Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
Acta Parasitol ; 69(3): 1517-1521, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39162924

ABSTRACT

PURPOSE: This study was carried out to determine the presence of Entamoeba histolytica in water sources of Nigde province in Turkey, between June and November 2021. METHODS: A total of 90 water samples were taken from 15 different water sources (drinking water, well water, spring water, wastewater and dam water) every month and the presence of E. histolytica antigens in the samples was examined by ELISA. RESULTS: The positivity for E. histolytica was determined in 7 (7.7%) of 90 samples. While no antigens were found in any of the samples in June and September, E. histolytica was positive for three samples (20%) in July, one sample (6.6%) in August and October and two samples in November (13.3%). One of 24 dam samples (4.1%), 1 of 12 wastewater samples (8.3%), 1 of 12 well samples (8.3%), and 4 of 24 fountain samples (16.6%) that examined by ELISA were found positive. On the other hand, none of the examined 18 spring samples were positive. In addition, 4 (8.8%) of 45 samples that examined in summer and 3 (6.6%) of 45 samples that examined in autumn were detected positive by using ELISA. Entamoeba histolytica positivity in samples was statistically insignificant in terms of months, water resources and seasons (P > 0.05). CONCLUSION: As a result, the presence of E. histolytica, which is an important public health problem in water sources, was determined for the first time in Nigde province of Türkiye with this study.


Subject(s)
Entamoeba histolytica , Enzyme-Linked Immunosorbent Assay , Seasons , Entamoeba histolytica/isolation & purification , Turkey/epidemiology , Drinking Water/parasitology , Antigens, Protozoan/analysis , Wastewater/parasitology , Entamoebiasis/parasitology , Entamoebiasis/epidemiology , Humans , Water Supply
2.
Environ Pollut ; 356: 124358, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38871168

ABSTRACT

Metal(loid) bioaccumulation in acanthocephalans (Dentitruncus truttae) and intestines of fish (Salmo trutta) from the Krka River, influenced by industrial and municipal wastewaters, was investigated in relation to exposure to metal(loid)s from fish gut content (GC), water, and sediment to estimate potentially available metal (loid)s responsible for toxic effects and cellular disturbances in biota. Sampling was performed in two seasons (spring and autumn) at the reference site (river source, KRS), downstream of the wastewater outlets (Town of Knin, KRK), and in the national park (KNP). Metal(loid) concentrations were measured by ICP-MS. The highest accumulation of As, Ba, Ca, Cu, Fe, Pb, Se and Zn was observed mainly in organisms from KRK, of Cd, Cs, Rb and Tl at KRS, and of Hg, Mn, Mo, Sr and V at KNP. Acanthocephalans showed significantly higher bioaccumulation than fish intestine, especially of toxic metals (Pb, Cd and Tl). Metal(loid) bioaccumulation in organisms partially coincided to exposure from water, sediments and food, while in GC almost all elements were elevated at KNP, reflecting the metal(loid) exposure from sediments. Seasonal differences in organisms and GC indicated higher metal (loid) accumulation in spring, which follows enhanced fish feeding rates. Higher number of acanthocephalans in the intestine influenced biodilution process and lower concentrations of metal(loid)s in fish, indicating positive effects of parasites to their host, as supported by high values of bioconcentration factors. Fish intestine and acanthocephalan D. truttae were confirmed as sensitive indicators of available metal fraction in conditions of generally low environmental exposure in karst ecosystem. Since metal(loid) accumulation depended on ecological, chemical and biological conditions, but also on the dietary habits, physiology of organisms and parasite infection, continuous monitoring is recommended to distinguish between the effects of these factors and environmental exposure when assessing dietary associated metal(loid) exposure in aquatic organisms.


Subject(s)
Acanthocephala , Intestines , Water Pollutants, Chemical , Animals , Acanthocephala/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Intestines/parasitology , Environmental Monitoring , Metals/metabolism , Fish Diseases/parasitology , Fish Diseases/metabolism , Rivers/chemistry , Fishes/metabolism , Wastewater/parasitology , Wastewater/chemistry , Bioaccumulation
3.
Infect Dis (Lond) ; 56(9): 697-711, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38922811

ABSTRACT

Neglected tropical diseases continue to cause a significant burden worldwide, with Africa accounting for more than one-third of the global burden. Over the past decade, progress has been made in eliminating, controlling, and eradicating these diseases in Africa. By December 2022, 47 out of 54 African countries had eliminated at least one neglected tropical disease, and more countries were close to achieving this milestone. Between 2020 and 2021, there was an 80 million reduction in people requiring intervention. However, continued efforts are needed to manage neglected tropical diseases and address their social and economic burden, as they deepen marginalisation and stigmatisation. Wastewater-based epidemiology involves analyzing wastewater to detect and quantify biomarkers of disease-causing pathogens. This approach can complement current disease surveillance systems in Africa and provide an additional layer of information for monitoring disease spread and detecting outbreaks. This is particularly important in Africa due to limited traditional surveillance methods. Wastewater-based epidemiology also provides a tsunami-like warning system for neglected tropical disease outbreaks and can facilitate timely intervention and optimised resource allocation, providing an unbiased reflection of the community's health compared to traditional surveillance systems. In this review, we highlight the potential of wastewater-based epidemiology as an innovative approach for monitoring neglected tropical disease transmission within African communities and improving existing surveillance systems. Our analysis shows that wastewater-based epidemiology can enhance surveillance of neglected tropical diseases in Africa, improving early detection and management of Buruli ulcers, hookworm infections, ascariasis, schistosomiasis, dengue, chikungunya, echinococcosis, rabies, and cysticercosis for better disease control.


Subject(s)
Neglected Diseases , Humans , Neglected Diseases/epidemiology , Africa/epidemiology , Wastewater/parasitology , Wastewater-Based Epidemiological Monitoring , Tropical Medicine , Disease Outbreaks/prevention & control
4.
Microbiol Spectr ; 12(8): e0090624, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38916361

ABSTRACT

The coccidian parasite Cyclospora cayetanensis is the causative agent for foodborne outbreaks of cyclosporiasis disease and multiple annual fresh produce recalls. The aim of this study was to identify potential cross-reacting species for the C. cayetanensis 18S rRNA and MIT1C gene target real-time quantitative polymerase chain reaction (qPCR) assays. The environmental samples evaluated were irrigation pond water, produce wash water, and wastewater treatment sludge from a previous study with qPCR detections of C. cayetanensis by the 18S rRNA gene target qPCR. From these samples, longer regions of the 18S rRNA gene and the mitochondrial cytochrome c oxidase subunit III gene (cox3) were sequenced. Of 65 irrigation pond water samples with positive test results using the C. cayetanensis 18S rRNA gene qPCR assay, none had MIT1C qPCR assay detections or sequences that clustered with C. cayetanensis based on sequencing of the cox3 and 18S rRNA gene. Sequences from these samples clustered around coccidia sequences found in bird, fish, reptile, and amphibian hosts. Of 26 sludge samples showing detections by either qPCR assay, 14 (54%) could be confirmed as containing C. cayetanensis by sequencing of cox3 and 18S rRNA gene regions. In three of the remaining sludge samples, sequenced reads clustered with coccidia from rodents. This study demonstrated that caution should be taken when interpreting qPCR C. cayetanensis detection data in environmental samples and sequencing steps will likely be needed for confirmation. IMPORTANCE: Fresh produce is a leading transmission source in cyclosporiasis outbreaks. It is therefore essential to understand the role that produce-growing environments play in the spread of this disease. To accomplish this, sensitive and specific tests for environmental and irrigation waters must be developed. Potential cross-reactions of Cyclospora cayetanensis real-time quantitative polymerase chain reaction (qPCR) assays have been identified, hindering the ability to accurately identify this parasite in the environment. Amplicon sequencing of the cox3 and 18S rRNA genes revealed that all irrigation pond water and two sludge samples that initially detected C. cayetanensis by qPCR were most likely cross-reactions with related coccidian organisms shed from birds, fish, reptiles, amphibians, and rodents. These results support that a single testing method for environmental samples is likely not adequate for sensitive and specific detection of C. cayetanensis.


Subject(s)
Cyclospora , Ponds , RNA, Ribosomal, 18S , Real-Time Polymerase Chain Reaction , Sewage , Wastewater , Cyclospora/genetics , Cyclospora/isolation & purification , Cyclospora/classification , Wastewater/parasitology , RNA, Ribosomal, 18S/genetics , Ponds/parasitology , Sewage/parasitology , Real-Time Polymerase Chain Reaction/methods , Animals , DNA, Protozoan/genetics , Agricultural Irrigation , Coccidia/genetics , Coccidia/isolation & purification , Coccidia/classification , Cyclosporiasis/parasitology , Cyclosporiasis/diagnosis , Phylogeny
5.
Sci Total Environ ; 947: 174219, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38917908

ABSTRACT

Cryptosporidium poses significant public health risks as a cause of waterborne disease worldwide. Clinical surveillance of cryptosporidiosis is largely underreported due to the asymptomatic and mildly symptomatic infections, clinical misdiagnoses, and barriers to access testing. Wastewater surveillance overcomes these limitations and could serve as an effective tool for identifying cryptosporidiosis at the population level. Despite its potential, the lack of standardized wastewater surveillance methods for Cryptosporidium spp. challenges implementation design and the comparability between studies. Thus, this study compared and contrasted Cryptosporidium wastewater surveillance methods for concentrating wastewater oocysts, extracting oocyst DNA, and detecting Cryptosporidium genetic markers. The evaluated concentration methods included electronegative membrane filtration, Envirocheck HV capsule filtration, centrifugation, and Nanotrap Microbiome Particles, with and without additional immunomagnetic separation purification (except for the Nanotrap Microbiome Particles). Oocyst DNA extraction by either the DNeasy Powersoil Pro kit and the QIAamp DNA Mini kit were evaluated and the impact of bead beating and freeze-thaw pretreatments on DNA recoveries was assessed. Genetic detection via qPCR assays targeting either the Cryptosporidium 18S rRNA gene or the Cryptosporidium oocyst wall protein gene were tested. Oocyst recovery percentages were highest for centrifugation (39-77 %), followed by the Nanotrap Microbiome Particles (24 %), electronegative filtration with a PBST elution (22 %), and Envirocheck HV capsule filtration (13 %). Immunomagnetic separation purification was found to be unsuitable due to interference from the wastewater matrix. Bead-beating pretreatment enhanced DNA recoveries from both the DNeasy Powersoil Pro kit (314 gc/µL DNA) and the QIAamp DNA Mini kit (238 gc/µL DNA). In contrast, freeze-thaw pretreatment reduced DNA recoveries to under 92 gc/µL DNA, likely through DNA degradation. Finally, while both qPCR assays were specific to Cryptosporidium spp., the 18S rRNA assay had a 5-fold lower detection limit and could detect a wider range of Cryptosporidium spp. than the Cryptosporidium oocyst wall protein assay.


Subject(s)
Cryptosporidium , Wastewater , Cryptosporidium/isolation & purification , Cryptosporidium/genetics , Wastewater/parasitology , Oocysts/isolation & purification , Environmental Monitoring/methods , Cryptosporidiosis , RNA, Ribosomal, 18S/analysis , DNA, Protozoan/analysis
6.
J Food Prot ; 87(7): 100309, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815808

ABSTRACT

Recent cyclosporiasis outbreaks associated with fresh produce grown in the United States highlight the need to better understand Cyclospora cayetanensis prevalence in U.S. agricultural environments. In this study, C. cayetanensis occurrence was assessed in municipal wastewater sludge, on-farm portable toilets, irrigation pond water, and spent packing house dump tank water in a Southeastern Georgia growing region over two years. Detection of the C. cayetanensis 18S rRNA qPCR gene target in pond samples was 0%, 28%, and 42% (N = 217) depending on the detection definition used, and ≤1% in dump tank samples (N = 46). However, no qPCR detections were confirmed by sequencing, suggesting false detection occurred due to cross-reactions. C. cayetanensis qPCR detections were confirmed in 9% of wastewater sludge samples (N = 76). The human-specific fecal markers HF183 and crAssphage were detected in 33% and 6% of pond samples, respectively, and 4% and 0% of dump tank samples, respectively. Despite community Cyclospora shedding and evidence of human fecal contamination in irrigation water, there was no correlation between C. cayetanensis and HF183 qPCR detections, further supporting that 18S gene target qPCR amplifications were due to cross-reactions. When evaluating C. cayetanensis qPCR environmental detection data, the impact of assay specificity and detection criteria should be considered. Moreover, additional sequence-based testing may be needed to appropriately interpret Cyclospora qPCR environmental data.


Subject(s)
Cyclospora , Cyclospora/isolation & purification , Humans , Prevalence , Cyclosporiasis/epidemiology , Sewage/parasitology , Feces/parasitology , Wastewater/parasitology , Southeastern United States
9.
Gates Open Res ; 7: 93, 2023.
Article in English | MEDLINE | ID: mdl-39324031

ABSTRACT

Background: The use of insufficiently treated wastewater or Faecal sludge in agriculture raises concerns because of the pathogen content. Helminth eggs (HE) are one of the most crucial pathogens for ensuring public health and safety. Widely used disinfection treatment methods do not guarantee the complete inactivation of helminth eggs. The current study evaluated the effectiveness of anaerobic digestion and electrochemical process on helminth ( Ascaris suum) egg inactivation. Methods: Lab-scale biochemical methane potential (BMP) assay was conducted by spiking A. suum eggs in a serum bottle. Total solid (TS), volatile solid (VS), pH, biogas production and its composition, and volatile fatty acids (VFA) were analyzed along with A. suum inactivation every third day for the initial 15 days and fifth day for 45 days. In the second set of experiments, a hypochlorite (4700 ppm) solution was generated by electrolysis of aqueous NaCl solution in a membrane-less electrochemical cell. The hypochlorite was diluted (940, 470, 235, and 156ppm) in wastewater, spiked with A. suum eggs and then examined for inactivation at regular intervals. Results: The results of the anaerobic digestion treatment documented 98% inactivation of A. suum eggs (0.15 eggs/mL) in 35 days and remained at 0.14 eggs/mL until day 45. Correlation analysis revealed a positive relationship between non-viable eggs and pH and a negative relationship with all the other parameters. Electrochemical treatment achieved 10% inactivation at 940 ppm concentration in 24h. Conclusions: This study revealed that the inactivation of A. suum eggs by anaerobic digestion or electrochemical treatment is a combined effect of more than one parameter.


Subject(s)
Ascaris suum , Disinfection , Animals , Ascaris suum/drug effects , Anaerobiosis , Disinfection/methods , Ovum/drug effects , Wastewater/chemistry , Wastewater/parasitology , Electrochemical Techniques
10.
J Water Health ; 20(9): 1405-1415, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36170194

ABSTRACT

Cryptosporidium and Giardia are the main etiologies of waterborne outbreaks caused by protozoa. These parasites are commonly detected in wastewater; however, there is little knowledge about the concentration of viable forms in treated sewage, mainly in small communities. To understand more about the presence of viable oocysts and cysts in domestic sewage, we monitored the affluent and effluent of a wastewater treatment plant (WWTP) in inner-city Brazil. Ten samplings and seven follow-ups were performed in 2020. Samples were concentrated by centrifugation, filtration and purified by fluctuation. Viability was accessed by propidium-monoazide (PMA) associated with nPCR and qPCR. Both viable protozoa were detected in all raw sewage samples (average: 438.5 viable oocysts/L). Regarding treated sewage, Cryptosporidium was detected in all of the samples (average: 92.8 viable oocysts/L) and Giardia was detected in 70% with viable cysts in 30%. Considering the follow-ups, 31.17% of Cryptosporidium viable oocysts remained in the effluent after the treatment. High amounts of Cryptosporidium and a high frequency of Giardia were detected, therefore both arrived at WWTP and were discharged into the river. These alert the presence of agro-industrial effluents into domestic sewage and demonstrated the effectiveness of the concentration technique for monitoring protozoa in wastewater.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Cysts , Giardiasis , Animals , Brazil , Cryptosporidiosis/epidemiology , Giardia , Giardiasis/epidemiology , Oocysts , Propidium , Sewage/parasitology , Wastewater/parasitology
11.
Exp Parasitol ; 234: 108216, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35104468

ABSTRACT

Infections caused by protozoan parasites are a major public health concern globally. These infections are commonly diagnosed during water-borne outbreaks, necessitating accurate and highly sensitive detection procedures to assure public health protection. Current molecular techniques are challenged by several factors, such as low parasite concentration, inefficient DNA extraction methods, and inhibitors in environmental samples. This study focused on the development and validation of a molecular protocol for DNA extraction, efficient protozoan (oo)cyst recovery and quantification of protozoan parasites from wastewater using droplet digital polymerase chain reaction (ddPCR). Five DNA extraction methods, including commercial kits, custom phenol-chloroform, and in-house modified methods, were evaluated. The efficiency of each method was assessed via spectrophotometric analysis and ddPCR amplification using specific primers. Lastly, the developed protocol was evaluated for the detection and quantification of Cryptosporidium parvum in wastewater from different regions in South Africa. The conventional phenol-chloroform extraction method yielded the highest DNA concentration of 223 (±0.71) ng/µl and detected the highest number of Cryptosporidium parvum (1807 (±0.30) copies/ddPCR reaction) compared to other methods evaluated in this study. Additionally, the phenol-chloroform method demonstrated high sensitivity in extracting DNA from as few as one cyst/L of Cryptosporidium parvum, corresponding to 5.93 copies/ddPCR reaction. It was also observed that analysis of both the filtered supernatant and pellets after centrifugation improves the recovery efficiency of oocysts from wastewater by 10.5%, resulting in a total recovery of 64.1%. This optimized protocol was successfully applied to measure protozoan concentration in wastewater from different regions in South Africa. The improved DNA extraction and quantification method proposed in this study would be effective in monitoring protozoan concentration in the environment, which will help in instituting mitigation measures to reduce water-borne infections.


Subject(s)
Cryptosporidium/isolation & purification , DNA, Protozoan/isolation & purification , Wastewater/parasitology , Centrifugation , Cryptosporidium/genetics , Cryptosporidium/growth & development , DNA Primers/standards , Filtration , Limit of Detection , Polymerase Chain Reaction/methods , Sensitivity and Specificity
12.
Braz. J. Pharm. Sci. (Online) ; 58: e18691, 2022. tab, graf
Article in English | LILACS | ID: biblio-1374574

ABSTRACT

Abstract Two sensitive and selective methods were developed for the simultaneous determination of four commonly used non-steroidal anti-inflammatory drugs (NSAIDs), namely; paracetamol (PCM), diclofenac sodium (DCF), ibuprofen (IBP), and indomethacin (IND) in wastewater effluents. The first method used HPLC for the determination of the studied drugs using a mobile phase consisting of phosphate buffer (pH 3.0) and acetonitrile at a flow rate of 1 mL/min. in gradient elution mode and detection at 220 nm. The separation process was performed on BDS Hypersil Cyano column (250 x 4.6 mm, 5 µm). The second method was a TLC-densitometric one which was performed using n-Hexane: ethyl acetate: acetic acid in the ratio (6:3.5:0.5) as a developing system. The proposed chromatographic methods were successfully applied for the selective determination of the four studied drugs in simulated and real pharmaceutical wastewater samples after their solid-phase extraction


Subject(s)
Industrial Effluents , Anti-Inflammatory Agents, Non-Steroidal/analysis , Drug Industry/classification , Wastewater/parasitology , Chromatography, High Pressure Liquid/methods , Acetates/adverse effects
13.
J Microbiol Methods ; 189: 106320, 2021 10.
Article in English | MEDLINE | ID: mdl-34478762

ABSTRACT

Exposure to enteric pathogens in the environment poses a serious risk for infection and disease. The accurate detection and quantification of enteric pathogens in environmental samples is critical for understanding pathogen transport and fate and developing risk assessment models. In this study, we successfully applied TaqMan real-time PCR assays to quantitatively detect five human-specific pathogens (Shigella/EIEC, Salmonella Typhi, Vibrio cholera, Norovirus, and Giardia) in samples from open drains, canals, floodwater, septic tanks, and anaerobic baffled reactors (ABR) collected in Mirpur, Dhaka, Bangladesh from April to October 2019. Overall, the grab and sediment samples showed low inhibition but the ultrafiltration samples collected from open drain had significantly higher (P = 0.0049) degree of PCR inhibition (median Ct = 31.06) compared to the extraction controls (Ct = 28.54). We developed a two-step method to adjust underestimation of pathogen quantities due to PCR inhibition and non-optimum PCR efficiency. Compared to other sample types, ultrafiltration samples demonstrated a wide range of concentration increase (1.0%-182.5%) by pathogens after adjusting for PCR inhibition and non-optimum efficiencies. These quantitative qPCR assays are successful in quantifying multiple enteric pathogens in environmental samples, and the adjustment method would be useful for correcting underestimates of pathogen quantities due to partial PCR inhibition and non-optimum efficiency.


Subject(s)
Genome, Bacterial/genetics , Genome, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Specimen Handling/methods , Bacteria/genetics , Bacteria/isolation & purification , Environmental Microbiology , Feces/microbiology , Feces/parasitology , Feces/virology , Giardia/genetics , Giardia/isolation & purification , Ultrafiltration , Vibrio cholerae/genetics , Vibrio cholerae/isolation & purification , Viruses/genetics , Viruses/isolation & purification , Wastewater/microbiology , Wastewater/parasitology , Wastewater/virology
14.
Acc Chem Res ; 54(19): 3656-3666, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34524795

ABSTRACT

The spread of infectious diseases due to travel and trade can be seen throughout history, whether from early settlers or traveling businessmen. Increased globalization has allowed infectious diseases to quickly spread to different parts of the world and cause widespread infection. Posthoc analysis of more recent outbreaks-SARS, MERS, swine flu, and COVID-19-has demonstrated that the causative viruses were circulating through populations for days or weeks before they were first detected, allowing disease to spread before quarantines, contact tracing, and travel restrictions could be implemented. Earlier detection of future novel pathogens could decrease the time before countermeasures are enacted. In this Account, we examined a variety of novel technologies from the past 10 years that may allow for earlier detection of infectious diseases. We have arranged these technologies chronologically from pre-human predictive technologies to population-level screening tools. The earliest detection methods utilize artificial intelligence to analyze factors such as climate variation and zoonotic spillover as well as specific species and geographies to identify where the infection risk is high. Artificial intelligence can also be used to monitor health records, social media, and various publicly available data to identify disease outbreaks faster than traditional epidemiology. Secondary to predictive measures is monitoring infection in specific sentinel animal species, where domestic animals or wildlife are indicators of potential disease hotspots. These hotspots inform public health officials about geographic areas where infection risk in humans is high. Further along the timeline, once the disease has begun to infect humans, wastewater epidemiology can be used for unbiased sampling of large populations. This method has already been shown to precede spikes in COVID-19 diagnoses by 1 to 2 weeks. As total infections increase in humans, bioaerosol sampling in high-traffic areas can be used for disease monitoring, such as within an airport. Finally, as disease spreads more quickly between humans, rapid diagnostic technologies such as lateral flow assays and nucleic acid amplification become very important. Minimally invasive point-of-care methods can allow for quick adoption and use within a population. These individual diagnostic methods then transfer to higher-throughput methods for more intensive population screening as an infection spreads. There are many promising early warning technologies being developed. However, no single technology listed herein will prevent every future outbreak. A combination of technologies from across our infection timeline would offer the most benefit in preventing future widespread disease outbreaks and pandemics.


Subject(s)
Communicable Diseases, Emerging/diagnosis , Animals , Artificial Intelligence , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Communicable Diseases, Emerging/epidemiology , Humans , Mass Screening , Pandemics , SARS-CoV-2/isolation & purification , Wastewater/microbiology , Wastewater/parasitology , Wastewater/virology , Zoonoses/diagnosis , Zoonoses/epidemiology
15.
Parasit Vectors ; 14(1): 66, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33472683

ABSTRACT

BACKGROUND: The waterborne pathogens Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi and Cyclospora cayetanensis can cause intestinal diseases in humans. An understanding of their occurrence and transport in the environment is essential for accurate quantitative microbial risk assessment. METHODS: A total of 238 influent samples were collected from four wastewater treatment plants (WWTPs) and 88 samples from eight sewer locations in Guangzhou, China. PCR-based tools were used to detect and genetically characterize Cryptosporidium spp., G. duodenalis and E. bieneusi. Eimeria spp. and Cyclospora spp. were also analyzed to assess the sources of Cryptosporidium spp., G. duodenalis and E. bieneusi in wastewater. RESULTS: The overall occurrence rates in the WWTP and sewer samples were 14.3% (34/238) and 13.6% (12/88) for Cryptosporidium spp., 55.5% (132/238) and 33.0% (29/88) for G. duodenalis, 56.3% (134/238) and 26.1% (23/88) for E. bieneusi and 45.4% (108/238) and 47.7% (42/88) for Eimeria spp., respectively. Altogether, 11 Cryptosporidium species and genotypes, six G. duodenalis genotypes, 11 E. bieneusi genotypes and four C. cayetanensis were found, together with the presence of nine Eimeria species. The common occurrence of Cryptosporidium rat genotype IV, C. muris and Eimeria papillata and E. nieschulzi suggested that rodents were significant sources of the enteric pathogens detected in the wastewater samples. CONCLUSIONS: While the dominant Cryptosporidium spp. detected in the raw wastewater sampled in this study are not pathogenic to humans, the widely detected G. duodenalis assemblage A and E. bieneusi genotypes D and Type IV are well-known zoonotic pathogens. Further studies are needed to monitor the occurrence of these waterborne pathogens in WWTPs to better understand their transmission and environmental transport in China.


Subject(s)
Cryptosporidium/genetics , Cyclospora/genetics , Enterocytozoon/genetics , Giardia lamblia/genetics , Sewage/parasitology , Wastewater/parasitology , China , Cryptosporidium/classification , Cryptosporidium/isolation & purification , Cryptosporidium/pathogenicity , Cyclospora/classification , Cyclospora/isolation & purification , Cyclospora/pathogenicity , DNA, Protozoan/genetics , Enterocytozoon/classification , Enterocytozoon/isolation & purification , Enterocytozoon/pathogenicity , Genotype , Giardia lamblia/classification , Giardia lamblia/isolation & purification , Giardia lamblia/pathogenicity , Phylogeny
16.
Appl Environ Microbiol ; 86(23)2020 11 10.
Article in English | MEDLINE | ID: mdl-32948525

ABSTRACT

Cyclospora cayetanensis is a protozoan parasite that causes foodborne and waterborne diarrheal illness outbreaks worldwide. Most of these outbreaks are associated with the consumption of fresh produce. Sensitive and specific methods to detect C. cayetanensis in agricultural water are needed to identify the parasite in agricultural water used to irrigate crops that have been implicated in outbreaks. In this study, a method to detect C. cayetanensis in water by combining dead-end ultrafiltration (DEUF) with sensitive and specific molecular detection was developed and evaluated. Triplicates of 10-liter agricultural water samples were seeded with 200, 100, 25, 12, and 6 C. cayetanensis oocysts. Surface water samples were also collected in the Mid-Atlantic region. All water samples were processed by DEUF and backflushed from the ultrafilters. DNA was extracted from concentrated samples and analyzed by quantitative PCR (qPCR) targeting the C. cayetanensis 18S rRNA gene. All water samples seeded with 12, 25, 100, and 200 oocysts were positive, and all unseeded samples were negative. Samples seeded with 6 oocysts had a detection rate of 66.6% (8/12). The method was also able to detect C. cayetanensis isolates in surface water samples from different locations of the Chesapeake and Ohio Canal (C&O Canal) in Maryland. This approach could consistently detect C. cayetanensis DNA in 10-liter agricultural water samples contaminated with low levels of oocysts, equivalent to the levels that may be found in naturally incurred environmental water sources. Our data demonstrate the robustness of the method as a useful tool to detect C. cayetanensis from environmental sources.IMPORTANCECyclospora cayetanensis is a protozoan parasite that causes foodborne and waterborne outbreaks of diarrheal illness worldwide. These foodborne outbreaks associated with the consumption of fresh produce and agricultural water could play a role in the contamination process. In this study, a method to detect C. cayetanensis in agricultural water by combining a robust filtration system with sensitive and specific molecular detection was developed and validated by the FDA. The results showed that this approach could consistently detect low levels of C. cayetanensis contamination in 10 liters of agricultural water, corresponding to the levels that may be found in naturally occurring environmental water sources. The method was also able to detect C. cayetanensis in surface water samples from a specific location in the Mid-Atlantic region. Our data demonstrate the robustness of the method to detect C. cayetanensis in agricultural water samples, which could be very useful to identify environmental sources of contamination.


Subject(s)
Agriculture , Cyclospora/isolation & purification , Polymerase Chain Reaction/methods , Ultrafiltration/methods , Wastewater/parasitology , Fresh Water/parasitology , Maryland , Oocysts
17.
Parasitol Res ; 119(9): 3033-3040, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32748039

ABSTRACT

We assessed the potential contribution of hospitals to contaminations of wastewater by enteric protists, including Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in raw wastewater. Wastewater samples were collected from storage tanks in two hospitals and one associated wastewater treatment plant in Shanghai, China, from March to November 2009. Enteric pathogens were detected and identified using PCR and DNA sequencing techniques. Among a total of 164 samples analyzed, 31 (18.9%), 45 (27.4%), and 122 (74.4%) were positive for Cryptosporidium spp., G. duodenalis, and E. bieneusi, respectively. Altogether, three Cryptosporidium species, four G. duodenalis assemblages, and 12 E. bieneusi genotypes were detected. Cryptosporidium hominis, G. duodenalis sub-assemblage AII, and E. bieneusi genotype D were the dominant ones in wastewater from both hospitals and the wastewater treatment plant. A similar distribution in genotypes of enteric pathogens was seen between samples from hospitals and the wastewater treatment plant, suggesting that humans are one of the major sources for these pathogens and hospitals are important contributors of enteric parasites in urban wastewater. Data from this study might be useful in the formulation of preventive measures against environmental contamination of waterborne pathogens.


Subject(s)
Cross Infection/microbiology , Cross Infection/parasitology , Cryptosporidium/isolation & purification , Enterocytozoon/isolation & purification , Giardia lamblia/isolation & purification , Wastewater/microbiology , Wastewater/parasitology , China/epidemiology , Cross Infection/epidemiology , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Cryptosporidium/classification , Cryptosporidium/genetics , Enterocytozoon/classification , Enterocytozoon/genetics , Genotype , Giardia lamblia/classification , Giardia lamblia/genetics , Giardiasis/epidemiology , Giardiasis/parasitology , Hospitals , Humans , Microsporidiosis/epidemiology , Microsporidiosis/microbiology , Polymerase Chain Reaction
18.
Exp Parasitol ; 217: 107959, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32795471

ABSTRACT

Helminths are parasitic worms that constitute a major public health problem. Conventional analytical techniques to evaluate helminth eggs in environmental samples rely on different steps, namely sedimentation, filtration, centrifugation, and flotation, to separate the eggs from a variety of particles and concentrate them in a pellet for direct observation under an optical microscope. To improve this process, a new approach was implemented in which various image processing algorithms were developed and implemented by a Helminth Egg Automatic Detector (HEAD). This allowed identification and quantification of pathogenic helminth eggs of global medical importance and it was found to be useful for relatively clean wastewater samples. After the initial version, two improvements were developed: first, a texture verification process that reduced the number of false positive results; and second, the establishment of the optimal thresholds (morphology and texture) for each helminth egg species. This second implementation, which was found to improve on the results of the former, was developed with the objective of using free software as a platform for the system. This does not require the purchase of a license, unlike the previous version that required a Mathworks® license to run. After an internal statistical verification of the system was carried out, trials in internationally recognized microbiology laboratories were performed with the aim of reinforcing software training and developing a web-based system able to receive images and perform the analysis throughout a web service. Once completed, these improvements represented a useful and cheap tool that could be used by environmental monitoring facilities and laboratories throughout the world; this tool is capable of identifying and quantifying different species of helminth eggs in otherwise difficult environmental samples: wastewater, soil, biosolids, excreta, and sludge, with a sensitivity and specificity for the TensorFlow (TF) model in the web service values of 96.82% and 97.96% respectively. Additionally, in the case of Ascaris, it may even differentiate between fertile and non-fertile eggs.


Subject(s)
Helminths/isolation & purification , Image Processing, Computer-Assisted/methods , Parasite Egg Count/instrumentation , Algorithms , Animals , Anisotropy , Biosolids/parasitology , Feces/parasitology , Helminths/classification , Image Processing, Computer-Assisted/standards , Normal Distribution , Ovum/classification , Parasite Egg Count/standards , Sensitivity and Specificity , Sewage/parasitology , Soil/parasitology , Wastewater/parasitology
19.
Molecules ; 25(9)2020 Apr 26.
Article in English | MEDLINE | ID: mdl-32357416

ABSTRACT

Water resources contamination has a worldwide impact and is a cause of global concern. The need for provision of clean water is becoming more and more demanding. Nanotechnology may support effective strategies for the treatment, use and reuse of water and the development of next-generation water supply systems. The excellent properties and effectiveness of nanomaterials make them particularly suitable for water/wastewater treatment. This review provides a comprehensive overview of the main categories of nanomaterials used in catalytic processes (carbon nanotubes/graphitic carbon nitride (CNT/g-C3N4) composites/graphene-based composites, metal oxides and composites, metal-organic framework and commercially available nanomaterials). These materials have found application in the removal of different categories of pollutants, including pharmaceutically active compounds, personal care products, organic micropollutants, as well as for the disinfection of bacterial, viral and protozoa microbial targets, in water and wastewater matrices. Apart from reviewing the characteristics and efficacy of the aforementioned nanoengineered materials for the removal of different pollutants, we have also recorded performance limitations issues (e.g., toxicity, operating conditions and reuse) for their practical application in water and wastewater treatment on large scale. Research efforts and continuous production are expected to support the development of eco-friendly, economic and efficient nanomaterials for real life applications in the near future.


Subject(s)
Graphite/pharmacology , Metal-Organic Frameworks/pharmacology , Nanostructures/chemistry , Nanotubes, Carbon/chemistry , Nitrogen Compounds/pharmacology , Water Purification/methods , Catalysis , Disinfection/methods , Graphite/chemistry , Metal-Organic Frameworks/chemistry , Nitrogen Compounds/chemistry , Oxides/chemistry , Wastewater/microbiology , Wastewater/parasitology , Wastewater/toxicity , Wastewater/virology , Water Pollutants, Chemical
20.
Exp Parasitol ; 210: 107848, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32004534

ABSTRACT

Marine bivalves are usually cultivated in shallow, estuarine waters where there is a high concentration of nutrients. Many micro-pollutants, including the protozoan parasites Giardia duodenalis and Cryptosporidium spp., which also occur in such environments, may be concentrated in shellfish tissues during their feeding process. Shellfish can thus be considered as vehicles for foodborne infections, as they are usually consumed lightly cooked or raw. Therefore, the main objective of this study was to investigate the presence of both parasites in Mediterranean mussels, Mytilus galloprovincialis that are cultivated in Thermaikos Gulf, North Greece, which is fed by four rivers that are contaminated with both protozoa. Moreover, the occurrence of these protozoa was monitored in treated wastewaters from 3 treatment plants that discharge into the gulf. In order to identify potential sources of contamination and to estimate the risk for human infection, an attempt was made to genotype Giardia and Cryptosporidium in positive samples. Immunofluorescence was used for detection and molecular techniques were used for both detection and genotyping of the parasites. In total, 120 mussel samples, coming from 10 farms, were examined for the presence of both protozoa over the 6-month farming period. None of them were found positive by immunofluorescence microscopy for the presence of parasites. Only in 3 mussel samples, PCR targeting the GP60 gene detected Cryptosporidium spp. DNA, but sequencing was not successful. Thirteen out of 18 monthly samples collected from the 3 wastewater treatment plants, revealed the presence of Giardia duodenalis cysts belonging to sub-assemblage AII, at relatively low counts (up to 11.2 cysts/L). Cryptosporidium oocysts (up to 0.9 oocysts/L) were also detected in 4 out of 8 samples, although sequencing was not successful at any of the target genes. At the studied location and under the sampling conditions described, mussels tested were not found to be harboring Giardia cysts and the presence of Cryptosporidium was found only in few cases (by PCR detection only). Our results suggest that the likelihood that mussels from these locations act as vehicles of human infection for Giardia and Cryptosporidium seems low.


Subject(s)
Bivalvia/parasitology , Cryptosporidium/isolation & purification , Foodborne Diseases/parasitology , Giardia/isolation & purification , Animals , Cryptosporidiosis/transmission , Cryptosporidium/genetics , DNA, Protozoan/isolation & purification , Giardia/genetics , Giardiasis/transmission , Greece , Humans , Oocysts/isolation & purification , Polymerase Chain Reaction , Rivers/parasitology , Wastewater/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL