Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.011
Filter
1.
J Math Biol ; 88(6): 72, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678110

ABSTRACT

In this work, we formulate a random Wolbachia invasion model incorporating the effects of imperfect maternal transmission and incomplete cytoplasmic incompatibility (CI). Under constant environments, we obtain the following results: Firstly, the complete invasion equilibrium of Wolbachia does not exist, and thus the population replacement is not achievable in the case of imperfect maternal transmission; Secondly, imperfect maternal transmission or incomplete CI may obliterate bistability and backward bifurcation, which leads to the failure of Wolbachia invasion, no matter how many infected mosquitoes would be released; Thirdly, the threshold number of the infected mosquitoes to be released would increase with the decrease of the maternal transmission rate or the intensity of CI effect. In random environments, we investigate in detail the Wolbachia invasion dynamics of the random mosquito population model and establish the initial release threshold of infected mosquitoes for successful invasion of Wolbachia into the wild mosquito population. In particular, the existence and stability of invariant probability measures for the establishment and extinction of Wolbachia are determined.


Subject(s)
Mathematical Concepts , Models, Biological , Mosquito Vectors , Wolbachia , Wolbachia/physiology , Wolbachia/pathogenicity , Animals , Female , Mosquito Vectors/microbiology , Population Dynamics/statistics & numerical data , Cytoplasm/microbiology , Culicidae/microbiology , Male , Computer Simulation , Maternal Inheritance
2.
PLoS One ; 19(4): e0302328, 2024.
Article in English | MEDLINE | ID: mdl-38683843

ABSTRACT

The mosquito Aedes spp. holds important relevance for human and animal health, as it serves as a vector for transmitting multiple diseases, including dengue and Zika virus. The microbiome's impact on its host's health and fitness is well known. However, most studies on mosquito microbiomes have been conducted in laboratory settings. We explored the mixed microbial communities within Aedes spp., utilizing the 16S rRNA gene for diversity analysis and shotgun metagenomics for functional genomics. Our samples, which included Ae. aegypti and Ae. albopictus, spanned various developmental stages-eggs, larvae, and adults-gathered from five semiurban areas in Mexico. Our findings revealed a substantial diversity of 8,346 operational taxonomic units (OTUs), representing 967 bacterial genera and 126,366 annotated proteins. The host developmental stage was identified as the primary factor associated with variations in the microbiome composition. Subsequently, we searched for genes and species involved in mosquito biocontrol. Wolbachia accounted for 9.6% of the 16S gene sequences. We observed a high diversity (203 OTUs) of Wolbachia strains commonly associated with mosquitoes, such as wAlb, with a noticeable increase in abundance during the adult stages. Notably, we detected the presence of the cifA and cifB genes, which are associated with Wolbachia's cytoplasmic incompatibility, a biocontrol mechanism. Additionally, we identified 221 OTUs related to Bacillus, including strains linked to B. thuringiensis. Furthermore, we discovered multiple genes encoding insecticidal toxins, such as Cry, Mcf, Vip, and Vpp. Overall, our study contributes to the understanding of mosquito microbiome biodiversity and metabolic capabilities, which are essential for developing effective biocontrol strategies against this disease vector.


Subject(s)
Aedes , Microbiota , Mosquito Vectors , RNA, Ribosomal, 16S , Aedes/microbiology , Animals , Mosquito Vectors/microbiology , RNA, Ribosomal, 16S/genetics , Wolbachia/genetics , Wolbachia/physiology , Wolbachia/isolation & purification , Larva/microbiology , Metagenomics/methods , Mexico , Mosquito Control/methods
3.
Lancet Microbe ; 5(5): e422-e432, 2024 May.
Article in English | MEDLINE | ID: mdl-38342109

ABSTRACT

BACKGROUND: Due to the absence of available therapeutics and good vaccines, vector control solutions are needed to mitigate the spread of dengue. Matings between male Aedes aegypti mosquitoes infected with the wAlbB strain of Wolbachia and wildtype females yield non-viable eggs. We evaluated the efficacy of releasing wAlbB-infected A aegypti male mosquitoes to suppress dengue incidence. METHODS: In this synthetic control study, we conducted large-scale field trials in Singapore involving release of wAlbB-infected A aegypti male mosquitoes for dengue control via vector population suppression, from epidemiological week (EW) 27, 2018, to EW 26, 2022. We selected two large towns (Yishun and Tampines) to adopt an expanding release strategy and two smaller towns (Bukit Batok and Choa Chu Kang) to adopt a targeted-release approach. Releases were conducted two times a week in high-rise public housing estates. All intervention and control locations practised the same baseline dengue control protocol. The main outcome was weekly dengue incidence rate caused by any dengue virus serotype. We used incidence data collected by the Singapore Ministry of Health to assess the efficacy of the interventions. To compare interventions, we used the synthetic control method to generate appropriate counterfactuals for the intervention towns using a weighted combination of 30 control towns between EW 1, 2014 and EW 26, 2022. FINDINGS: Our study comprised an at-risk population of 607 872 individuals living in intervention sites and 3 894 544 individuals living in control sites. Interventions demonstrated up to 77·28% (121/156, 95% CI 75·81-78·58) intervention efficacy despite incomplete coverage across all towns until EW 26, 2022. Intervention efficacies increased as release coverage increased across all intervention sites. Releases led to 2242 (95% CI 2092-2391) fewer cases per 100 000 people in intervention sites during the study period. Secondary analysis showed that these intervention effects were replicated across all age groups and both sexes for intervention sites. INTERPRETATION: Our results demonstrated the potential of Wolbachia-mediated incompatible insect technique for strengthening dengue control in tropical cities, where dengue burden is the greatest. FUNDING: Singapore Ministry of Finance, Ministry of Sustainability, and the National Environment Agency, and the Singapore National Robotics Program.


Subject(s)
Aedes , Dengue , Mosquito Control , Mosquito Vectors , Wolbachia , Wolbachia/physiology , Dengue/prevention & control , Dengue/epidemiology , Dengue/transmission , Singapore/epidemiology , Animals , Aedes/microbiology , Aedes/virology , Incidence , Female , Male , Mosquito Control/methods , Mosquito Vectors/microbiology , Mosquito Vectors/virology , Humans , Dengue Virus , Pest Control, Biological/methods
4.
mBio ; 15(2): e0249523, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38132636

ABSTRACT

Wolbachia are a genus of insect endosymbiotic bacteria which includes strains wMel and wAlbB that are being utilized as a biocontrol tool to reduce the incidence of Aedes aegypti-transmitted viral diseases like dengue. However, the precise mechanisms underpinning the antiviral activity of these Wolbachia strains are not well defined. Here, we generated a panel of Ae. aegypti-derived cell lines infected with antiviral strains wMel and wAlbB or the non-antiviral Wolbachia strain wPip to understand host cell morphological changes specifically induced by antiviral strains. Antiviral strains were frequently found to be entirely wrapped by the host endoplasmic reticulum (ER) membrane, while wPip bacteria clustered separately in the host cell cytoplasm. ER-derived lipid droplets (LDs) increased in volume in wMel- and wAlbB-infected cell lines and mosquito tissues compared to cells infected with wPip or Wolbachia-free controls. Inhibition of fatty acid synthase (required for triacylglycerol biosynthesis) reduced LD formation and significantly restored ER-associated dengue virus replication in cells occupied by wMel. Together, this suggests that antiviral Wolbachia strains may specifically alter the lipid composition of the ER to preclude the establishment of dengue virus (DENV) replication complexes. Defining Wolbachia's antiviral mechanisms will support the application and longevity of this effective biocontrol tool that is already being used at scale.IMPORTANCEAedes aegypti transmits a range of important human pathogenic viruses like dengue. However, infection of Ae. aegypti with the insect endosymbiotic bacterium, Wolbachia, reduces the risk of mosquito to human viral transmission. Wolbachia is being utilized at field sites across more than 13 countries to reduce the incidence of viruses like dengue, but it is not well understood how Wolbachia induces its antiviral effects. To examine this at the subcellular level, we compared how different strains of Wolbachia with varying antiviral strengths associate with and modify host cell structures. Strongly antiviral strains were found to specifically associate with the host endoplasmic reticulum and induce striking impacts on host cell lipid droplets. Inhibiting Wolbachia-induced lipid redistribution partially restored dengue virus replication demonstrating this is a contributing role for Wolbachia's antiviral activity. These findings provide new insights into how antiviral Wolbachia strains associate with and modify Ae. aegypti host cells.


Subject(s)
Aedes , Dengue Virus , Dengue , Wolbachia , Animals , Humans , Dengue Virus/physiology , Wolbachia/physiology , Lipid Droplets , Virus Replication , Endoplasmic Reticulum , Antiviral Agents , Lipids
5.
PLoS Negl Trop Dis ; 17(10): e0011674, 2023 10.
Article in English | MEDLINE | ID: mdl-37782672

ABSTRACT

A promising candidate for arbovirus control and prevention relies on replacing arbovirus-susceptible Aedes aegypti populations with mosquitoes that have been colonized by the intracellular bacterium Wolbachia and thus have a reduced capacity to transmit arboviruses. This reduced capacity to transmit arboviruses is mediated through a phenomenon referred to as pathogen blocking. Pathogen blocking has primarily been proposed as a tool to control dengue virus (DENV) transmission, however it works against a range of viruses, including Zika virus (ZIKV). Despite years of research, the molecular mechanisms underlying pathogen blocking still need to be better understood. Here, we used RNA-seq to characterize mosquito gene transcription dynamics in Ae. aegypti infected with the wMel strain of Wolbachia that are being released by the World Mosquito Program in Medellín, Colombia. Comparative analyses using ZIKV-infected, uninfected tissues, and mosquitoes without Wolbachia revealed that the influence of wMel on mosquito gene transcription is multifactorial. Importantly, because Wolbachia limits, but does not completely prevent, replication of ZIKV and other viruses in coinfected mosquitoes, there is a possibility that these viruses could evolve resistance to pathogen blocking. Therefore, to understand the influence of Wolbachia on within-host ZIKV evolution, we characterized the genetic diversity of molecularly barcoded ZIKV virus populations replicating in Wolbachia-infected mosquitoes and found that within-host ZIKV evolution was subject to weak purifying selection and, unexpectedly, loose anatomical bottlenecks in the presence and absence of Wolbachia. Together, these findings suggest that there is no clear transcriptional profile associated with Wolbachia-mediated ZIKV restriction, and that there is no evidence for ZIKV escape from this restriction in our system.


Subject(s)
Aedes , Dengue Virus , Wolbachia , Zika Virus Infection , Zika Virus , Animals , Zika Virus/genetics , Aedes/physiology , Wolbachia/physiology , Dengue Virus/physiology , Mosquito Vectors
6.
Sci Rep ; 13(1): 11737, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37474590

ABSTRACT

Some strains of the inherited bacterium Wolbachia have been shown to be effective at reducing the transmission of dengue virus (DENV) and other RNA viruses by Aedes aegypti in both laboratory and field settings and are being deployed for DENV control. The degree of virus inhibition varies between Wolbachia strains. Density and tissue tropism can contribute to these differences but there are also indications that this is not the only factor involved: for example, strains wAu and wAlbA are maintained at similar intracellular densities but only wAu produces strong DENV inhibition. We previously reported perturbations in lipid transport dynamics, including sequestration of cholesterol in lipid droplets, with strains wMel/wMelPop in Ae. aegypti. To further investigate the cellular basis underlying these differences, proteomic analysis of midguts was carried out on Ae. aegypti lines carrying strains wAu and wAlbA: with the hypothesis that differences in perturbations may underline Wolbachia-mediated antiviral activity. Surprisingly, wAu-carrying midguts not only showed distinct proteome perturbations when compared to non-Wolbachia carrying and wAlbA-carrying midguts but also wMel-carrying midguts. There are changes in RNA processing pathways and upregulation of a specific set of RNA-binding proteins in the wAu-carrying line, including genes with known antiviral activity. Lipid transport and metabolism proteome changes also differ between strains, and we show that strain wAu does not produce the same cholesterol sequestration phenotype as wMel. Moreover, in contrast to wMel, wAu antiviral activity was not rescued by cyclodextrin treatment. Together these results suggest that wAu could show unique features in its inhibition of arboviruses compared to previously characterized Wolbachia strains.


Subject(s)
Aedes , Dengue Virus , Wolbachia , Animals , Dengue Virus/physiology , Proteome , Wolbachia/physiology , Antiviral Agents , Proteomics , Lipids
7.
ISME J ; 17(8): 1143-1152, 2023 08.
Article in English | MEDLINE | ID: mdl-37231184

ABSTRACT

Mosquito-borne diseases like dengue and malaria cause a significant global health burden. Unfortunately, current insecticides and environmental control strategies aimed at the vectors of these diseases are only moderately effective in decreasing disease burden. Understanding and manipulating the interaction between the mosquito holobiont (i.e., mosquitoes and their resident microbiota) and the pathogens transmitted by these mosquitoes to humans and animals could help in developing new disease control strategies. Different microorganisms found in the mosquito's microbiota affect traits related to mosquito survival, development, and reproduction. Here, we review the physiological effects of essential microbes on their mosquito hosts; the interactions between the mosquito holobiont and mosquito-borne pathogen (MBP) infections, including microbiota-induced host immune activation and Wolbachia-mediated pathogen blocking (PB); and the effects of environmental factors and host regulation on the composition of the microbiota. Finally, we briefly overview future directions in holobiont studies, and how these may lead to new effective control strategies against mosquitoes and their transmitted diseases.


Subject(s)
Culicidae , Malaria , Microbiota , Wolbachia , Animals , Humans , Mosquito Vectors , Microbiota/physiology , Wolbachia/physiology
8.
Virology ; 581: 48-55, 2023 04.
Article in English | MEDLINE | ID: mdl-36889142

ABSTRACT

Wolbachia pipientis is known to block replication of positive sense RNA viruses. Previously, we created an Aedes aegypti Aag2 cell line (Aag2.wAlbB) transinfected with the wAlbB strain of Wolbachia and a matching tetracycline-cured Aag2.tet cell line. While dengue virus (DENV) was blocked in Aag2.wAlbB cells, we found significant inhibition of DENV in Aag2.tet cells. RNA-Seq analysis of the cells confirmed removal of Wolbachia and lack of expression of Wolbachia genes that could have been due to lateral gene transfer in Aag2.tet cells. However, we noticed a substantial increase in the abundance of phasi charoen-like virus (PCLV) in Aag2.tet cells. When RNAi was used to reduce the PCLV levels, DENV replication was significantly increased. Further, we found significant changes in the expression of antiviral and proviral genes in Aag2.tet cells. Overall, the results reveal an antagonistic interaction between DENV and PCLV and how PCLV-induced changes could contribute to DENV inhibition.


Subject(s)
Aedes , Dengue Virus , Dengue , RNA Viruses , Wolbachia , Animals , Dengue Virus/physiology , Wolbachia/physiology , Virus Replication , RNA Viruses/genetics
9.
PLoS Pathog ; 19(3): e1011211, 2023 03.
Article in English | MEDLINE | ID: mdl-36928089

ABSTRACT

Wolbachia are common bacteria among terrestrial arthropods. These endosymbionts transmitted through the female germline manipulate their host reproduction through several mechanisms whose most prevalent form called Cytoplasmic Incompatibility -CI- is a conditional sterility syndrome eventually favoring the infected progeny. Upon fertilization, the sperm derived from an infected male is only compatible with an egg harboring a compatible Wolbachia strain, this sperm leading otherwise to embryonic death. The Wolbachia Cif factors CidA and CidB responsible for CI and its neutralization function as a Toxin-Antitoxin system in the mosquito host Culex pipiens. However, the mechanism of CidB toxicity and its neutralization by the CidA antitoxin remain unexplored. Using transfected insect cell lines to perform a structure-function analysis of these effectors, we show that both CidA and CidB are chromatin interactors and CidA anchors CidB to the chromatin in a cell-cycle dependent-manner. In absence of CidA, the CidB toxin localizes to its own chromatin microenvironment and acts by preventing S-phase completion, independently of its deubiquitylase -DUB- domain. Experiments with transgenic Drosophila show that CidB DUB domain is required together with CidA during spermatogenesis to stabilize the CidA-CidB complex. Our study defines CidB functional regions and paves the way to elucidate the mechanism of its toxicity.


Subject(s)
Drosophila Proteins , Wolbachia , Animals , Male , Chromatin/metabolism , Wolbachia/physiology , Semen/metabolism , Animals, Genetically Modified , Drosophila/metabolism , Cytoplasm/metabolism , Centromere Protein A/metabolism , Drosophila Proteins/metabolism
10.
PLoS Pathog ; 19(2): e1010777, 2023 02.
Article in English | MEDLINE | ID: mdl-36800397

ABSTRACT

Brugia malayi, a parasitic roundworm of humans, is colonized by the obligate intracellular bacterium, Wolbachia pipientis. The symbiosis between this nematode and bacterium is essential for nematode reproduction and long-term survival in a human host. Therefore, identifying molecular mechanisms required by Wolbachia to persist in and colonize B. malayi tissues will provide new essential information regarding the basic biology of this endosymbiosis. Wolbachia utilize a Type IV secretion system to translocate so-called "effector" proteins into the cytosol of B. malayi cells to promote colonization of the eukaryotic host. However, the characterization of these Wolbachia secreted proteins has remained elusive due to the genetic intractability of both organisms. Strikingly, expression of the candidate Wolbachia Type IV-secreted effector protein, Wbm0076, in the surrogate eukaryotic cell model, Saccharomyces cerevisiae, resulted in the disruption of the yeast actin cytoskeleton and inhibition of endocytosis. Genetic analyses show that Wbm0076 is a member of the family of Wiskott-Aldrich syndrome proteins (WAS [p]), a well-conserved eukaryotic protein family required for the organization of actin skeletal structures. Thus, Wbm0076 likely plays a central role in the active cell-to-cell movement of Wolbachia throughout B. malayi tissues during nematode development. As most Wolbachia isolates sequenced to date encode at least partial orthologs of wBm0076, we find it likely that the ability of Wolbachia to directly manipulate host actin dynamics is an essential requirement of all Wolbachia endosymbioses, independent of host cell species.


Subject(s)
Brugia malayi , Wolbachia , Animals , Humans , Actins/metabolism , Brugia malayi/genetics , Eukaryotic Cells , Saccharomyces cerevisiae/genetics , Symbiosis/genetics , Wolbachia/physiology , Bacterial Proteins
11.
Nucleic Acids Res ; 51(1): 17-28, 2023 01 11.
Article in English | MEDLINE | ID: mdl-35724982

ABSTRACT

The black carpenter ant (Camponotus pennsylvanicus) is a pest species found widely throughout North America. From a single individual I used long-read nanopore sequencing to assemble a phased diploid genome of 306 Mb and 60X coverage, with quality assessed by a 97.0% BUSCO score, improving upon other ant assemblies. The mitochondrial genome reveals minor rearrangements from other ants. The reads also allowed assembly of parasitic and symbiont genomes. I include a complete Wolbachia bacterial assembly with a size of 1.2 Mb, as well as a commensal symbiont Blochmannia pennsylvanicus, at 791 kb. DNA methylation and hydroxymethylation were measured at base-pair resolution level from the same reads and confirmed extremely low levels seen in the Formicidae family. There was moderate heterozygosity, with 0.16% of bases being biallelic from the parental haplotypes. Protein prediction yielded 14 415 amino acid sequences with 95.8% BUSCO score and 86% matching to previously known proteins. All assemblies were derived from a single MinION flow cell generating 20 Gb of sequence for a cost of $1047 including consumable reagents. Adding fixed costs for equipment brings the total for an ant-sized genome to less than $5000. All analyses were performed in 1 week on a single desktop computer.


Creating reference animal genomes is typically a large, expensive process. Here I sequenced the genome of the black carpenter ant for only $1000 as a sole researcher in just one week. Along with the nuclear genome, I assembled the mitochondrial genome and two commensal bacteria species living within the ant. Nanopore technology also enabled epigenetic measurements from the same ant and replicated other studies showing very low DNA methylation. The reference genome compared favorably to other ant species in continuity and protein prediction accuracy. This method will allow other low-resource labs to create high quality genome assemblies with a low cost.


Subject(s)
Ants , Genome, Insect , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Animals , Humans , Ants/genetics , Ants/microbiology , Diploidy , Genome, Mitochondrial , High-Throughput Nucleotide Sequencing/economics , High-Throughput Nucleotide Sequencing/methods , Nanopore Sequencing , Sequence Analysis, DNA/economics , Sequence Analysis, DNA/methods , Symbiosis , Wolbachia/genetics , Wolbachia/physiology , Enterobacteriaceae/classification , Enterobacteriaceae/genetics , Enterobacteriaceae/physiology
12.
PLoS Negl Trop Dis ; 16(11): e0010913, 2022 11.
Article in English | MEDLINE | ID: mdl-36367854

ABSTRACT

Wolbachia, a gram-negative endosymbiotic bacterium widespread in arthropods, is well-known for changing the reproduction of its host in ways that increase its rate of spread, but there are also costs to hosts that can reduce this. Here we investigated a novel reproductive alteration of Wolbachia wAlbB on its host Aedes aegypti, using studies on mosquito life history traits, ovarian dissection, as well as gene expression assays. We found that an extended period of the larval stage as well as the egg stage (as previously shown) can increase the proportion of Wolbachia-infected females that become infertile; an effect which was not observed in uninfected females. Infertile females had incomplete ovarian formation and also showed a higher frequency of blood feeding following a prior blood meal, indicating that they do not enter a complete gonotrophic cycle. Treatments leading to infertility also decreased the expression of genes related to reproduction, especially the vitellogenin receptor gene whose product regulates the uptake of vitellogenin (Vg) into ovaries. Our results demonstrate effects associated with the development of infertility in wAlbB-infected Ae. aegypti females with implications for Wolbachia releases. The results also have implications for the evolution of Wolbachia infections in novel hosts.


Subject(s)
Aedes , Ovary , Wolbachia , Animals , Female , Aedes/physiology , Infertility , Larva , Ovary/microbiology , Wolbachia/physiology
13.
PLoS Negl Trop Dis ; 16(10): e0010786, 2022 10.
Article in English | MEDLINE | ID: mdl-36227923

ABSTRACT

Biological control of mosquito vectors using the endosymbiotic bacteria Wolbachia is an emerging strategy for the management of human arboviral diseases. We recently described the development of a strain of Aedes aegypti infected with the Wolbachia strain wAlbB (referred to as the wAlbB2-F4 strain) through simple backcrossing of wild type Australian mosquitoes with a wAlbB infected Ae. aegypti strain from the USA. Field releases of male wAlbB2-F4 mosquitoes resulted in the successful suppression of wild populations of mosquitoes in the trial sites by exploiting the strain's Wolbachia-induced cytoplasmic incompatibility. We now demonstrate that the strain is resistant to infection by dengue and Zika viruses and is genetically similar to endemic Queensland populations. There was a fourfold reduction in the proportion of wAlbB2-F4 mosquitoes that became infected following a blood meal containing dengue 2 virus (16.7%) compared to wild type mosquitoes (69.2%) and a 6-7 fold reduction in the proportion of wAlbB2-F4 mosquitoes producing virus in saliva following a blood meal containing an epidemic strain of Zika virus (8.7% in comparison to 58.3% in wild type mosquitoes). Restriction-site Associated DNA (RAD) sequencing revealed that wAlbB2-F4 mosquitoes have > 98% Australian ancestry, confirming the successful introduction of the wAlbB2 infection into the Australian genomic background through backcrossing. Genotypic and phenotypic analyses showed the wAlbB2-F4 strain retains the insecticide susceptible phenotype and genotype of native Australian mosquitoes. We demonstrate that the Wolbachia wAlbB2-F4, in addition to being suitable for population suppression programs, can also be effective in population replacement programs given its inhibition of virus infection in mosquitoes. The ease at which a target mosquito population can be transfected with wAlbB2, while retaining the genotypes and phenotypes of the target population, shows the utility of this strain for controlling the Ae. aegypti mosquitoes and the pathogens they transmit.


Subject(s)
Aedes , Dengue Virus , Dengue , Insecticides , Wolbachia , Zika Virus Infection , Zika Virus , Animals , Australia , DNA , Dengue/prevention & control , Dengue Virus/physiology , Humans , Male , Mosquito Vectors , Wolbachia/physiology , Zika Virus/genetics , Zika Virus Infection/prevention & control
14.
Microbiol Spectr ; 10(5): e0263321, 2022 10 26.
Article in English | MEDLINE | ID: mdl-35894613

ABSTRACT

Wolbachia is being developed as a biological tool to suppress mosquito populations and/or interfere with their transmitted viruses. Adult males with an artificial Wolbachia infection have been released, successfully yielding population suppression in multiple field trials. The main characteristic of the artificial Wolbachia-infected mosquitoes used in the suppression program is the lower vector competence than that in native infected/uninfected mosquitoes in horizontal and vertical transmission. Our previous studies have demonstrated that the Aedes albopictus HC line infected with a trio of Wolbachia strains exhibited almost complete blockade of dengue virus (DENV) and Zika virus (ZIKV) in horizontal and vertical transmission. However, the extent to which Wolbachia inhibits virus transovarial transmission is unknown since no studies have been performed to determine whether Wolbachia protects ovarian cells against viral infection. Here, we employed ovarian cells of the Ae. albopictus GUA (a wild-type mosquito line superinfected with two native Wolbachia strains, wAlbA and wAlbB), HC, and GT lines (tetracycline-cured, Wolbachia-uninfected mosquitoes), which exhibit key traits, and compared them to better understand how Wolbachia inhibits ZIKV transovarial transmission. Our results showed that the infection rate of adult GT progeny was significantly higher than that of GUA progeny during the first and second gonotrophic cycles. In contrast, the infection rates of adult GT and GUA progeny were not significantly different during the third gonotrophic cycle. All examined adult HC progeny from three gonotrophic cycles were negative for ZIKV infection. A strong negative linear correlation existed between Wolbachia density and ZIKV load in the ovaries of mosquitoes. Although there is no obvious coexistence area in the ovaries for Wolbachia and ZIKV, host immune responses may play a role in Wolbachia blocking ZIKV expansion and maintenance in the ovaries of Ae. albopictus. These results will aid in understanding Wolbachia-ZIKV interactions in mosquitoes. IMPORTANCE Area-wide application of Wolbachia to suppress mosquito populations and their transmitted viruses has achieved success in multiple countries. However, the mass release of Wolbachia-infected male mosquitoes involves a potential risk of accidentally releasing fertile females. In this study, we employed ovarian cells of the Ae. albopictus GUA, HC, and GT lines, which exhibit key traits, and compared them to better understand how Wolbachia inhibits ZIKV transovarial transmission. Our results showed an almost complete blockade of ZIKV transmission in HC female mosquitoes. Wolbachia in natively infected GUA mosquitoes negative affected ZIKV, and this interference was shown by slightly lower loads than those in HC mosquitoes. Overall, our work helps show how Wolbachia blocks ZIKV expansion and maintenance in the ovaries of Ae. albopictus and aids in understanding Wolbachia-ZIKV interactions in mosquitoes.


Subject(s)
Aedes , Wolbachia , Zika Virus Infection , Zika Virus , Animals , Male , Female , Wolbachia/physiology , Zika Virus Infection/prevention & control , Mosquito Vectors/physiology , Tetracyclines
15.
J Vis Exp ; (184)2022 06 01.
Article in English | MEDLINE | ID: mdl-35723456

ABSTRACT

As a maternally harbored endosymbiont, Wolbachia infects large proportions of insect populations. Studies have recently reported the successful regulation of RNA virus transmission using Wolbachia-transfected mosquitoes. Key strategies to control viruses include the manipulation of host reproduction via cytoplasmic incompatibility and the inhibition of viral transcripts via immune priming and competition for host-derived resources. However, the underlying mechanisms of the responses of Wolbachia-transfected mosquitoes to viral infection are poorly understood. This paper presents a protocol for the in vitro identification of Wolbachia infection at the nucleic acid and protein levels in Aedes albopictus (Diptera: Culicidae) Aa23 cells to enhance the understanding of the interactions between Wolbachia and its insect vectors. Through the combined use of polymerase chain reaction (PCR), quantitative PCR, western blot, and immunological analytical methods, a standard morphologic protocol has been described for the detection of Wolbachia-infected cells that is more accurate than the use of a single method. This approach may also be applied to the detection of Wolbachia infection in other insect taxa.


Subject(s)
Aedes , RNA Viruses , Wolbachia , Animals , Cell Line , Mosquito Vectors , Wolbachia/physiology
16.
Appl Environ Microbiol ; 88(13): e0052922, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35730939

ABSTRACT

One of the most prevalent intracellular infections on earth is with Wolbachia, a bacterium in the Rickettsiales that infects a range of insects, crustaceans, chelicerates, and nematodes. Wolbachia is maternally transmitted to offspring and has profound effects on the reproduction and physiology of its hosts, which can result in reproductive isolation, altered vectorial capacity, mitochondrial sweeps, and even host speciation. Some populations stably harbor multiple Wolbachia strains, which can further contribute to reproductive isolation and altered host physiology. However, almost nothing is known about the requirements for multiple intracellular microbes to be stably maintained across generations while they likely compete for space and resources. Here, we use a coinfection of two Wolbachia strains ("wHa" and "wNo") in Drosophila simulans to define the infection and transmission dynamics of an evolutionarily stable double infection. We find that a combination of sex, tissue, and host development contributes to the infection dynamics of the two microbes and that these infections exhibit a degree of niche partitioning across host tissues. wHa is present at a significantly higher titer than wNo in most tissues and developmental stages, but wNo is uniquely dominant in ovaries. Unexpectedly, the ratio of wHa to wNo in embryos does not reflect those observed in the ovaries, indicative of strain-specific transmission dynamics. Understanding how Wolbachia strains interact to establish and maintain stable infections has important implications for the development and effective implementation of Wolbachia-based vector biocontrol strategies, as well as more broadly defining how cooperation and conflict shape intracellular communities. IMPORTANCEWolbachia is a maternally transmitted intracellular bacterium that manipulates the reproduction and physiology of arthropods, resulting in drastic effects on the fitness, evolution, and even speciation of its hosts. Some hosts naturally harbor multiple strains of Wolbachia that are stably transmitted across generations, but almost nothing is known about the factors that limit or promote these coinfections, which can have profound effects on the host's biology and evolution and are under consideration as an insect-management tool. Here, we define the infection dynamics of a known stably transmitted double infection in Drosophila simulans with an eye toward understanding the patterns of infection that might facilitate compatibility between the two microbes. We find that a combination of sex, tissue, and development all contributes to infection dynamics of the coinfection.


Subject(s)
Coinfection , Wolbachia , Animals , Drosophila/microbiology , Insecta , Reproduction , Symbiosis , Wolbachia/physiology
17.
Insect Biochem Mol Biol ; 146: 103776, 2022 07.
Article in English | MEDLINE | ID: mdl-35526745

ABSTRACT

Wolbachia pipientis is a maternally transmitted bacterium that mostly colonizes arthropods, including the mosquito Aedes fluviatilis, potentially affecting different aspects of host physiology. This intracellular bacterium prefers gonadal tissue cells, interfering with the reproductive cycle of insects, arachnids, crustaceans, and nematodes. Wolbachia's ability to modulate the host's reproduction is related to its success in prevalence and frequency. Infecting oocytes is essential for vertical propagation, ensuring its presence in the germline. The mosquito Ae. fluviatilis is a natural host for this bacterium and therefore represents an excellent experimental model in the effort to understand host-symbiont interactions and the mutual metabolic regulation. The aim of this study was to comparatively describe metabolic changes in naturally Wolbachia-infected and uninfected ovaries of Ae. fluviatilis during the vitellogenic period of oogenesis, thus increasing the knowledge about Wolbachia parasitic/symbiotic mechanisms.


Subject(s)
Aedes , Wolbachia , Aedes/microbiology , Animals , Oogenesis , Symbiosis/physiology , Wolbachia/physiology
18.
Parasit Vectors ; 15(1): 128, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35413938

ABSTRACT

BACKGROUND: The insect endosymbiotic bacterium Wolbachia is being deployed in field populations of the mosquito Aedes aegypti for biological control. This microbe prevents the replication of human disease-causing viruses inside the vector, including dengue, Zika and chikungunya. Relative Wolbachia densities may in part predict the strength of this 'viral blocking' effect. Additionally, Wolbachia densities may affect the strength of the reproductive manipulations it induces, including cytoplasmic incompatibility (CI), maternal inheritance rates or induced fitness effects in the insect host. High rates of CI and maternal inheritance and low rates of fitness effects are also key to the successful spreading of Wolbachia through vector populations and its successful use in biocontrol. The factors that control Wolbachia densities are not completely understood. METHODS: We used quantitative PCR-based methods to estimate relative density of the Wolbachia wAlbB strain in both the somatic and reproductive tissues of adult male and female mosquitoes, as well as in eggs. Using correlation analyses, we assessed whether densities in one tissue predict those in others within the same individual, but also across generations. RESULTS: We found little relationship among the relative Wolbachia densities of different tissues in the same host. The results also show that there was very little relationship between Wolbachia densities in parents and those in offspring, both in the same and different tissues. The one exception was with ovary-egg relationships, where there was a strong positive association. Relative Wolbachia densities in reproductive tissues were always greater than those in the somatic tissues. Additionally, the densities were consistent in females over their lifetime regardless of tissue, whereas they were generally higher and more variable in males, particularly in the testes. CONCLUSIONS: Our results indicate that either stochastic processes or local tissue-based physiologies are more likely factors dictating Wolbachia densities in Ae. aegypti individuals, rather than shared embryonic environments or heritable genetic effects of the mosquito genome. These findings have implications for understanding how relative Wolbachia densities may evolve and/or be maintained over the long term in Ae. aegypti.


Subject(s)
Aedes , Wolbachia , Zika Virus Infection , Zika Virus , Aedes/physiology , Animals , Female , Humans , Male , Mosquito Vectors/physiology , Specific Gravity , Wolbachia/physiology
19.
Proc Biol Sci ; 289(1972): 20212781, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35414231

ABSTRACT

Arthropods host a range of sex-ratio-distorting selfish elements, including diverse maternally inherited endosymbionts that solely kill infected males. Male-killing heritable microbes are common, reach high frequency, but until recently have been poorly understood in terms of the host-microbe interaction. Additionally, while male killing should generate strong selection for host resistance, evidence of this has been scant. The interface of the microbe with host sex determination is integral to the understanding of how death is sex limited and how hosts can evolve evasion of male killing. We first review current knowledge of the mechanisms diverse endosymbionts use to induce male-specific death. We then examine recent evidence that these agents do produce intense selection for host nuclear suppressor elements. We argue, from our understanding of male-killing mechanisms, that suppression will commonly involve evolution of the host sex determination pathways and that the host's response to male-killing microbes thus represents an unrecognized driver of the diversity of arthropod sex determination. Further work is required to identify the genes and mechanisms responsible for male-killing suppression, which will both determine the components of sex determination (or other) systems associated with suppressor evolution, and allow insight into the mechanism of male killing itself.


Subject(s)
Arthropods , Wolbachia , Animals , Arthropods/microbiology , Bacteria/genetics , Male , Sex Ratio , Symbiosis , Wolbachia/physiology
20.
Appl Environ Microbiol ; 88(9): e0254921, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35420439

ABSTRACT

Multicellular eukaryotes often host multiple microbial symbionts that may cooperate or compete for host resources, such as space and nutrients. Here, we studied the abundances and localization of four bacterial symbionts, Rickettsia, Wolbachia, Sodalis, and Arsenophonus, in the parasitic wasp Spalangia cameroni. Using quantitative PCR (qPCR), we measured the symbionts' titers in wasps that harbor different combinations of these symbionts. We found that the titer of each symbiont decreased as the number of symbiont species in the community increased. Symbionts' titers were higher in females than in males. Rickettsia was the most abundant symbiont in all the communities, followed by Sodalis and Wolbachia. The titers of these three symbionts were positively correlated in some of the colonies. Fluorescence in situ hybridization was in line with the qPCR results: Rickettsia, Wolbachia, and Sodalis were observed in high densities in multiple organs, including brain, muscles, gut, Malpighian tubules, fat body, ovaries, and testes, while Arsenophonus was localized to fewer organs and in lower densities. Sodalis and Arsenophonus were observed in ovarian follicle cells but not within oocytes or laid eggs. This study highlights the connection between symbionts' abundance and localization. We discuss the possible connections between our findings to symbiont transmission success. IMPORTANCE Many insects carry intracellular bacterial symbionts (bacteria that reside within the cells of the insect). When multiple symbiont species cohabit in a host, they may compete or cooperate for space, nutrients, and transmission, and the nature of such interactions would be reflected in the abundance of each symbiont species. Given the widespread occurrence of coinfections with maternally transmitted symbionts in insects, it is important to learn more about how they interact, where they are localized, and how these two aspects affect their co-occurrence within individual insects. Here, we studied the abundance and the localization of four symbionts, Rickettsia, Wolbachia, Sodalis, and Arsenophonus, that cohabit the parasitic wasp Spalangia cameroni. We found that symbionts' titers differed between symbiotic communities. These results were corroborated by microscopy, which shows differential localization patterns. We discuss the findings in the contexts of community ecology, possible symbiont-symbiont interactions, and host control mechanisms that may shape the symbiotic community structure.


Subject(s)
Gammaproteobacteria , Rickettsia , Wasps , Wolbachia , Animals , Enterobacteriaceae/genetics , Female , In Situ Hybridization, Fluorescence , Male , Rickettsia/genetics , Symbiosis/physiology , Wasps/microbiology , Wolbachia/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...