make higher investments in testes size (a proxy for sperm production). We test this prediction in Polistes simillimus, a neotropical paper wasp in which females are single mated (no sperm competition) and males can mate with multiple partners. Testes size was predicted by body size (positive association), sexual ornamentation (negative association), and their interaction (among small males, testes size was positively related to ornamentation, but the opposite pattern was observed among large males). We propose that small-bodied well-ornamented males may face the highest risk of sperm depletion. Small-bodied males make relatively higher investment in testes size when highly ornamented. This strategy might be less profitable to large males, as they have overall larger testes. Our results provide strong evidence for the mating rate hypothesis.


Subject(s)
Body Size , Testis , Wasps , Animals , Male , Testis/anatomy & histology , Wasps/physiology , Wasps/anatomy & histology , Female , Organ Size , Sexual Behavior, Animal/physiology
13.
Sci Rep ; 14(1): 8960, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38637599

ABSTRACT

Increased temperature and fragmentation of green spaces in urban areas could drive variations in functional traits of insects. Such morphological shifts may occur for sensory systems, which were previously reported to be prone to change with habitat characteristics in non-urban contexts. Here, we measured traits related to the visual and antennal sensory systems in the bees Halictus scabiosae and Osmia cornuta and the wasp Polistes dominula along an urbanisation gradient within Milan (Italy). We hypothesised that fragmentation could filter for better visual properties, and that higher temperature could filter for fewer thermoreceptors and more olfactory hairs. While controlling for body size, results show subtle but appreciable responses to urbanisation in one or more traits in all species, though not always supporting our hypotheses. O. cornuta shows marginally higher ommatidia density and smaller ommatidia diameter (associated with better visual resolution) in more fragmented sites, as well as marginally fewer thermoreceptors in hotter sites, in agreement with our two predictions. On the other hand, H. scabiosae has marginally smaller antennae and P. dominula has smaller eyes at warmer locations, and the wasp also has smaller antennae and 9th flagellomeres in more fragmented areas. Perhaps higher temperatures accelerate development of sensory system at higher speed than the rest of body in these two species. Our results represent the first evidence of urbanisation effects on the visual and antennal sensory systems of bees and wasps and underline how such effects may involve a much broader bouquet of traits then previously observed.


Subject(s)
Wasps , Bees , Animals , Wasps/physiology , Urbanization , Sense Organs , Hot Temperature , Smell
14.
J Comp Physiol B ; 194(2): 131-144, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38441658

ABSTRACT

Overwintering insects are facing energetic challenges because of food shortage, low temperature, and desiccation stress. Paper wasps of the genus Polistes overwinter as mated adults (gynes) in hibernacula protecting them from predation, snow, and rain but barely from low environmental temperature. In different climates, they face differing overwintering temperature regimes, and therefore they may differ in their energy use. We investigated how much of energy resources built up until autumn is used during diapause dormancy in natural hibernacula by measuring lipid, glycogen, and free carbohydrate content in autumn and early spring in Polistes dominula from temperate European (Austrian) and warm Mediterranean (Italian) climate and Polistes gallicus from Mediterranean climate. Winter energy consumption amounted to ~ 339 and ~ 310 J per wasp in the Austrian and Italian Polistes dominula populations. The smaller Italian Polistes gallicus consumed ~ 247 J. This amounts to 2.62, 2.35, and 1.79 J per day. Of this, the energy demand was mainly fuelled by lipids (84%, 93%, and 90%, respectively), but glycogen stores contributed also considerably (16%, 6%, and 9%). Free carbohydrates decreased only by 0.7%, 1%, and 0.8%. While fat stores seem still sufficient in spring, the wasps depleted most of their carbohydrates. The energy reserves of 396, 400, and 147 J per wasp remaining in spring in the three populations seem sufficient to fuel rest or simple brood care activities for a whole summer but restrict foraging flights to a few hours (~ 3.5-6 h). Results suggest that energy supply might become challenging in expected future climate scenarios.


Subject(s)
Energy Metabolism , Glycogen , Seasons , Wasps , Animals , Wasps/physiology , Glycogen/metabolism , Lipid Metabolism , Female , Carbohydrate Metabolism , Diapause, Insect/physiology
15.
PLoS One ; 19(3): e0283916, 2024.
Article in English | MEDLINE | ID: mdl-38457456

ABSTRACT

Functional response describes the number of hosts attacked by a parasitoid in relation to host densities and plays an important role by connecting behavioral-level processes with community-level processes. Most functional response studies were carried out using simple experimental designs where the insects were confined to a plain and small arena with different host densities during a fixed period of time. With these designs, other factors that might affect the functional response of parasitoids were not analyzed, such as fecundity, age, and experience. We proposed a series of latent-variables Markovian models that comprised an integrated approach of functional response and egg production models to estimate the realized lifetime reproductive success of parasitoids. As a case study, we used the parasitoids Anagyrus cachamai and A. lapachosus (Hymenoptera: Encyrtidae), two candidate agents for neoclassical biocontrol of the Puerto Rican cactus pest mealybug, Hypogeococcus sp. (Hemiptera: Pseudococcidae). The tested species were assessed according to their physiology and prior experience. We estimated the number of mature eggs after emergence, egg production on the first day, egg production rate, the proportion of eggs resorbed, egg resorption threshold, and egg storage capacity. Anagyrus cachamai and A. lapachosus both presented a type III functional response. However, the two parasitoids behaved differently; for A. cachamai, the number of parasitized hosts decreased with female age and depended on the number of mature eggs that were available for oviposition, whereas A. lapachosus host parasitism increased with female age and was modulated by its daily egg load and previous experience. The methodology presented may have large applicability in pest control, invasive species management, and conservation biology, as it has the potential to increase our understanding of the reproductive biology of a wide variety of species, ultimately leading to improved management strategies.


Subject(s)
Cactaceae , Hemiptera , Hymenoptera , Wasps , Female , Animals , Hymenoptera/physiology , Oviposition , Hemiptera/physiology , Pest Control, Biological , Ovum , Wasps/physiology , Host-Parasite Interactions
16.
J Insect Physiol ; 154: 104629, 2024 05.
Article in English | MEDLINE | ID: mdl-38430966

ABSTRACT

Workers of social hymenopterans (ants, bees and wasps) display specific tasks depending on whether they are younger or older. The relative importance of behavior and age in modulating immune function has seldom been addressed. We compared the strength of encapsulation-melanization immune response (hereafter melanotic encapsulation) in paper wasps displaying age polyethism or experimentally prevented from behavioral specialization. Foragers of Polybia paulista had higher melanotic encapsulation than guards, regardless of their age. Nevertheless, melanotic encapsulation decreased with age when wasps were prevented from behavioral specialization. Thus, in this species, worker melanotic encapsulation seems more sensitive to task than age. Foraging is considered one of the riskier behaviors in terms of pathogen exposure, so upregulating melanotic encapsulation in foragers can possibly improve both individual and colony-level resistance against infections.


Subject(s)
Ants , Wasps , Bees , Animals , Wasps/physiology , Social Behavior , Behavior, Animal/physiology , Ants/physiology , Immunity
17.
Pest Manag Sci ; 80(6): 2965-2975, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38298017

ABSTRACT

BACKGROUND: Integrated Pest Management (IPM) seeks to combine multiple management strategies for optimal pest control. One method that is successfully employed in IPM is the use of beneficial organisms. However, in severe circumstances when pest insects exceed threshold limits, insecticides may still need to be implemented. Thus, understanding the effects of insecticides on biocontrol agents, such as parasitoid wasps, is paramount to ensure sustainable agroecosystems. Sublethal effects of the bioinsecticide spinosyn, a mixture of the bacterial Saccharopolyspora spinosa (Mertz and Yao) fermentation products spinosyn A and D, on eggs of Trichoplusia ni (Hübner), a cruciferous crop pest, and its egg parasitoid Trichogramma brassicae (Bezdenko) was investigated. RESULTS: The LC50 for spinosyn A and D (dissolved in ethanol) on T. ni eggs is 54 ng mL-1. Transcriptomics on caterpillars (1st and 3rd instars) that hatched from eggs treated with sublethal concentrations of spinosyn identified the upregulation of several genes encoding proteins that may be involved in insecticide resistance including detoxification enzymes, such as cytochrome P450s, glutathione S-transferases and esterases. Sublethal T. ni egg treatments did not affect parasitoid emergence, however, there was a marked increase in the size of T. brassicae hind tibia and wings that emerged from spinosyn-treated eggs. CONCLUSIONS: For the caterpillar, treatment of eggs with sublethal concentrations of spinosyn may induce insecticide resistance mechanisms. For the parasitoids, their increased size when reared in spinosyn-treated eggs suggests that the emerged wasps may have higher performance. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Insecticides , Larva , Macrolides , Moths , Ovum , Wasps , Animals , Moths/parasitology , Moths/drug effects , Wasps/drug effects , Wasps/physiology , Ovum/drug effects , Ovum/parasitology , Insecticides/pharmacology , Macrolides/pharmacology , Larva/growth & development , Larva/drug effects , Pest Control, Biological
18.
Pest Manag Sci ; 80(6): 3000-3009, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38312101

ABSTRACT

BACKGROUND: To improve integrated pest management (IPM) performance it is essential to assess pesticide side effects on host plants, insect pests, and natural enemies. The green peach aphid (Myzus persicae Sulzer) is a major insect pest that attacks various crops. Aphidius gifuensis is an essential natural enemy of M. persicae that has been applied effectively in controlling M. persicae. Thiamethoxam is a neonicotinoid pesticide widely used against insect pests. RESULTS: The current study showed the effect of thiamethoxam against Solanum tuberosum, M. persicae, and A. gefiuensis and the physiological and molecular response of the plants, aphids, and parasitoids after thiamethoxam application. Thiamethoxam affected the physical parameters of S. tuberosum and generated a variety of sublethal effects on M. persicae and A. gefiuensis, including nymph development time, adult longevity, and fertility. Our results showed that different thiamethoxam concentrations [0.1, 0.5, and 0.9 µm active ingredient (a.i.)/L] on different time durations (2, 6, and 10 days) increased the antioxidant enzyme activities SOD, POD, and CAT of S. tuberosum, M. persicae, and A. gefiuensis significantly compared with the control. Our results also showed that different thiamethoxam concentrations (0.1, 0.5, and 0.9 µm a.i./L) on different time durations (2, 6, and 10 days) increased the expression of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), acetylcholinesterase (AChE), carboxylesterase (CarE) and glutathione-S-transferase (GST) genes of S. tuberosum, M. persicae, and A. gefiuensis compared with the control. CONCLUSION: Our findings reveal that using thiamethoxam at suitable concentrations and time durations for host plants and natural enemies may enhance natural control through the conservation of natural enemies by overcoming any fitness disadvantages. © 2024 Society of Chemical Industry.


Subject(s)
Aphids , Insecticides , Neonicotinoids , Solanum tuberosum , Thiamethoxam , Thiazoles , Animals , Aphids/drug effects , Aphids/genetics , Solanum tuberosum/parasitology , Insecticides/pharmacology , Neonicotinoids/pharmacology , Thiazoles/pharmacology , Wasps/drug effects , Wasps/physiology , Oxazines/pharmacology , Nitro Compounds/pharmacology , Nymph/drug effects , Nymph/growth & development , Nymph/parasitology
19.
Pest Manag Sci ; 80(6): 2785-2795, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38415910

ABSTRACT

BACKGROUND: The invasion of Asian yellow-legged hornets (Vespa velutina) has significantly affected Western honey bees (Apis mellifera) and apiculture in Europe. However, the range dynamics of this hornet and its range overlap with the bees under future change scenarios have not yet been clarified. Using land-use, climate, and topographical datasets, we projected the range dynamics of this hornet and Western honey bees in Europe and the future overlap of their ranges. RESULTS: We found that climatic factors had stronger effects on the potential ranges of the hornets compared with land-use and topographical factors. A considerable range expansion of this hornet was predicted, and an increase in the overlap between this pest and the bees was primarily caused by future decreases in temperature seasonality. Additionally, we detected future range expansions of the hornet in the UK and France; future range overlap between this pest and Western honey bees in the UK, Ireland, Portugal, and France; and future overlap between the ranges of this pest and bees but not under recent conditions was mainly projected in Germany, Denmark, and the UK. CONCLUSION: Mitigating future climate change might effectively control the proliferation of the hornets and their effects on the bees. Strategies for preventing the invasion of this pest and developing European apiculture should be developed and implemented in these regions where future range overlap between them was projected. Given that climate-change scenarios may result in uncertainty in our projections, further investigation is needed to clarify future range changes of our target species. © 2024 Society of Chemical Industry.


Subject(s)
Animal Distribution , Climate Change , Introduced Species , Wasps , Animals , Bees/physiology , Europe , Wasps/physiology , Conservation of Natural Resources
20.
Oecologia ; 204(3): 529-542, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38324065

ABSTRACT

Understanding the drivers of trade-offs among traits is vital for comprehending the evolution and maintenance of trait variation. Theoretical frameworks propose that evolutionary mechanisms governing trade-offs frequently exhibit a scale-dependent nature. However, empirical tests of whether trade-offs exhibited across various biological scales (i.e. individuals, populations, species, genera, etc.) remains scarce. In this study, we explore trade-off between dispersal and reproductive effort among sympatric sister species of wasps in the genus Belonocnema (Hymenoptera: Cynipini: Cynipidae) that form galls on live oaks: B. fossoria, which specializes on Quercus geminata, and B. treatae, which specializes on Q. virginiana. Specifically, our results suggest that B. fossoria has evolved reduced flight capability and smaller wings, but a larger abdomen and greater total reproductive effort than B. treatae, which has larger wings and is a stronger flier, but has a smaller abdomen and reduced total reproductive effort. These traits and the relationships among them remain unchanged when B. fossoria and B. treatae are transplanted and reared onto the alternative host plant, suggesting that trait divergence is genetically based as opposed to being a plastic response to the different rearing environments. However, when looking within species, we found no evidence of intraspecific trade-offs between wing length and reproductive traits within either B. fossoria or B. treatae. Overall, our results indicate that observed trade-offs in life history traits between the two gall former species are likely a result of independent adaptations in response to different environments as opposed to the amplified expression of within species intrinsic tradeoffs.


Subject(s)
Quercus , Wasps , Humans , Animals , Herbivory , Reproduction , Wasps/physiology , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...