Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 301
Filter
1.
Acta Neuropathol Commun ; 12(1): 78, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769536

ABSTRACT

Neurologic Rosai-Dorfman disease (RDD) is a rare type of non-Langerhans cell histiocytosis that affects the central nervous system. Most neurologic RDDs grow like meningiomas, have clear boundaries, and can be completely resected. However, a few RDDs are invasive and aggressive, and no effective treatment options are available because the molecular mechanisms involved remain unknown. Here, we report a case of deadly and glucocorticoid-resistant neurologic RDD and explore its possible pathogenic mechanisms via single-cell RNA sequencing. First, we identified two distinct but evolutionarily related histiocyte subpopulations (the C1Q+ and SPP1+ histiocytes) that accumulated in the biopsy sample. The expression of genes in the KRAS signaling pathway was upregulated, indicating gain-of-function of KRAS mutations. The C1Q+ and SPP1+ histiocytes were highly differentiated and arrested in the G1 phase, excluding the idea that RDD is a lympho-histio-proliferative disorder. Second, although C1Q+ histiocytes were the primary RDD cell type, SPP1+ histiocytes highly expressed several severe inflammation-related and invasive factors, such as WNT5A, IL-6, and MMP12, suggesting that SPP1+ histiocytes plays a central role in driving the progression of this disease. Third, oligodendrocytes were found to be the prominent cell type that initiates RDD via MIF and may resist glucocorticoid treatment via the MDK and PTN signaling pathways. In summary, in this case, we report a rare presentation of neurologic RDD and provided new insight into the pathogenic mechanisms of progressive neurologic RDD. This study will also offer evidence for developing precision therapies targeting this complex disease.


Subject(s)
Histiocytosis, Sinus , Single-Cell Analysis , Humans , Male , Histiocytes/pathology , Histiocytosis, Sinus/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Middle Aged
2.
J Clin Invest ; 134(10)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38747285

ABSTRACT

Transforming growth factor ß (TGF-ß) signaling is a core pathway of fibrosis, but the molecular regulation of the activation of latent TGF-ß remains incompletely understood. Here, we demonstrate a crucial role of WNT5A/JNK/ROCK signaling that rapidly coordinates the activation of latent TGF-ß in fibrotic diseases. WNT5A was identified as a predominant noncanonical WNT ligand in fibrotic diseases such as systemic sclerosis, sclerodermatous chronic graft-versus-host disease, and idiopathic pulmonary fibrosis, stimulating fibroblast-to-myofibroblast transition and tissue fibrosis by activation of latent TGF-ß. The activation of latent TGF-ß requires rapid JNK- and ROCK-dependent cytoskeletal rearrangements and integrin αV (ITGAV). Conditional ablation of WNT5A or its downstream targets prevented activation of latent TGF-ß, rebalanced TGF-ß signaling, and ameliorated experimental fibrosis. We thus uncovered what we believe to be a novel mechanism for the aberrant activation of latent TGF-ß in fibrotic diseases and provided evidence for targeting WNT5A/JNK/ROCK signaling in fibrotic diseases as a new therapeutic approach.


Subject(s)
Fibroblasts , Fibrosis , Transforming Growth Factor beta , Wnt-5a Protein , rho-Associated Kinases , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Animals , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Mice , Humans , Fibroblasts/metabolism , Fibroblasts/pathology , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Scleroderma, Systemic/pathology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/genetics , Mice, Knockout , Wnt Proteins/metabolism , Wnt Proteins/genetics , MAP Kinase Signaling System , Myofibroblasts/metabolism , Myofibroblasts/pathology , Signal Transduction , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/genetics
4.
Cancer Med ; 13(7): e7148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558536

ABSTRACT

BACKGROUND: Non-canonical WNT family (WNT5A pathway) signaling via WNT5A through ROR1 and its partner, ROR2, or Frizzled2 (FZD2) is linked to processes driving tumorigenesis and therapy resistance. We utilized a large dataset of urothelial carcinoma (UC) tumors to characterize non-canonical WNT signaling through WNT5A, ROR1, ROR2, or FZD2 expression. METHODS: NextGen Sequencing of DNA (592 genes or WES)/RNA (WTS) was performed for 4125 UC tumors submitted to Caris Life Sciences. High and low expression of WNT5A, ROR1, ROR2, and FZD2 was defined as ≥ top and

Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Wnt Proteins/genetics , Wnt Proteins/metabolism , Wnt Signaling Pathway/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism
5.
Dev Cell ; 59(10): 1302-1316.e5, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38569553

ABSTRACT

The planar cell polarity (PCP) complex is speculated to function in murine lung development, where branching morphogenesis generates an epithelial tree whose distal tips expand dramatically during sacculation. Here, we show that PCP is dispensable in the airway epithelium for sacculation. Rather, we find a Celsr1-independent role for the PCP component Vangl in the pulmonary mesenchyme: loss of Vangl1/2 inhibits mesenchymal thinning and expansion of the saccular epithelium. Further, loss of mesenchymal Wnt5a mimics sacculation defects observed in Vangl2-mutant lungs, implicating mesenchymal Wnt5a/Vangl signaling as a key regulator of late lung morphogenesis. A computational model predicts that sacculation requires a fluid mesenchymal compartment. Lineage-tracing and cell-shape analyses are consistent with the mesenchyme acting as a fluid tissue, suggesting that loss of Vangl1/2 impacts the ability of mesenchymal cells to exchange neighbors. Our data thus identify an explicit function for Vangl and the pulmonary mesenchyme in actively shaping the saccular epithelium.


Subject(s)
Cell Polarity , Lung , Mesoderm , Morphogenesis , Nerve Tissue Proteins , Animals , Mesoderm/metabolism , Mice , Lung/metabolism , Lung/pathology , Lung/embryology , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Signal Transduction , Organogenesis/genetics , Receptors, G-Protein-Coupled
6.
Cell Signal ; 119: 111171, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38604345

ABSTRACT

BACKGROUND: Psoriasis is a chronic, inflammatory skin disease. MicroRNAs (miRNAs) are an abundant class of non-coding RNA molecules. Recent studies have shown that multiple miRNAs are abnormally expressed in patients with psoriasis. The upregulation of miR-374a-5p has been associated with psoriasis severity. However, the specific role of miR-374a-5p in the pathogenesis of psoriasis remain unclear. METHODS: qRT-PCR was employed to validate the expression of miR-374a-5p in psoriatic lesions and in a psoriasis-like cell model constructed using a mixture of M5 (IL-17A, IL-22, OSM, IL-1α, and TNF-α). HaCaT cells were transfected with miR-374a-5p mimic/inhibitor, and assays including EdU, CCK-8, and flow cytometry were conducted to evaluate the effect of miR-374a-5p on cell proliferation. The expression of inflammatory cytokines IL-1ß, IL-6, IL-8, and TNF-α was verified by qRT-PCR. Bioinformatics analysis and dual-luciferase reporter gene assay were performed to detect the downstream target genes and upstream transcription factors of miR-374a-5p, followed by validation of their expression through qRT-PCR and Western blotting. A psoriasis-like mouse model was established using imiquimod cream topical application. The psoriasis area and severity index scoring, hematoxylin-eosin histology staining, and Ki67 immunohistochemistry were employed to validate the effect of miR-374a-5p on the psoriatic inflammation phenotype after intradermal injection of miR-374a-5p agomir/NC. Additionally, the expression of pathway-related molecules and inflammatory factors such as IL-1ß, IL-17a, and TNF-α was verified by immunohistochemistry. RESULTS: Upregulation of miR-374a-5p was observed in psoriatic lesions and the psoriasis-like cell model. In vitro experiments demonstrated that miR-374a-5p not only promoted the proliferation of HaCaT cells but also upregulated the expression of inflammatory cytokines, including IL-1ß, IL-6, IL-8, and TNF-α. Furthermore, miR-374a-5p promoted skin inflammation and epidermal thickening in the Imiquimod-induced psoriasis-like mouse model. Mechanistic studies revealed that miR-374a-5p led to downregulation of WIF1, thereby activating the Wnt5a/NF-κB signaling pathway. The transcription factor p65 encoded by RELA, as a subunit of NF-κB, further upregulated the expression of miR-374a-5p upon activation. This positive feedback loop promoted keratinocyte proliferation and abnormal inflammation, thereby facilitating the development of psoriasis. CONCLUSION: Our findings elucidate the role of miR-374a-5p upregulation in the pathogenesis of psoriasis through inhibition of WIF1 and activation of the Wnt5a/NF-κB pathway, providing new potential therapeutic targets for psoriasis.


Subject(s)
Adaptor Proteins, Signal Transducing , MicroRNAs , NF-kappa B , Psoriasis , Wnt-5a Protein , Psoriasis/genetics , Psoriasis/pathology , Psoriasis/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Humans , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , NF-kappa B/metabolism , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Up-Regulation , Down-Regulation , Cell Proliferation , Male , HaCaT Cells , Female , Imiquimod , Adult , Repressor Proteins/metabolism , Repressor Proteins/genetics , Middle Aged
7.
Histol Histopathol ; 39(6): 715-727, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38445662

ABSTRACT

Wnt ligands belong to a family of secreted glycoproteins in which binding to a range of receptors/co-receptors activates several intracellular pathways. WNT5A, a member of the Wnt family, is classified as a non-canonical Wnt whose activation triggers planar cell polarity (PCP) and Ca+2 downstream pathways. Aberrant expression of WNT5A has been shown to play both protective and harmful roles in an array of conditions, such as inflammatory disease and cancer. In the present study, using histological, immunohistochemical, and molecular methods, we investigated the expression of two isoforms of WNT5A, WNT5A-Short (WNT5A-S) and WNT5A-Long (WNT5A-L) in bladder urothelial carcinoma (UC). Three UC cell lines (RT4, J82, and T24), as well as a normal urothelial cell line, and formalin-fixed, paraffin-embedded (FFPE) transurethral resection (TUR) tissue samples from 17 patients diagnosed with UC were included in the study. WNT5A-L was the predominantly expressed isoform in urothelial cells, although WNT5A-S was also detectable. Further, although no statistically significant difference was found between the percentage of WNT5A-S transcripts in low-grade versus high-grade tumors, we did find a difference between the percentage of WNT5A-S transcripts found in non-invasion versus invasion of the lamina propria, subgroups of non-muscle-invasive tumors. In conclusion, both WNT5A-S and WNT5A-L isoforms are expressed in UC, and the percentage of their expression levels suggests that a higher proportion of WNT5A-S transcription may be associated with lamina propria invasion, a process preceding muscle invasion.


Subject(s)
Carcinoma, Transitional Cell , Protein Isoforms , Urinary Bladder Neoplasms , Wnt-5a Protein , Humans , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/genetics , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Protein Isoforms/metabolism , Aged , Male , Female , Middle Aged , Cell Line, Tumor , Carcinoma, Transitional Cell/pathology , Carcinoma, Transitional Cell/metabolism , Carcinoma, Transitional Cell/genetics , Urothelium/pathology , Urothelium/metabolism , Immunohistochemistry , Aged, 80 and over , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
8.
Cell Mol Life Sci ; 81(1): 93, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38367191

ABSTRACT

Stem Leydig cells (SLCs) are essential for maintaining normal spermatogenesis as the significant component of testis microenvironment and gonadal aging. Although progress has been achieved in the regulation of male germ cells in mammals and humans, it remains unknown about the genes and signaling pathways of human SLCs. Here we have demonstrated, for the first time, that WNT5A (Wnt family member 5a) mediates the proliferation, apoptosis, and stemness of human SLCs, namely NGFR+ Leydig cells. We revealed that NGFR+ Leydig cells expressed NGFR, PDGFRA, NES, NR2F2, and THY1, hallmarks for SLCs. RNA-sequencing showed that WNT5A was expressed at a higher level in human SLCs than non-SLCs, while immunohistochemistry and Western blots further illustrated that WNT5A was predominantly expressed in human SLCs. Notably, CCK-8, EdU and Western blots displayed that WNT5A enhanced the proliferation and DNA synthesis and retained stemness of human SLCs, whereas flow cytometry and TUNEL analyses demonstrated that WNT5A inhibited the apoptosis of these cells. WNT5A knockdown caused an increase in LC lineage differentiation of human SLCs and reversed the effect of WNT5A overexpression on fate decisions of human SLCs. In addition, WNT5A silencing  resulted in the decreases in nuclear translocation of ß-catenin and expression levels of c-Myc, CD44, and Cyclin D1. Collectively, these results implicate that WNT5A regulates the proliferation, apoptosis and stemness of human SLCs through the activation of the ß-catenin signaling pathway. This study thus provides a novel molecular mechanism underlying the fate determinations of human SLCs, and it offers a new insight into the niche regulation of human testis.


Subject(s)
Leydig Cells , beta Catenin , Animals , Humans , Male , Leydig Cells/metabolism , beta Catenin/metabolism , Testis/metabolism , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism , Signal Transduction , Apoptosis , Cell Proliferation , Wnt Signaling Pathway/genetics , Mammals/metabolism
9.
J Appl Oral Sci ; 32: e20230353, 2024.
Article in English | MEDLINE | ID: mdl-38359266

ABSTRACT

BACKGROUND: Associations between the WNT5A rs566926 variant and non-syndromic orofacial cleft (NSOC) have been reported in different populations. OBJECTIVE: This study aimed to investigate the role of the rs566926 single nucleotide polymorphism (SNP) in WNT5A and its interactions with SNPs in BMP4, FGFR1, GREM1, MMP2, and WNT3 in the occurrence of NSOC in a Brazilian population. METHODOLOGY: A case-control genetic association study was carried out involving participants from four regions of Brazil, totaling 801 patients with non-syndromic cleft lip with or without cleft palate (NSCL±P), 273 patients with cleft palate only (NSCPO), and 881 health volunteers without any congenital condition (control). Applying TaqMan allelic discrimination assays, we evaluated WNT5A rs566926 in an ancestry-structured multiple logistic regression analysis, considering sex and genomic ancestry as covariates. Interactions between rs566926 and variants in genes involved in the WNT5A signaling pathway (BMP4, FGFR1, GREM1, MMP2, and WNT3) were also explored. RESULTS: WNT5A rs566926 was significantly associated with an increased risk of NSCL±P, particularly due to a strong association with non-syndromic cleft lip only (NSCLO), in which the C allele increased the risk by 32% (OR: 1.32, 95% CI: 1.04-1.67, p=0.01). According to the proportions of European and African genomic ancestry, the association of rs566926 reached significant levels only in patients with European ancestry. Multiple interactions were detected between WNT5A rs566926 and BMP4 rs2071047, GREM1 rs16969681 and rs16969862, and FGFR1 rs7829058. CONCLUSION: The WNT5A rs566926 polymorphism was associated with NSCL±P, particularly in individuals with NSCLO and high European ancestry. Epistatic interactions involving WNT5A rs566926 and variants in BMP4, GREM1, and FGFR1 may contribute to the risk of NSCL±P in the Brazilian population.


Subject(s)
Cleft Lip , Cleft Palate , Humans , Cleft Lip/genetics , Cleft Palate/genetics , Genotype , Brazil , Matrix Metalloproteinase 2 , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide , Case-Control Studies , Wnt-5a Protein/genetics
10.
Mol Cancer Res ; 22(5): 495-507, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38334461

ABSTRACT

Adhesion to and clearance of the mesothelial monolayer are key early events in metastatic seeding of ovarian cancer. ROR2 is a receptor tyrosine kinase that interacts with Wnt5a ligand to activate noncanonical Wnt signaling and has been previously shown to be upregulated in ovarian cancer tissue. However, no prior study has evaluated the mechanistic role of ROR2 in ovarian cancer. Through a cellular high-throughput genetic screen, we independently identified ROR2 as a driver of ovarian tumor cell adhesion and invasion. ROR2 expression in ovarian tumor cells serves to drive directed cell migration preferentially toward areas of high Wnt5a ligand, such as the mesothelial lined omentum. In addition, ROR2 promotes ovarian tumor cell adhesion and clearance of a mesothelial monolayer. Depletion of ROR2, in tumor cells, reduces metastatic tumor burden in a syngeneic model of ovarian cancer. These findings support the role of ROR2 in ovarian tumor cells as a critical factor contributing to the early steps of metastasis. Therapeutic targeting of the ROR2/Wnt5a signaling axis could provide a means of improving treatment for patients with advanced ovarian cancer. IMPLICATIONS: This study demonstrates that ROR2 in ovarian cancer cells is important for directed migration to the metastatic niche and provides a potential signaling axis of interest for therapeutic targeting in ovarian cancer.


Subject(s)
Cell Movement , Neoplasm Invasiveness , Ovarian Neoplasms , Receptor Tyrosine Kinase-like Orphan Receptors , Wnt-5a Protein , Female , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Humans , Mice , Animals , Cell Line, Tumor , Wnt Signaling Pathway , Signal Transduction
11.
Nat Commun ; 15(1): 36, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167296

ABSTRACT

While canonical Wnt signaling is well recognized for its crucial regulatory functions in cell fate decisions, the role of non-canonical Wnt signaling in adult stem cells remains elusive and contradictory. Here, we identified Mcam, a potential member of the non-canonical Wnt signaling, as an important negative regulator of mammary gland epithelial cells (MECs) by genome-scale CRISPR-Cas9 knockout (GeCKO) library screening. Loss of Mcam increases the clonogenicity and regenerative capacity of MECs, and promotes the proliferation, differentiation, and ductal morphogenesis of mammary epithelial in knockout mice. Mechanically, Mcam knockout recruits and polarizes macrophages through the Il4-Stat6 axis, thereby promoting secretion of the non-canonical Wnt ligand Wnt5a and its binding to the non-canonical Wnt signaling receptor Ryk to induce the above phenotypes. These findings reveal Mcam roles in mammary gland development by orchestrating communications between MECs and macrophages via a Wnt5a/Ryk axis, providing evidences for non-canonical Wnt signaling in mammary development.


Subject(s)
Wnt Proteins , Wnt Signaling Pathway , Mice , Animals , Wnt Proteins/genetics , Wnt Proteins/metabolism , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism , Cell Differentiation , Morphogenesis , Mice, Knockout , Macrophages/metabolism , Receptor Protein-Tyrosine Kinases/metabolism
12.
BMC Infect Dis ; 23(1): 860, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062395

ABSTRACT

BACKGROUND: Aberrant Wnt5a expression contributes to immunity, inflammation and tissue damage. However, it remains unknown whether Wnt5a is associated with liver injury in chronic hepatitis B virus (HBV) infection. We aimed to explore the potential role of Wnt5a expression in liver injury caused by chronic HBV infection. METHODS: Wnt5a mRNA levels in peripheral blood mononuclear cells (PBMCs) were analyzed in 31 acute-on-chronic hepatitis B liver failure (ACHBLF) patients, 82 chronic hepatitis B (CHB) patients, and 20 healthy controls using quantitative real-time polymerase chain reaction. Intrahepatic Wnt5a protein expression from 32 chronic HBV infection patients and 6 normal controls was evaluated by immunohistochemical staining. RESULTS: Wnt5a mRNA expression was increased in CHB patients and ACHBLF patients compared to healthy controls and correlated positively with liver injury markers. Additionally, there was a significant correlation between Wnt5a mRNA expression and HBV DNA load in all patients and CHB patients but not in ACHBLF patients. Furthermore, intrahepatic Wnt5a protein expression was elevated in chronic HBV infection patients compared to that in normal controls. Moreover, chronic HBV infection patients with higher hepatic inflammatory grades had increased intrahepatic Wnt5a protein expression compared with lower hepatic inflammatory grades. In addition, the cut-off value of 12.59 for Wnt5a mRNA level was a strong indicator in predicting ACHBLF in CHB patients. CONCLUSIONS: We found that Wnt5a expression was associated with liver injury in chronic HBV infection patients. Wnt5a might be involved in exacerbation of chronic HBV infection.


Subject(s)
Acute-On-Chronic Liver Failure , Hepatitis B, Chronic , Hepatitis B , Humans , Acute-On-Chronic Liver Failure/complications , Hepatitis B/complications , Hepatitis B virus/genetics , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/genetics , Leukocytes, Mononuclear/metabolism , RNA, Messenger/genetics , Wnt-5a Protein/genetics
13.
Cells ; 12(22)2023 11 20.
Article in English | MEDLINE | ID: mdl-37998393

ABSTRACT

WNT/ß-catenin signaling is essential for colon cancer development and progression. WNT5A (ligand of non-canonical WNT signaling) and its mimicking peptide Foxy5 impair ß-catenin signaling in colon cancer cells via unknown mechanisms. Therefore, we investigated whether and how WNT5A signaling affects two promoters of ß-catenin signaling: the LGR5 receptor and its ligand RSPO3, as well as ß-catenin activity and its target gene VEGFA. Protein and gene expression in colon cancer cohorts were analyzed by immunohistochemistry and qRT-PCR, respectively. Three colon cancer cell lines were used for in vitro and one cell line for in vivo experiments and results were analyzed by Western blotting, RT-PCR, clonogenic and sphere formation assays, immunofluorescence, and immunohistochemistry. Expression of WNT5A (a tumor suppressor) negatively correlated with that of LGR5/RSPO3 (tumor promoters) in colon cancer cohorts. Experimentally, WNT5A signaling suppressed ß-catenin activity, LGR5, RSPO3, and VEGFA expression, and colony and spheroid formations. Since ß-catenin signaling promotes colon cancer stemness, we explored how WNT5A expression is related to that of the cancer stem cell marker DCLK1. DCLK1 expression was negatively correlated with WNT5A expression in colon cancer cohorts and was experimentally reduced by WNT5A signaling. Thus, WNT5A and Foxy5 decrease LGR5/RSPO3 expression and ß-catenin activity. This inhibits stemness and VEGFA expression, suggesting novel treatment strategies for the drug candidate Foxy5 in the handling of colon cancer patients.


Subject(s)
Colonic Neoplasms , beta Catenin , Humans , beta Catenin/metabolism , Ligands , Colonic Neoplasms/pathology , Wnt Signaling Pathway/genetics , Protein Serine-Threonine Kinases/metabolism , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism , Receptors, G-Protein-Coupled/genetics , Doublecortin-Like Kinases
14.
Dis Model Mech ; 16(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37815464

ABSTRACT

Wilms tumors present as an amalgam of varying proportions of tissues located within the developing kidney, one being the nephrogenic blastema comprising multipotent nephron progenitor cells (NPCs). The recurring missense mutation Q177R in NPC transcription factors SIX1 and SIX2 is most correlated with tumors of blastemal histology and is significantly associated with relapse. Yet, the transcriptional regulatory consequences of SIX1/2-Q177R that might promote tumor progression and recurrence have not been investigated extensively. Utilizing multiple Wilms tumor transcriptomic datasets, we identified upregulation of the gene encoding non-canonical WNT ligand WNT5A in addition to other WNT pathway effectors in SIX1/2-Q177R mutant tumors. SIX1 ChIP-seq datasets from Wilms tumors revealed shared binding sites for SIX1/SIX1-Q177R within a promoter of WNT5A and at putative distal cis-regulatory elements (CREs). We demonstrate colocalization of SIX1 and WNT5A in Wilms tumor tissue and utilize in vitro assays that support SIX1 and SIX1-Q177R activation of expression from the WNT5A CREs, as well as enhanced binding affinity within the WNT5A promoter that may promote the differential expression of WNT5A and other WNT pathway effectors associated with SIX1-Q177R tumors.


Subject(s)
Kidney Neoplasms , Wilms Tumor , Humans , Wnt Signaling Pathway , Gene Expression Regulation, Neoplastic , Neoplasm Recurrence, Local/genetics , Wilms Tumor/genetics , Wilms Tumor/metabolism , Wilms Tumor/pathology , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism , Kidney Neoplasms/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
15.
PLoS Biol ; 21(9): e3002308, 2023 09.
Article in English | MEDLINE | ID: mdl-37733692

ABSTRACT

Hyperglycemia increases glucose concentrations in the cerebrospinal fluid (CSF), activating glucose-sensing mechanisms and feeding behavior in the hypothalamus. Here, we discuss how hyperglycemia temporarily modifies ependymal cell ciliary beating to increase hypothalamic glucose sensing. A high level of glucose in the rat CSF stimulates glucose transporter 2 (GLUT2)-positive subcommissural organ (SCO) cells to release SCO-spondin into the dorsal third ventricle. Genetic inactivation of mice GLUT2 decreases hyperglycemia-induced SCO-spondin secretion. In addition, SCO cells secrete Wnt5a-positive vesicles; thus, Wnt5a and SCO-spondin are found at the apex of dorsal ependymal cilia to regulate ciliary beating. Frizzled-2 and ROR2 receptors, as well as specific proteoglycans, such as glypican/testican (essential for the interaction of Wnt5a with its receptors) and Cx43 coupling, were also analyzed in ependymal cells. Finally, we propose that the SCO-spondin/Wnt5a/Frizzled-2/Cx43 axis in ependymal cells regulates ciliary beating, a cyclic and adaptive signaling mechanism to control glucose sensing.


Subject(s)
Connexin 43 , Hyperglycemia , Animals , Mice , Rats , Neuroglia , Glucose , Wnt-5a Protein/genetics
16.
J Hazard Mater ; 460: 132391, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37651938

ABSTRACT

Benzo(a)pyrene was sparsely studied for its early respiratory impairment. The non-canonical ligand WNT5A play a role in pneumonopathy, while its function during benzo(a)pyrene-induced adverse effects were largely unexplored. Individual benzo(a)pyrene, plasma WNT5A, and spirometry 24-hour change for 87 residents from Wuhan-Zhuhai cohort were determined to analyze potential role of WNT5A in benzo(a)pyrene-induced lung function alternation. Normal bronchial epithelial cell lines were employed to verify the role of WNT5A after benzo(a)pyrene treatment. RNA sequencing was adopted to screen for benzo(a)pyrene-related circulating microRNAs and differentially expressed microRNAs between benzo(a)pyrene-induced cells and controls. The most potent microRNA was selected for functional experiments and target gene validation, and their mechanistic link with WNT5A-mediated non-canonical Wnt signaling was characterized through rescue assays. We found significant associations between increased benzo(a)pyrene and reduced 24-hour changes of FEF50% and FEF75%, as well as increased WNT5A. The benzo(a)pyrene-induced inflammation and epithelial-mesenchymal transition in BEAS-2B and 16HBE cells were attenuated by WNT5A silencing. hsa-miR-122-5p was significantly and positively associated with benzo(a)pyrene and elevated after benzo(a)pyrene induction, and exerted its effect by downregulating target gene TP53. Functionally, WNT5A participates in benzo(a)pyrene-induced lung epithelial injury via non-canonical Wnt signaling modulated by hsa-miR-122-5p/TP53 axis, showing great potential as a preventive and therapeutic target.


Subject(s)
Acute Lung Injury , MicroRNAs , Humans , Benzo(a)pyrene/toxicity , MicroRNAs/genetics , Biological Assay , Bronchi , Wnt-5a Protein/genetics
17.
Cell Signal ; 111: 110858, 2023 11.
Article in English | MEDLINE | ID: mdl-37633479

ABSTRACT

As a type of non-coding RNAs, circular RNAs (circRNAs) have the ability to bind to miRNAs and regulate gene expression. Recent studies have shown that circRNAs are involved in certain pathological events. However, the expression and functional role of circTNPO1 in osteosarcoma (OS) are not yet clear. To investigate circRNAs that are differentially expressed in OS tissues and cells, circRNA microarray analysis combined with qRT-PCR was performed. The in-vitro and in-vivo functions of circTNPO1 were studied by knocking it down or overexpressing it. The binding and regulatory relationships between circTNPO1, miR-578, and WNT5A were evaluated using dual luciferase assays, RNA pull-down and rescue assays, as well as RNA immunoprecipitation (RIP). Furthermore, functional experiments were conducted to uncover the regulatory effect of the circTNPO1/miR-578/WNT5A pathway on OS progression. Cytoplasm was identified as the primary location of circTNPO1, which exhibited higher expression in OS tissues and cells compared to the corresponding controls. The overexpression of circTNPO1 was found to enhance malignant phenotypes in vitro and increase oncogenicity in vivo. Moreover, circTNPO1 was observed to sequester miR-578 in OS cells, resulting in the upregulation of WNT5A and promoting carcinoma progression. These findings indicate that circTNPO1 can contribute to the progression of OS through the miR-578/WNT5A axis. Therefore, targeting the circTNPO1/miR-578/WNT5A axis could be a promising therapeutic strategy for OS.


Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , Humans , RNA, Circular/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Carcinogenesis/genetics , Osteosarcoma/pathology , Cell Transformation, Neoplastic/genetics , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism
18.
Mutat Res Rev Mutat Res ; 792: 108465, 2023.
Article in English | MEDLINE | ID: mdl-37495091

ABSTRACT

The Wnt signaling pathway is known to play a crucial role in cancer, and WNT5A is a member of this pathway that binds to the Frizzled (FZD) and Receptor Tyrosine Kinase-Like Orphan Receptor (ROR) family members to activate non-canonical Wnt signaling pathways. The WNT5A pathway is involved in various cellular processes, such as proliferation, differentiation, migration, adhesion, and polarization. In the case of colorectal cancer (CRC), abnormal activation or inhibition of WNT5A signaling can lead to both oncogenic and antitumor effects. Moreover, WNT5A is associated with inflammation, metastasis, and altered metabolism in cancer cells. This article aims to discuss the molecular mechanisms and dual roles of WNT5A in CRC.


Subject(s)
Colorectal Neoplasms , Wnt Proteins , Humans , Wnt Proteins/genetics , Wnt Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Wnt Signaling Pathway/genetics , Colorectal Neoplasms/genetics , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism
19.
Diabetologia ; 66(10): 1943-1958, 2023 10.
Article in English | MEDLINE | ID: mdl-37460827

ABSTRACT

AIMS/HYPOTHESIS: Diabetes is associated with epigenetic modifications including DNA methylation and miRNA changes. Diabetic complications in the cornea can cause persistent epithelial defects and impaired wound healing due to limbal epithelial stem cell (LESC) dysfunction. In this study, we aimed to uncover epigenetic alterations in diabetic vs non-diabetic human limbal epithelial cells (LEC) enriched in LESC and identify new diabetic markers that can be targeted for therapy to normalise corneal epithelial wound healing and stem cell expression. METHODS: Human LEC were isolated, or organ-cultured corneas were obtained, from autopsy eyes from non-diabetic (59.87±20.89 years) and diabetic (71.93±9.29 years) donors. The groups were not statistically different in age. DNA was extracted from LEC for methylation analysis using Illumina Infinium 850K MethylationEPIC BeadChip and protein was extracted for Wnt phospho array analysis. Wound healing was studied using a scratch assay in LEC or 1-heptanol wounds in organ-cultured corneas. Organ-cultured corneas and LEC were transfected with WNT5A siRNA, miR-203a mimic or miR-203a inhibitor or were treated with recombinant Wnt-5a (200 ng/ml), DNA methylation inhibitor zebularine (1-20 µmol/l) or biodegradable nanobioconjugates (NBCs) based on polymalic acid scaffold containing antisense oligonucleotide (AON) to miR-203a or a control scrambled AON (15-20 µmol/l). RESULTS: There was significant differential DNA methylation between diabetic and non-diabetic LEC. WNT5A promoter was hypermethylated in diabetic LEC accompanied with markedly decreased Wnt-5a protein. Treatment of diabetic LEC and organ-cultured corneas with exogenous Wnt-5a accelerated wound healing by 1.4-fold (p<0.05) and 37% (p<0.05), respectively, and increased LESC and diabetic marker expression. Wnt-5a treatment in diabetic LEC increased the phosphorylation of members of the Ca2+-dependent non-canonical pathway (phospholipase Cγ1 and protein kinase Cß; by 1.15-fold [p<0.05] and 1.36-fold [p<0.05], respectively). In diabetic LEC, zebularine treatment increased the levels of Wnt-5a by 1.37-fold (p<0.01)and stimulated wound healing in a dose-dependent manner with a 1.6-fold (p<0.01) increase by 24 h. Moreover, zebularine also improved wound healing by 30% (p<0.01) in diabetic organ-cultured corneas and increased LESC and diabetic marker expression. Transfection of these cells with WNT5A siRNA abrogated wound healing stimulation by zebularine, suggesting that its effect was primarily due to inhibition of WNT5A hypermethylation. Treatment of diabetic LEC and organ-cultured corneas with NBC enhanced wound healing by 1.4-fold (p<0.01) and 23.3% (p<0.05), respectively, with increased expression of LESC and diabetic markers. CONCLUSIONS/INTERPRETATION: We provide the first account of epigenetic changes in diabetic corneas including dual inhibition of WNT5A by DNA methylation and miRNA action. Overall, Wnt-5a is a new corneal epithelial wound healing stimulator that can be targeted to improve wound healing and stem cells in the diabetic cornea. DATA AVAILABILITY: The DNA methylation dataset is available from the public GEO repository under accession no. GSE229328 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE229328 ).


Subject(s)
Diabetes Mellitus , MicroRNAs , Humans , Epigenetic Repression , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Stem Cells/metabolism , RNA, Small Interfering/metabolism , Wound Healing/genetics , Epithelial Cells/metabolism
20.
FASEB J ; 37(6): e22959, 2023 06.
Article in English | MEDLINE | ID: mdl-37191968

ABSTRACT

Myocardial ischemia/reperfusion (MI/R) injury contributes to severe injury for cardiomyocytes. In this study, we aimed to explore the underlying mechanism of TFAP2C on cell autophagy in MI/R injury. MTT assay measured cell viability. The cells injury was evaluated by commercial kits. IF detected the level of LC3B. Dual luciferase reporter gene assay, ChIP or RIP assay were performed to verify the interactions between crucial molecules. We found that TFAP2C and SFRP5 expression were decreased while miR-23a-5p and Wnt5a increased in AC16 cells in response to H/R condition. H/R induction led to cell injury and induced autophagy, which were reversed by TFAP2C overexpression or 3-MA treatment (an autophagy inhibitor). Mechanistically, TFAP2C suppressed miR-23a expression through binding to miR-23a promoter, and SFRP5 was a target gene of miR-23a-5p. Moreover, miR-23a-5p overexpression or rapamycin reversed the protective impacts of TFAP2C overexpression on cells injury and autophagy upon H/R condition. In conclusion, TFAP2C inhibited autophagy to improve H/R-induced cells injury by mediating miR-23a-5p/SFRP5/Wnt5a axis.


Subject(s)
MicroRNAs , Myocardial Reperfusion Injury , Humans , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Autophagy/genetics , Apoptosis , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Transcription Factor AP-2/genetics , Transcription Factor AP-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...