Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.625
Filter
1.
Pediatr Int ; 66(1): e15770, 2024.
Article in English | MEDLINE | ID: mdl-38641933

ABSTRACT

BACKGROUND: WAS gene mutational analysis is crucial to establish a definite diagnosis of Wiskott-Aldrich syndrome (WAS). Data on the genetic background of WAS in Vietnamese patients have not been reported. METHODS: We recruited 97 male, unrelated patients with WAS and analyzed WAS gene mutation using Sanger sequencing technology. RESULTS: We identified 36 distinct hemizygous pathogenic mutations, with 17 novel variants, from 38 patients in the entire cohort (39.2%). The mutational spectrum included 14 missense, 12 indel, five nonsense, four splicing, and one non-stop mutations. Most mutations appear only once, with the exception of c.37C>T (p.R13X) and c.374G>A (p.G125E) each of which occurs twice in unrelated patients. CONCLUSION: Our data enrich the mutational spectrum of the WAS gene and are crucial for understanding the genetic background of WAS and for supporting genetic counseling.


Subject(s)
Wiskott-Aldrich Syndrome , Humans , Male , DNA Mutational Analysis , Mutation , Vietnam , Wiskott-Aldrich Syndrome/diagnosis , Wiskott-Aldrich Syndrome/genetics , Wiskott-Aldrich Syndrome Protein/genetics
2.
Genes Genet Syst ; 992024 Mar 26.
Article in English | MEDLINE | ID: mdl-38382924

ABSTRACT

In Saccharomyces cerevisiae, boundaries formed by DNA sequence-dependent or -independent histone modifications stop the spread of the heterochromatin region formed via the Sir complex. However, it is unclear whether the histone modifiers that control DNA sequence-independent boundaries function in a chromosome-specific or -nonspecific manner. In this study, we evaluated the effects of the SAGA complex, a histone acetyltransferase (HAT) complex, and its relationship with other histone-modifying enzymes to clarify the mechanism underlying boundary regulation of the IMD2 gene on the right subtelomere of chromosome VIII. We found that Spt8, a component of the SAGA complex, is important for boundary formation in this region and that the inclusion of Spt8 in the SAGA complex is more important than its interaction with TATA-binding protein and TFIIS. In addition to SAGA, various HAT-related factors, such as NuA4 and Rtt109, also functioned in this region. In particular, the SAGA complex induced weak IMD2 expression throughout the cell, whereas NuA4 induced strong expression. These results indicate that multiple HATs contribute to the regulation of boundary formation and IMD2 expression on the right subtelomere of chromosome VIII and that IMD2 expression is determined by the balance between these factors.


Subject(s)
Saccharomyces cerevisiae Proteins , Wiskott-Aldrich Syndrome , Heterochromatin/genetics , Heterochromatin/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Histones/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
3.
Eur J Immunol ; 54(5): e2350450, 2024 May.
Article in English | MEDLINE | ID: mdl-38356202

ABSTRACT

The Wiskott-Aldrich syndrome protein (WASp) regulates actin cytoskeletal dynamics and function of hematopoietic cells. Mutations in the WAS gene lead to two different syndromes; Wiskott-Aldrich syndrome (WAS) caused by loss-of-function mutations, and X-linked neutropenia (XLN) caused by gain-of-function mutations. We previously showed that WASp-deficient mice have a decreased number of regulatory T (Treg) cells in the thymus and the periphery. We here evaluated the impact of WASp mutations on Treg cells in the thymus of WAS and XLN mouse models. Using in vitro Treg differentiation assays, WAS CD4 single-positive thymocytes have decreased differentiation to Treg cells, despite normal early signaling upon IL-2 and TGF-ß stimulation. They failed to proliferate and express CD25 at high levels, leading to poor survival and a lower number of Foxp3+ Treg cells. Conversely, XLN CD4 single-positive thymocytes efficiently differentiate into Foxp3+ Treg cells following a high proliferative response to IL-2 and TGF-ß, associated with high CD25 expression when compared with WT cells. Altogether, these results show that specific mutations of WASp affect Treg cell development differently, demonstrating a critical role of WASp activity in supporting Treg cell development and expansion.


Subject(s)
Cell Differentiation , Cell Proliferation , T-Lymphocytes, Regulatory , Thymus Gland , Wiskott-Aldrich Syndrome Protein , Animals , T-Lymphocytes, Regulatory/immunology , Cell Differentiation/immunology , Wiskott-Aldrich Syndrome Protein/genetics , Wiskott-Aldrich Syndrome Protein/metabolism , Mice , Thymus Gland/immunology , Thymus Gland/cytology , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Interleukin-2/metabolism , Interleukin-2/immunology , Mutation , Transforming Growth Factor beta/metabolism , Wiskott-Aldrich Syndrome/immunology , Wiskott-Aldrich Syndrome/genetics , Interleukin-2 Receptor alpha Subunit/metabolism , Interleukin-2 Receptor alpha Subunit/genetics , Mice, Knockout , Mice, Inbred C57BL
4.
Arch. argent. pediatr ; 122(1): e202310061, feb. 2024. tab, ilus
Article in English, Spanish | BINACIS, LILACS | ID: biblio-1525854

ABSTRACT

El síndrome de Wiskott-Aldrich es un error innato de la inmunidad de herencia ligada al cromosoma X, producido por variantes en el gen que codifica la proteína del síndrome de Wiskott-Aldrich (WASp). Reportamos el caso clínico de un paciente de 18 meses con diagnóstico de Wiskott-Aldrich que no presentaba donante antígeno leucocitario humano (HLA) idéntico y recibió un trasplante de células progenitoras hematopoyéticas (TCPH) con donante familiar haploidéntico. La profilaxis para enfermedad de injerto contra huésped incluyó ciclofosfamida (PT-Cy). El quimerismo del día +30 fue 100 % del donante y la evaluación postrasplante de la expresión de la proteína WAS fue normal. Actualmente, a 32 meses del trasplante, presenta reconstitución hematológica e inmunológica y quimerismo completo sin evidencia de enfermedad injerto contra huésped. El TCPH haploidéntico con PT-Cy se mostró factible y seguro en este caso de síndrome de WiskottAldrich en el que no se disponía de un donante HLA idéntico.


Wiskott-Aldrich syndrome (WAS) is an X-linked genetic disorder caused by mutations in the gene that encodes the Wiskott-Aldrich syndrome protein (WASp). Here, we report the clinical case of an 18-month-old boy diagnosed with Wiskott-Aldrich syndrome, who did not have an HLA-matched related or unrelated donor and was treated successfully with a hematopoietic stem cell transplant (HSCT) from a haploidentical family donor. Graft-versus-host disease (GvHD) prophylaxis included post-transplant cyclophosphamide (PT-Cy). At day +30, the peripheral blood-nucleated cell chimerism was 100% and the WAS protein had a normal expression. Currently, at month 32 post-transplant, the patient has hematological and immune reconstitution and complete donor chimerism without evidence of GvHD. HSCT with PT-Cy was a feasible and safe option for this patient with WAS, in which an HLA matched donor was not available.


Subject(s)
Humans , Male , Infant , Wiskott-Aldrich Syndrome/diagnosis , Wiskott-Aldrich Syndrome/genetics , Wiskott-Aldrich Syndrome/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/etiology , Bone Marrow Transplantation/adverse effects , Cyclophosphamide
5.
Genes Cells ; 29(3): 217-230, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38229233

ABSTRACT

In eukaryotes, single cells in a population display different transcriptional profiles. One of the factors regulating this heterogeneity is the chromatin state in each cell. However, the mechanisms of epigenetic chromatin regulation of specific chromosomal regions remain unclear. Therefore, we used single-cell tracking system to analyze IMD2. IMD2 is located at the subtelomeric region of budding yeast, and its expression is epigenetically regulated by heterochromatin fluctuations. Treatment with mycophenolic acid, an inhibitor of de novo GTP biosynthesis, triggered a decrease in GTP, which caused heterochromatin fluctuations at the IMD2 locus. Interestingly, within individually tracked cells, IMD2 expression state underwent repeated switches even though IMD2 is positioned within the heterochromatin region. We also found that 30% of the cells in a population always expressed IMD2. Furthermore, the addition of nicotinamide, a histone deacetylase inhibitor, or guanine, the GTP biosynthesis factor in salvage pathway of GTP biosynthesis, regulated heterogeneity, resulting in IMD2 expression being uniformly induced or suppressed in the population. These results suggest that gene expression heterogeneity in the IMD2 region is regulated by changes in chromatin structure triggered by slight decreases in GTP.


Subject(s)
Saccharomyces cerevisiae Proteins , Wiskott-Aldrich Syndrome , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Heterochromatin/genetics , Heterochromatin/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Chromatin/genetics , Chromatin/metabolism , Guanosine Triphosphate/metabolism , Gene Expression Regulation, Fungal
6.
Pediatr Dermatol ; 41(1): 143-144, 2024.
Article in English | MEDLINE | ID: mdl-37469225

ABSTRACT

Treatment of severe eczema in patients with primary immunodeficiencies can be particularly challenging as there are no guidelines with regards to these conditions. Dupilumab is an interleukin (IL)-4Rα antagonist that inhibits both IL-4 and IL-13 and is approved for the treatment of atopic dermatitis in pediatric patients. In this report, we describe a patient with a case of severe eczema in the context of Wiskott-Aldrich syndrome-related disorder, who was successfully treated with dupilumab.


Subject(s)
Dermatitis, Atopic , Eczema , Wiskott-Aldrich Syndrome , Humans , Child , Wiskott-Aldrich Syndrome/complications , Wiskott-Aldrich Syndrome/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Dermatitis, Atopic/complications , Dermatitis, Atopic/drug therapy , Eczema/complications , Eczema/drug therapy , Treatment Outcome , Severity of Illness Index
7.
Arch Argent Pediatr ; 122(1): e202310061, 2024 02 01.
Article in English, Spanish | MEDLINE | ID: mdl-37471507

ABSTRACT

Wiskott-Aldrich syndrome (WAS) is an X-linked genetic disorder caused by mutations in the gene that encodes the Wiskott-Aldrich syndrome protein (WASp). Here, we report the clinical case of an 18-month-old boy diagnosed with Wiskott-Aldrich syndrome, who did not have an HLA-matched related or unrelated donor and was treated successfully with a hematopoietic stem cell transplant (HSCT) from a haploidentical family donor. Graft-versus-host disease (GvHD) prophylaxis included post-transplant cyclophosphamide (PT-Cy). At day +30, the peripheral blood-nucleated cell chimerism was 100% and the WAS protein had a normal expression. Currently, at month 32 post-transplant, the patient has hematological and immune reconstitution and complete donor chimerism without evidence of GvHD. HSCT with PT-Cy was a feasible and safe option for this patient with WAS, in which an HLA matched donor was not available.


El síndrome de Wiskott-Aldrich es un error innato de la inmunidad de herencia ligada al cromosoma X, producido por variantes en el gen que codifica la proteína del síndrome de Wiskott-Aldrich (WASp). Reportamos el caso clínico de un paciente de 18 meses con diagnóstico de Wiskott-Aldrich que no presentaba donante antígeno leucocitario humano (HLA) idéntico y recibió un trasplante de células progenitoras hematopoyéticas (TCPH) con donante familiar haploidéntico. La profilaxis para enfermedad de injerto contra huésped incluyó ciclofosfamida (PT-Cy). El quimerismo del día +30 fue 100 % del donante y la evaluación postrasplante de la expresión de la proteína WAS fue normal. Actualmente, a 32 meses del trasplante, presenta reconstitución hematológica e inmunológica y quimerismo completo sin evidencia de enfermedad injerto contra huésped. El TCPH haploidéntico con PT-Cy se mostró factible y seguro en este caso de síndrome de WiskottAldrich en el que no se disponía de un donante HLA idéntico.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Wiskott-Aldrich Syndrome , Male , Child , Humans , Infant , Bone Marrow Transplantation/adverse effects , Wiskott-Aldrich Syndrome/therapy , Wiskott-Aldrich Syndrome/diagnosis , Wiskott-Aldrich Syndrome/genetics , Hematopoietic Stem Cell Transplantation/adverse effects , Cyclophosphamide , Graft vs Host Disease/etiology
9.
Pathol Res Pract ; 253: 155026, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38118219

ABSTRACT

As patients continue to suffer from lymphoproliferative and myeloproliferative diseases known as haematopoietic malignancies can affect the bone marrow, blood, lymph nodes, and lymphatic and non-lymphatic organs. Despite advances in the current treatment, there is still a significant challenge for physicians to improve the therapy of HMs. WASp is an important regulator of actin polymerization and the involvement of WASp in transcription is thought to be linked to the DNA damage response and repair. In some studies, severe immunodeficiency and lymphoid malignancy are caused by WASp mutations or the absence of WASp and these mutations in WAS can alter the function and/or expression of the intracellular protein. Loss-of-function and Gain-of-function mutations in WASp have an impact on cancer malignancies' incidence and onset. Recent studies suggest that depending on the clinical or experimental situation, WASPs and WAVEs can operate as a suppressor or enhancers for cancer malignancy. These dual functions of WASPs and WAVEs in cancer likely arose from their multifaceted role in cells that could be targeted for anticancer drug development. The significant role and their association of WASp in Chronic myeloid leukaemia, Juvenile myelomonocytic leukaemia and T-cell lymphoma is discussed. In this review, we described the structure and function of WASp and its family mechanism, analysing major regulatory effectors and summarising the clinical relevance and drugs that specifically target WASp in disease treatment in various hematopoietic malignancies by different approaches.


Subject(s)
Hematologic Neoplasms , Neoplasms , Wiskott-Aldrich Syndrome , Humans , Wiskott-Aldrich Syndrome Protein/genetics , Wiskott-Aldrich Syndrome Protein/metabolism , Wiskott-Aldrich Syndrome/genetics , Wiskott-Aldrich Syndrome/metabolism , Wiskott-Aldrich Syndrome/therapy , Hematologic Neoplasms/genetics , Molecular Biology , Actins/metabolism
10.
Cell Immunol ; 393-394: 104783, 2023.
Article in English | MEDLINE | ID: mdl-37944382

ABSTRACT

Wiskott-Aldrich syndrome (WAS) is a disorder characterized by rare X-linked genetic immune deficiency with mutations in the Was gene, which is specifically expressed in hematopoietic cells. The spleen plays a major role in hematopoiesis and red blood cell clearance. However, to date, comprehensive analyses of the spleen in wild-type (WT) and WASp-deficient (WAS-KO) mice, especially at the transcriptome level, have not been reported. In this study, single-cell RNA sequencing (scRNA-seq) was adopted to identify various types of immune cells and investigate the mechanisms underlying immune deficiency. We identified 30 clusters and 10 major cell subtypes among 11,269 cells; these cell types included B cells, T cells, dendritic cells (DCs), natural killer (NK) cells, monocytes, macrophages, granulocytes, stem cells and erythrocytes. Moreover, we evaluated gene expression differences among cell subtypes, identified differentially expressed genes (DEGs), and performed enrichment analyses to identify the reasons for the dysfunction in these different cell populations in WAS. Furthermore, some key genes were identified based on a comparison of the DEGs in each cell type involved in specific and nonspecific immune responses, and further analysis showed that these key genes were previously undiscovered pathology-related genes in WAS-KO mice. In summary, we present a landscape of immune cells in the spleen of WAS-KO mice based on detailed data obtained at single-cell resolution. These unprecedented data revealed the transcriptional characteristics of specific and nonspecific immune cells, and the key genes were identified, laying a foundation for future studies of WAS, especially studies into novel and underexplored mechanisms that may improve gene therapies for WAS.


Subject(s)
Wiskott-Aldrich Syndrome , Animals , Mice , Wiskott-Aldrich Syndrome/genetics , Spleen/metabolism , T-Lymphocytes , Killer Cells, Natural/metabolism
11.
Front Immunol ; 14: 1229674, 2023.
Article in English | MEDLINE | ID: mdl-37781361

ABSTRACT

Background and aims: Wiskott-Aldrich syndrome (WAS) is an X-linked recessive primary immunodeficiency disorder characterized by severe eczema, recurrent infections, and micro-thrombocytopenia. Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapeutic option for patients with classic form. The risk of developing post-transplant tumors appears to be higher in patients with WAS than in other inborn errors of immunity (IEIs), but the actual incidence is not well defined, due to the scarcity of published data. Methods: Herein, we describe a 10-year-old patient diagnosed with WAS, treated with HSCT in the first year of life, who subsequently developed two rare solid tumors, kaposiform hemangioendothelioma and desmoid tumor. A review of the literature on post-HSCT tumors in WAS patients has been performed. Results: The patient received diagnosis of classic WAS at the age of 2 months (Zhu score = 3), confirmed by WAS gene sequencing, which detected the nonsense hemizygous c.37C>T (Arg13X) mutation. At 9 months, patient underwent HSCT from a matched unrelated donor with an adequate immune reconstitution, characterized by normal lymphocyte subpopulations and mitogen proliferation tests. Platelet count significantly increased, even though platelet count never reached reference values. A mixed chimerism was also detected, with a residual WASP- population on monocytes (27.3%). The patient developed a kaposiform hemangioendothelioma at the age of 5. A second abdominal tumor was identified, histologically classified as a desmoid tumor when he reached the age of 10 years. Both hematopoietic and solid tumors were identified in long-term WAS survivors after HSCT. Conclusion: Here, we describe the case of a patient with WAS who developed two rare solid tumors after HSCT. An active surveillance program for the risk of tumors is necessary in the long-term follow-up of post-HSCT WAS patients.


Subject(s)
Fibromatosis, Aggressive , Hematopoietic Stem Cell Transplantation , Sarcoma, Kaposi , Wiskott-Aldrich Syndrome , Male , Humans , Infant , Child , Wiskott-Aldrich Syndrome/diagnosis , Wiskott-Aldrich Syndrome/therapy , Wiskott-Aldrich Syndrome/genetics , Fibromatosis, Aggressive/etiology , Sarcoma, Kaposi/etiology , Hematopoietic Stem Cell Transplantation/adverse effects
13.
Clin Immunol ; 255: 109759, 2023 10.
Article in English | MEDLINE | ID: mdl-37678719

ABSTRACT

PURPOSE: There are currently more than 480 primary immune deficiency (PID) diseases and about 7000 rare diseases that together afflict around 1 in every 17 humans. Computational aids based on data mining and machine learning might facilitate the diagnostic task by extracting rules from large datasets and making predictions when faced with new problem cases. In a proof-of-concept data mining study, we aimed to predict PID diagnoses using a supervised machine learning algorithm based on classification tree boosting. METHODS: Through a data query at the USIDNET registry we obtained a database of 2396 patients with common diagnoses of PID, including their clinical and laboratory features. We kept 286 features and all 12 diagnoses to include in the model. We used the XGBoost package with parallel tree boosting for the supervised classification model, and SHAP for variable importance interpretation, on Python v3.7. The patient database was split into training and testing subsets, and after boosting through gradient descent, the predictive model provides measures of diagnostic prediction accuracy and individual feature importance. After a baseline performance test, we used the Class Weighting Hyperparameter, or scale_pos_weight to correct for imbalanced classification. RESULTS: The twelve PID diagnoses were CVID (1098 patients), DiGeorge syndrome, Chronic granulomatous disease, Congenital agammaglobulinemia, PID not otherwise classified, Specific antibody deficiency, Complement deficiency, Hyper-IgM, Leukocyte adhesion deficiency, ectodermal dysplasia with immune deficiency, Severe combined immune deficiency, and Wiskott-Aldrich syndrome. For CVID, the model found an accuracy on the train sample of 0.80, with an area under the ROC curve (AUC) of 0.80, and a Gini coefficient of 0.60. In the test subset, accuracy was 0.76, AUC 0.75, and Gini 0.51. The positive feature value to predict CVID was highest for upper respiratory infections, asthma, autoimmunity and hypogammaglobulinemia. Features with the highest negative predictive value were high IgE, growth delay, abscess, lymphopenia, and congenital heart disease. For the rest of the diagnoses, accuracy stayed between 0.75 and 0.99, AUC 0.46-0.87, Gini 0.07-0.75, and LogLoss 0.09-8.55. DISCUSSION: Clinicians should remember to consider the negative predictive features together with the positives. We are calling this a proof-of-concept study to continue with our explorations. A good performance is encouraging, and feature importance might aid feature selection for future endeavors. In the meantime, we can learn from the rules derived by the model and build a user-friendly decision tree to generate differential diagnoses.


Subject(s)
Primary Immunodeficiency Diseases , Wiskott-Aldrich Syndrome , Humans , Diagnosis, Differential , Machine Learning , Data Mining
15.
Blood ; 142(15): 1281-1296, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37478401

ABSTRACT

Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder characterized by combined immunodeficiency, eczema, microthrombocytopenia, autoimmunity, and lymphoid malignancies. Gene therapy (GT) to modify autologous CD34+ cells is an emerging alternative treatment with advantages over standard allogeneic hematopoietic stem cell transplantation for patients who lack well-matched donors, avoiding graft-versus-host-disease. We report the outcomes of a phase 1/2 clinical trial in which 5 patients with severe WAS underwent GT using a self-inactivating lentiviral vector expressing the human WAS complementary DNA under the control of a 1.6-kB fragment of the autologous promoter after busulfan and fludarabine conditioning. All patients were alive and well with sustained multilineage vector gene marking (median follow-up: 7.6 years). Clinical improvement of eczema, infections, and bleeding diathesis was universal. Immune function was consistently improved despite subphysiologic levels of transgenic WAS protein expression. Improvements in platelet count and cytoskeletal function in myeloid cells were most prominent in patients with high vector copy number in the transduced product. Two patients with a history of autoimmunity had flares of autoimmunity after GT, despite similar percentages of WAS protein-expressing cells and gene marking to those without autoimmunity. Patients with flares of autoimmunity demonstrated poor numerical recovery of T cells and regulatory T cells (Tregs), interleukin-10-producing regulatory B cells (Bregs), and transitional B cells. Thus, recovery of the Breg compartment, along with Tregs appears to be protective against development of autoimmunity after GT. These results indicate that clinical and laboratory manifestations of WAS are improved with GT with an acceptable safety profile. This trial is registered at clinicaltrials.gov as #NCT01410825.


Subject(s)
Eczema , Hematopoietic Stem Cell Transplantation , Wiskott-Aldrich Syndrome , Humans , Wiskott-Aldrich Syndrome/genetics , Wiskott-Aldrich Syndrome/therapy , Wiskott-Aldrich Syndrome Protein/genetics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cell Transplantation/adverse effects , Genetic Therapy/methods , Eczema/etiology , Eczema/metabolism , Eczema/therapy
16.
Curr Protoc ; 3(6): e800, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37310206

ABSTRACT

The development of "humanized" mice has become a prominent tool for translational animal studies of human diseases. Immunodeficient mice can be humanized by injections of human umbilical cord stem cells. The engraftment of these cells and their development into human lymphocytes has been made possible by the development of novel severely immunodeficient mouse strains. Proven protocols for the generation and analysis of humanized mice in the NSG mouse background are presented here. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Human umbilical stem cell engraftment of neonatal immunodeficient mice Basic Protocol 2: Human umbilical stem cell engraftment of 4-week-old immunodeficient mice Support Protocol 1: Preparation of human umbilical stem cells Support Protocol 2: Submandibular blood collection from humanized mice and analysis of peripheral blood via flow cytometry.


Subject(s)
Stem Cells , Wiskott-Aldrich Syndrome , Humans , Animals , Mice , Flow Cytometry , Umbilical Cord , Umbilicus
17.
Front Immunol ; 14: 1202772, 2023.
Article in English | MEDLINE | ID: mdl-37388746

ABSTRACT

Objective: To investigate similarities and differences in immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in children with Wiskott-Aldrich syndrome (WAS) and chronic granulomatous disease (CGD). Method: We retrospectively analyzed the lymphocyte subpopulations and the serum level of various immune-related protein or peptide on Days 15, 30, 100, 180 and 360 post-transplantation in 70 children with WAS and 48 children with CGD who underwent allo-HSCT at the Transplantation Center of the Department of Hematology-Oncology, Children's Hospital of Chongqing Medical University from January 2007 to December 2020, and we analyzed the differences in the immune reconstitution process between the two groups. Results: ① The WAS group had higher lymphocyte subpopulation counts than the CGD group. ② Among children aged 1-3 years who underwent transplantation, the WAS group had higher lymphocyte subpopulation counts than the CGD group. ③ Further comparisons were performed between children with non-umbilical cord blood transplantation (non-UCBT) and children with umbilical cord blood transplantation (UCBT) in the WAS group. On Day 15 and 30 post-transplantation, the non-UCBT group had higher B-cell counts than the UCBT group. On the remaining time points post-transplantation, the UCBT group had higher lymphocyte subpopulation counts than the non-UCBT group. ④ Comparisons were performed between children with non-UCBT in the WAS group and in the CGD group, the lymphocyte subpopulation counts were higher in the WAS group compared to the CGD group. ⑤ On Day 100 post-transplantation, the CGD group had higher C3 levels than the WAS group. On Day 360 post-transplantation, the CGD group had higher IgA and C4 levels than the WAS group. Conclusion: ① The rate of immunity recovery was faster in children within the WAS group compared to those children within the CGD group, which may be attributed to the difference of percentage undergoing UCBT and primary diseases. ② In the WAS group, the non-UCBT group had higher B-cell counts than the UCBT group at Day 15 and 30 post-transplantation, however, the UCBT group had higher B-cell counts than the non-UCBT group at Day 100 and 180 post-transplantation, suggesting that cord blood has strong B-cell reconstitution potentiality after transplantation.


Subject(s)
Granulomatous Disease, Chronic , Hematopoietic Stem Cell Transplantation , Immune Reconstitution , Lymphocytosis , Wiskott-Aldrich Syndrome , Humans , Child , Granulomatous Disease, Chronic/therapy , Retrospective Studies , Wiskott-Aldrich Syndrome/therapy , Hematopoietic Stem Cell Transplantation/adverse effects
18.
Front Immunol ; 14: 1188099, 2023.
Article in English | MEDLINE | ID: mdl-37350958

ABSTRACT

The Wiskott-Aldrich syndrome (WAS) is an X-linked primary immune deficiency caused by a mutation in the WAS gene. This leads to altered or absent WAS protein (WASp) expression and function resulting in thrombocytopenia, eczema, recurrent infections, and autoimmunity. In T cells, WASp is required for immune synapse formation. Patients with WAS show reduced numbers of peripheral blood T lymphocytes and an altered T-cell receptor repertoire. In vitro, their peripheral T cells show decreased proliferation and cytokine production upon aCD3/aCD28 stimulation. It is unclear whether these T-cell defects are acquired during peripheral activation or are, in part, generated during thymic development. Here, we assessed the role of WASp during T-cell differentiation using artificial thymic organoid cultures and in the thymus of humanized mice. Although CRISPR/Cas9 WAS knockout hematopoietic stem and progenitor cells (HSPCs) rearranged the T-cell receptor and differentiated to T-cell receptor (TCR)+ CD4+ CD8+ double-positive (DP) cells similar to wild-type HSPCs, a partial defect in the generation of CD8 single-positive (SP) cells was observed, suggesting that WASp is involved in their positive selection. TCR repertoire analysis of the DP and CD8+ SP population, however, showed a polyclonal repertoire with no bias toward autoreactivity. To our knowledge, this is the first study of the role of WASp in human T-cell differentiation and on TCR repertoire generation.


Subject(s)
Wiskott-Aldrich Syndrome Protein , Wiskott-Aldrich Syndrome , Humans , Animals , Mice , Wiskott-Aldrich Syndrome Protein/metabolism , Cell Lineage , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Cell Differentiation
19.
Nat Commun ; 14(1): 3068, 2023 05 27.
Article in English | MEDLINE | ID: mdl-37244942

ABSTRACT

Mobilized peripheral blood is increasingly used instead of bone marrow as a source of autologous hematopoietic stem/progenitor cells for ex vivo gene therapy. Here, we present an unplanned exploratory analysis evaluating the hematopoietic reconstitution kinetics, engraftment and clonality in 13 pediatric Wiskott-Aldrich syndrome patients treated with autologous lentiviral-vector transduced hematopoietic stem/progenitor cells derived from mobilized peripheral blood (n = 7), bone marrow (n = 5) or the combination of the two sources (n = 1). 8 out of 13 gene therapy patients were enrolled in an open-label, non-randomized, phase 1/2 clinical study (NCT01515462) and the remaining 5 patients were treated under expanded access programs. Although mobilized peripheral blood- and bone marrow- hematopoietic stem/progenitor cells display similar capability of being gene-corrected, maintaining the engineered grafts up to 3 years after gene therapy, mobilized peripheral blood-gene therapy group shows faster neutrophil and platelet recovery, higher number of engrafted clones and increased gene correction in the myeloid lineage which correlate with higher amount of primitive and myeloid progenitors contained in hematopoietic stem/progenitor cells derived from mobilized peripheral blood. In vitro differentiation and transplantation studies in mice confirm that primitive hematopoietic stem/progenitor cells from both sources have comparable engraftment and multilineage differentiation potential. Altogether, our analyses reveal that the differential behavior after gene therapy of hematopoietic stem/progenitor cells derived from either bone marrow or mobilized peripheral blood is mainly due to the distinct cell composition rather than functional differences of the infused cell products, providing new frames of references for clinical interpretation of hematopoietic stem/progenitor cell transplantation outcome.


Subject(s)
Hematopoietic Stem Cell Transplantation , Wiskott-Aldrich Syndrome , Humans , Child , Animals , Mice , Bone Marrow , Hematopoietic Stem Cells , Genetic Therapy , Wiskott-Aldrich Syndrome/genetics , Granulocyte Colony-Stimulating Factor
SELECTION OF CITATIONS
SEARCH DETAIL
...