Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 256
Filter
1.
Lett Appl Microbiol ; 77(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38866707

ABSTRACT

Wolfiporia cocos, a versatile fungus acclaimed for its nutritional and therapeutic benefits in Traditional Chinese Medicine, holds immense potential for pharmaceutical and industrial applications. In this study, we aimed to optimize liquid fermentation techniques and culture medium composition to maximize mycelial biomass (MB) yield, pachymic acid (PA) concentration, and overall PA production. Additionally, we investigated the molecular basis of our findings by quantifying the expression levels of genes associated with PA and MB biosynthesis using quantitative real-time polymerase chain reaction. Under the optimized fermentation conditions, significant results were achieved, with maximum MB reaching 6.68 g l-1, PA content peaking at 1.25 mg g-1, and a total PA yield of 4.76 g l-1. Notably, among the four examined genes, squalene monooxygenase, exhibited enhanced expression at 0.06 ratio under the optimized conditions. Furthermore, within the realm of carbohydrate-active enzymes, the glycoside hydrolases 16 family displayed elevated expression levels at 21 ratios, particularly during MB production. This study enhances understanding of genetic mechanism governing MB and PA production in W. cocos, highlighting the roles of squalene monooxygenase and glycoside hydrolases 16 carbohydrate-active enzymes.


Subject(s)
Biomass , Culture Media , Fermentation , Mycelium , Triterpenes , Wolfiporia , Wolfiporia/genetics , Wolfiporia/metabolism , Mycelium/growth & development , Mycelium/metabolism , Mycelium/genetics , Triterpenes/metabolism , Culture Media/chemistry , Gene Expression Regulation, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism , Squalene Monooxygenase/genetics , Squalene Monooxygenase/metabolism , Gene Expression
2.
Pharmazie ; 79(3): 72-81, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38872267

ABSTRACT

Hyperuricemia (HUA) is a disorder of uric acid metabolism, which can lead to the formation of gouty arthritis, kidney inflammation and other damages. Previous studies have found that the alcohol extract of Poria cutis can reduce the level of uric acid and protect against kidney injury. Based on network pharmacology, the core targets and main active components of P. cutis intervention in HUA were determined. Most of the potential active ingredients are triterpenoid acids such as tumulosic acid (TA) and eburicoic acid (EA), and the potential targets are TNF and IL-6, which are associated with inflammation. In vitro experiments have shown that TA can significantly inhibit the release of NO, TNF-α and IL-6 in inflammatory RAW264.7 cell culture medium and the expression of TNF-α and IL-6 in RAW264.7 cells. This study suggests that TA based on network pharmacological screening has obvious anti-inflammatory effect on inflammatory RAW264.7 cells and is a promising anti-inflammatory compound.


Subject(s)
Anti-Inflammatory Agents , Interleukin-6 , Network Pharmacology , Nitric Oxide , Tumor Necrosis Factor-alpha , Wolfiporia , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Interleukin-6/metabolism , RAW 264.7 Cells , Wolfiporia/chemistry , Tumor Necrosis Factor-alpha/metabolism , Nitric Oxide/metabolism , Triterpenes/pharmacology , Hyperuricemia/drug therapy , Inflammation/drug therapy , Inflammation/pathology , Cell Line
3.
Int J Biol Macromol ; 273(Pt 1): 132931, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38942665

ABSTRACT

PCP-W1, the Poria cocos polysaccharide with the strong immunomodulatory activity, was isolated through column chromatography and screened for in vitro immune activity in RAW 264.7 cells in this study. The structure analysis results revealed that the PCP-W1 were composed of galactose, glucose, fucose and mannose in a molar percentage of 35.87: 28.56: 21.77: 13.64. And it exhibited a random coil and branched conformational features with a molecular weight of 18.38 kDa. The main chain consisted of residues→3)-ß-D-Glcp-(1 â†’ 3,6)-ß-D-Glcp-(1 â†’ 3)-ß-D-Glcp-(1 â†’ 6)-ß-D-Glcp-(1 â†’ 6)-α-D-Galp-(1 â†’ 6)-α-D-Galp-(1 â†’ 2,6)-α-D-Galp-(1→6)-α-D-Galp-(1 â†’ 6)-α-D-Galp-(1 â†’ , while branching occurred at ß-D-Glcp-(1→, α-D-Manp-(1→, and α-L-Fucp-(1 â†’ 3)- α-L-Fucp-(1→. The pharmacodynamic studies demonstrated that PCP-W1 activated the release of NO, IL-6, IL-ß, TNF-α, CD86, and ROS to induce polarization of RAW 264.7 murine macrophages towards M1-type through modulation of the TLR4/MD2/NF-κB pathway. The molecular docking results showed that PCP-W1 could primarily dock onto the hydrophobic binding site of TLR4/MD2 complex via its galactose chain. Furthermore, molecular dynamics simulation displayed stable modeling for TLR4-MD2-PCP-W1 complex. Overall, we screened the most immunoactive components of the polysaccharide, analyzed its structure, demonstrated its impact on TLR4/MD2/NF-kB pathway, and studied the interaction between TLR4/MD2 and the polysaccharide fragments. These results provide further support for the structure-activity relationship study of the immunomodulatory effects of Poria cocos polysaccharide.


Subject(s)
NF-kappa B , Polysaccharides , Signal Transduction , Toll-Like Receptor 4 , Wolfiporia , Animals , Mice , Toll-Like Receptor 4/metabolism , RAW 264.7 Cells , NF-kappa B/metabolism , Polysaccharides/pharmacology , Polysaccharides/chemistry , Signal Transduction/drug effects , Wolfiporia/chemistry , Lymphocyte Antigen 96/metabolism , Lymphocyte Antigen 96/chemistry , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Molecular Docking Simulation
4.
Int J Biol Macromol ; 273(Pt 1): 133067, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866287

ABSTRACT

Adjuvants, as the essential component of vaccines, are crucial in enhancing the magnitude, breadth and durability of immune responses. Unfortunately, commonly used Alum adjuvants predominantly provoke humoral immune response, but fail to evoke cellular immune response, which is crucial for the prevention of various chronic infectious diseases and cancers. Thus, it is necessary to develop effective adjuvants to simultaneously induce humoral and cellular immune response. In this work, we obtained a water soluble polysaccharide isolated and purified from Poria cocos, named as PCP, and explored the possibility of PCP as a vaccine adjuvant. The PCP, with Mw of 20.112 kDa, primarily consisted of →6)-α-D-Galp-(1→, with a small amount of →3)-ß-D-Glcp-(1 â†’ and →4)-ß-D-Glcp-(1→. Our results demonstrated that the PCP promoted the activation of dendritic cells (DCs) and macrophages in vitro. As the adjuvant to ovalbumin, the PCP facilitated the activation of DCs in lymph nodes, and evoked strong antibody response with a combination of Th1 and Th2 immune responses. Moreover, compared to Alum adjuvant, the PCP markedly induced a potent cellular response, especially the cytotoxic T lymphocytes response. Therefore, we confirmed that the PCP has great potential to be an available adjuvant for simultaneously inducing humoral and cellular immune responses.


Subject(s)
Adjuvants, Immunologic , Dendritic Cells , Polysaccharides , Solubility , Water , Animals , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Mice , Water/chemistry , Dendritic Cells/drug effects , Dendritic Cells/immunology , Female , Macrophages/drug effects , Macrophages/immunology , Wolfiporia/chemistry , Ovalbumin/immunology , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Poria/chemistry
5.
Medicine (Baltimore) ; 103(25): e38531, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905394

ABSTRACT

The aim of this study was to investigate the key targets and molecular mechanisms of the drug pair Astragalus membranaceus and Poria cocos (HFDP) in the treatment of immunity. We utilized network pharmacology, molecular docking, and immune infiltration techniques in conjunction with data from the GEO database. Previous clinical studies have shown that HFDP has a positive impact on immune function. We first identified the active ingredients and targets of HFDP from the Traditional Chinese Medicine Systems Pharmacology database and the Swiss Target Prediction database, respectively. Next, we retrieved the differentially expressed genes (DEGs) related to immunity from the GEO databases. The intersection targets of the drugs and diseases were then analyzed using the STRING database for protein-protein interaction (PPI) network analysis, and the core targets were determined through topological analysis. Finally, the intersection genes were further analyzed using the DAVID database for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses. Subsequently, by analyzing the expression and prognostic survival of 12 core targets, 5 core target genes were identified, and molecular docking between the hub genes and immunity was performed. Finally, we used the CIBERSORT algorithm to analyze the immune infiltration of immunity genes In this study, 34 effective ingredients of HFDP, 530 target genes, and 568 differential genes were identified. GO and KEGG analysis showed that the intersection genes of HFDP targets and immunity-related genes were mainly related to complement and coagulation cascades, cytokine receptors, and retinol metabolism pathways. The molecular docking results showed that the 5 core genes had obvious affinity for the active ingredients of HFDP, which could be used as potential targets to improve the immunity of HFDP. Our findings suggest that HFDP is characterized by "multiple components, multiple targets, and multiple pathways" in regulating immunity. It may play an essential role in regulating immunity by regulating the expression and polymorphism of the central target genes ESR1, JUN, CYP3A4, CYP2C9, and SERPINE1.


Subject(s)
Astragalus propinquus , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Protein Interaction Maps/genetics , Humans , Wolfiporia/chemistry , Medicine, Chinese Traditional
6.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731856

ABSTRACT

We characterized the therapeutic biological modes of action of several terpenes in Poria cocos F.A Wolf (PC) and proposed a broad therapeutic mode of action for PC. Molecular docking and drug-induced transcriptome analysis were performed to confirm the pharmacological mechanism of PC terpene, and a new analysis method, namely diffusion network analysis, was proposed to verify the mechanism of action against Alzheimer's disease. We confirmed that the compound that exists only in PC has a unique mechanism through statistical-based docking analysis. Also, docking and transcriptomic analysis results could reflect results in clinical practice when used complementarily. The detailed pharmacological mechanism of PC was confirmed by constructing and analyzing the Alzheimer's disease diffusion network, and the antioxidant activity based on microglial cells was verified. In this study, we used two bioinformatics approaches to reveal PC's broad mode of action while also using diffusion networks to identify its detailed pharmacological mechanisms of action. The results of this study provide evidence that future pharmacological mechanism analysis should simultaneously consider complementary docking and transcriptomics and suggest diffusion network analysis, a new method to derive pharmacological mechanisms based on natural complex compounds.


Subject(s)
Molecular Docking Simulation , Terpenes , Transcriptome , Terpenes/pharmacology , Terpenes/chemistry , Transcriptome/drug effects , Humans , Wolfiporia/chemistry , Gene Expression Profiling/methods , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Microglia/drug effects , Microglia/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Computational Biology/methods , Animals
7.
Molecules ; 29(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38731645

ABSTRACT

Ulcerative colitis (UC), as a chronic inflammatory disease, presents a global public health threat. However, the mechanism of Poria cocos (PC) in treating UC remains unclear. Here, LC-MS/MS was carried out to identify the components of PC. The protective effect of PC against UC was evaluated by disease activity index (DAI), colon length and histological analysis in dextran sulfate sodium (DSS)-induced UC mice. ELISA, qPCR, and Western blot tests were conducted to assess the inflammatory state. Western blotting and immunohistochemistry techniques were employed to evaluate the expression of tight junction proteins. The sequencing of 16S rRNA was utilized for the analysis of gut microbiota regulation. The results showed that a total of fifty-two nutrients and active components were identified in PC. After treatment, PC significantly alleviated UC-associated symptoms including body weight loss, shortened colon, an increase in DAI score, histopathologic lesions. PC also reduced the levels of inflammatory cytokines TNF-α, IL-6, and IL-1ß, as evidenced by the suppressed NF-κB pathway, restored the tight junction proteins ZO-1 and Claudin-1 in the colon, and promoted the diversity and abundance of beneficial gut microbiota. Collectively, these findings suggest that PC ameliorates colitis symptoms through the reduction in NF-κB signaling activation to mitigate inflammatory damage, thus repairing the intestinal barrier, and regulating the gut microbiota.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Gastrointestinal Microbiome , NF-kappa B , Signal Transduction , Wolfiporia , Animals , Gastrointestinal Microbiome/drug effects , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , NF-kappa B/metabolism , Mice , Signal Transduction/drug effects , Wolfiporia/chemistry , Male , Disease Models, Animal , Cytokines/metabolism , Colon/pathology , Colon/metabolism , Colon/drug effects , Colon/microbiology , Tight Junction Proteins/metabolism , Mice, Inbred C57BL
8.
Commun Biol ; 7(1): 666, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816492

ABSTRACT

Wolfiporia cocos is a medicinal mushroom used in China. It biosynthesizes pachymic acid (PA), a main therapeutic triterpene associated with therapies. Nowadays, the unknown PA biosynthesis leads to difficulties in increasing its content in W. cocos. Herein, we report sequencing, assembling, and characterization of the genome and several transcriptomes of W. cocos. Sequence mining determined candidate genes that encode lanosterol synthase, sterol O-acyltransferase, and sterol C-24 methyltransferase likely involved in the steps from lanosterol to PA. Gene cluster analysis identified four CYP450 cDNAs likely involved in the biosynthesis of PA, namely WcCYP64-1, WcCYP64-2, WcCYP52, and WcCYP_FUM15, which were subjected to both overexpression and silencing in mycelia. The overexpression of each of WcCYP64-1, WcCYP52 and WcCYP_FUM15 increased the content of PA, 16α-hydroxytrametenolic acid, eburicoic acid, and tumulosic acid, while the silencing of each gene either significantly or slightly decreased the contents of these four compounds, indicating their involvement in the PA biosynthesis. In addition, different temperatures affected the expression of these genes and the formation of PA. By contrast, the overexpression and silencing of WcCYP64-2 did not alter the formation of these compounds. Taken together, these findings determine more potential steps in the biosynthetic pathway of PA for metabolic engineering.


Subject(s)
Biosynthetic Pathways , Cytochrome P-450 Enzyme System , Triterpenes , Wolfiporia , Triterpenes/metabolism , Wolfiporia/genetics , Wolfiporia/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Biosynthetic Pathways/genetics , Gene Expression Regulation, Fungal , Transcriptome , Intramolecular Transferases
9.
J Pharm Biomed Anal ; 247: 116262, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38820835

ABSTRACT

Poria cocos (Schw.) Wolf (PCW) are the dried sclerotia of Poaceae fungus Poria cocos that contain many biological activity ingredients such as polysaccharides and triterpenoids. The carbohydrates from Poria cocos have been proven to possess anti-inflammatory and antioxidant effects. This study aimed to investigate the impact and mechanism of Poria cocos oligosaccharides (PCO) protecting mice against acute lung injury (ALI). We examined the histopathological analysis of lung injury, inflammatory, and edema levels to evaluate the benefits of PCO during ALI. As a result, PCO improved the lipopolysaccharide (LPS) induced lung injury and decreased the inflammatory cytokines of lung tissue. Simultaneously, PCO alleviated lung edema by regulating the expression of aquaporin5 (AQP5) and epithelial Na+ channel protein (ENaC-α). Additionally, untargeted metabolomics was performed on the plasma of ALI mice via HUPLC-Triple-TOF/MS. The results indicated that linoleic acid, linolenic acid, arachidonic acid, carnosine, glutamic acid, and 1-methylhistamine were the biomarkers in ALI mice. Besides, metabolic pathway analysis suggested PCO affected the histidine and fatty acid metabolism, which were closely associated with inflammation and oxidative reaction of the host. Consequently, the effects of PCO inhibiting inflammation and edema might relate to the reducing pro-inflammatory mediators and the reverse of abnormal metabolic pathways.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Metabolomics , Oligosaccharides , Wolfiporia , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/drug therapy , Mice , Metabolomics/methods , Lipopolysaccharides/toxicity , Oligosaccharides/pharmacology , Male , Wolfiporia/chemistry , Anti-Inflammatory Agents/pharmacology , Biomarkers/blood , Disease Models, Animal , Cytokines/metabolism , Lung/drug effects , Lung/metabolism , Lung/pathology , Inflammation/drug therapy , Inflammation/metabolism , Antioxidants/pharmacology
10.
Int J Biol Macromol ; 269(Pt 1): 131928, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688339

ABSTRACT

To reduce pollution caused by traditional plastic packaging and preparation of silver nanoparticles (AgNPs), this work aims to develop biological macromolecular packaging films with green synthesized AgNPs. In this study, a novel P. cocos polysaccharide (PCP) with a unique monosaccharide composition was extracted from Poria cocos (Schw.) Wolf. Then, this polysaccharide containing 24.68 % rhamnose was used as a stabilizer for the green synthesis of PCP-AgNPs for the first time. PCP-AgNPs exhibited excellent antibacterial activity against P. aeruginosa, E. coli, and S. aureus, with the highest antibacterial activity against E. coli (inhibition zone diameter = 11.14 ± 0.79 mm). Subsequently, PCP-AgNPs/chitosan (CS) film was successfully prepared by incorporating PCP-AgNPs into the CS film solution. Several experiments demonstrated that the addition of this nanomaterial promoted the formation of noncovalent interactions between CS and PCP-AgNPs, resulting in a more regular and denser film. Compared to the CS film and control group, the PCP-AgNPs/CS film significantly maintained the quality indexes of strawberries. Therefore, this composite film successfully extended the shelf life of strawberries. Regarding safety, these packaging films were not cytotoxic toward RAW264.7 cells. In conclusion, the environmentally friendly PCP-AgNPs/CS film has the potential to replace some traditional food packaging materials.


Subject(s)
Anti-Bacterial Agents , Food Packaging , Green Chemistry Technology , Metal Nanoparticles , Polysaccharides , Silver , Metal Nanoparticles/chemistry , Silver/chemistry , Food Packaging/methods , Polysaccharides/chemistry , Polysaccharides/pharmacology , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Animals , RAW 264.7 Cells , Wolfiporia/chemistry , Microbial Sensitivity Tests , Escherichia coli/drug effects
11.
Aging (Albany NY) ; 16(7): 6147-6162, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38507458

ABSTRACT

The active ingredient in Poria cocos, a parasitic plant belonging to the family Polyporaceae, is Poria cocos polysaccharide (PCP). PCP exhibits liver protection and anti-inflammatory effects, although its effect on alcoholic liver disease (ALD) remains unstudied. This study investigated the mechanism of PCP in improving ALD by regulating the Nrf2 signaling pathway. After daily intragastric administration of high-grade liquor for 4 hours, each drug group received PCPs or the ferroptosis inhibitor ferrostatin-1. The Nrf2 inhibitor ML385 (100 mg/kg/day) group was intraperitoneally injected, after which PCP (100 mg/kg/day) was administered by gavage. Samples were collected after 6 weeks for liver function and blood lipid analysis using an automatic biochemical analyzer. In the alcoholic liver injury cell model established with 150 mM alcohol, the drug group was pretreated with PCP, Fer-1, and ML385, and subsequent results were analyzed. The results revealed that PCP intervention significantly reduced liver function and blood lipid levels in alcohol-fed rats, along with decreased lipid deposition. PCP notably enhanced Nrf2 signaling expression, regulated oxidative stress levels, inhibited NF-κß, and its downstream inflammatory signaling pathways. Furthermore, PCP upregulated FTH1 protein expression and reduced intracellular Fe2+, suggesting an improvement in ferroptosis. In vitro studies yielded similar results, indicating that PCP can reduce intracellular ferroptosis by regulating oxidative stress and improve alcoholic liver injury by inhibiting the production of inflammatory factors.


Subject(s)
Ferroptosis , Liver Diseases, Alcoholic , NF-E2-Related Factor 2 , Polysaccharides , Animals , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Polysaccharides/pharmacology , Rats , Male , Signal Transduction/drug effects , Oxidative Stress/drug effects , Humans , Rats, Sprague-Dawley , Liver/metabolism , Liver/drug effects , Liver/pathology , Wolfiporia/chemistry , Disease Models, Animal
12.
Int J Med Mushrooms ; 26(4): 41-51, 2024.
Article in English | MEDLINE | ID: mdl-38523448

ABSTRACT

Liquid fermentation could yield substantial mycelia mass and valuable secondary metabolites in large-scale production within a short, fermented duration. The liquid fermented process of mycelia of Poria cocos was optimized using a combination of single-factor experimentation and response surface methodology (RSM) to obtain more extract of P. cocos. The optimal conditions were determined as follows: The carbon source concentration at 1%, the nitrogen source concentration at 1%, the inoculum volume at 7% and a culture time of 9 d. Under these conditions, the ethyl acetate extract mass of P. cocos mycelia reached 0.0577 ± 0.0041 mg. There were significant interactions between nitrogen source concentration and cultivation time. The predicted values by the mathematical model based on the response surface analysis showed a close agreement with experimental data.


Subject(s)
Wolfiporia , Fermentation , Wolfiporia/metabolism , Mycelium , Nitrogen/metabolism
13.
Fitoterapia ; 175: 105856, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38354820

ABSTRACT

Poria cocos (Schw.) Wolf (P. cocos) has been widely used as medical plant in East Asia with remarkable anti-Alzheimer's disease (anti-AD) activity. However, the underlying mechanisms are still confused. In this study, based on the ß-Amyloid deposition hypothesis of AD, an integrated analysis was conducted to screen and separation 5-lipoxygenase (5-LOX) inhibitors from triterpenoids of P. cocos and investigate the anti-AD mechanisms, containing bioaffinity ultrafiltration UPLC-Q-Exactive, molecular docking, and multiple complex networks. Five triterpenoids were identified as potential 5-LOX inhibitors, including Tumulosic acid, Polyporenic acid C, 3-Epi-dehydrotumulosic acid, Pachymic acid and Dehydrotrametenolic acid. Five potential 5-LOX inhibitors were screened by ultrafiltration affinity assay in P. cocos. The molecular docking simulation results are consistent with the ultrafiltration experimental results, which further verifies the accuracy of the experiment. The commercial 5-LOX inhibitor that Zileuton was used as a positive control to evaluate the inhibitory effect of active ingredients on 5-LOX. Subsequently, the established separation method allowed the five active ingredients (Pachymic acid, 3-Epi-dehydrotumulosic acid, Dehydrotrametenolic acid, Tumulosic acid and Polyporenic acid C) with high purity to be isolated. Targeting network pharmacology analysis showed that five active ingredients correspond to a total of 286 targets. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis found that target cells were mainly enriched in Pathways in cancer, Lipid and atherosclerosis. Our results indicate that P. cocos extract has the potential to be used in the prevention and treatment of neurodegenerative diseases. This will help elucidate the mechanisms of action of various medicinal plants at the molecular level and provide more opportunities for the discovery and development of new potential treatments from health food resources.


Subject(s)
Lipoxygenase Inhibitors , Molecular Docking Simulation , Triterpenes , Wolfiporia , Triterpenes/pharmacology , Triterpenes/isolation & purification , Triterpenes/chemistry , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/isolation & purification , Wolfiporia/chemistry , Molecular Structure , Ultrafiltration , Arachidonate 5-Lipoxygenase/metabolism , Chromatography, High Pressure Liquid , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Plants, Medicinal/chemistry , Network Pharmacology
14.
Int J Biol Macromol ; 261(Pt 2): 129878, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309394

ABSTRACT

In order to investigate the structural characteristics and immunomodulatory effects of Poria cocos polysaccharides, a water-soluble homogeneous polysaccharide (PCP-2) was isolated by water extraction and alcohol precipitation and further purified by Cellulose DEAE-52 and Sephacryl S-100HR column chromatography. PCP-2 is a heteropolysaccharide composed of glucose, galactose, mannose, and fucose in a molar ratio of 42.0: 35.0: 13.9: 9.1. It exhibits a narrow molecular weight distribution at 2.35 kDa with a branching degree of 37.1 %. The main chain types of PCP-2 include 1,3-ß-D-Glc and 1,6-ß-D-Glc as the backbone glucans and 1,6-α-D-Gal as the backbone heterogalactan. In vitro experiments demonstrate that PCP-2 directly stimulate RAW264.7 cell proliferation and secretion of inflammatory factors such as NO and TNF-α. In cyclophosphamide (CTX)-induced mice, it promotes the development of thymus and spleen immune organs, elevates the blood levels of IgG, IgA, IgM and CD3+CD4+ T cells, increases the intestinal villus height/ crypt depth ratio and improves gut barrier dysfunctions. These findings suggest that PCP-2 is a natural fungal polysaccharide with broad spectrum of immunoenhancing effects, which can significantly ameliorate the immunocompromised state.


Subject(s)
Fungal Polysaccharides , Poria , Wolfiporia , Mice , Animals , Wolfiporia/chemistry , Water , Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Tumor Necrosis Factor-alpha , Poria/chemistry
15.
J Ethnopharmacol ; 325: 117812, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38301984

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic ulcers represent a chronic condition characterized by prolonged hyperglycemia and delayed wound healing, accompanied by endocrine disorders, inflammatory responses, and microvascular damage in the epidermal tissue, demanding effective clinical treatment approaches. For thousands of years, ancient Chinese ethnopharmacological studies have documented the use of Poria cocos (Schw.) Wolf in treating diabetic ulcers. Recent research has substantiated the diverse pharmacological effects of Poria cocos (Schw.) Wolf, including its potential to alleviate hyperglycemia and exhibit anti-inflammatory, antioxidant, and immune regulatory properties, which could effectively mitigate diabetic ulcer symptoms. Furthermore, being a natural medicine, Poria cocos (Schw.) Wolf has demonstrated promising therapeutic effects and safety in the management of diabetic ulcers, holding significant clinical value. Despite its potential clinical efficacy and applications in diabetic ulcer treatment, the primary active components and underlying pharmacological mechanisms of Poria cocos (Schw.) Wolf remains unclear. Further investigations are imperative to establish a solid foundation for drug development in this domain. AIM OF THE STUDY AND MATERIALS AND METHODS: In this study, we aimed to identify the active compounds and potential targets of Poria cocos (Schw.) Wolf using UHPLC-Q-TOF-MS and TCMSP databases. Additionally, we attempt to identify targets related to diabetic ulcers. Following enrichment analysis, a network of protein-protein interactions was constructed to identify hub genes based on the common elements between the two datasets. To gain insights into the binding activities of the hub genes and active ingredients, molecular docking analysis was employed. Furthermore, to further validate the therapeutic effect of Poria cocos (Schw.) Wolf, we exerted in vitro experiments using human umbilical vein vascular endothelial cells and human myeloid leukemia monocytes (THP-1). The active ingredient of Poria cocos (Schw.) Wolf was applied in these experiments. Our investigations included various assays, such as CCK-8, scratch test, immunofluorescence, western blotting, RT-PCR, and flow cytometry, to explore the potential of Poria cocos (Schw.) Wolf triterpenoid extract (PTE) in treating diabetic ulcers. RESULTS: The findings here highlighted PTE as the primary active ingredient in Poria cocos (Schw.) Wolf. Utilizing network pharmacology, we identified 74 potential targets associated with diabetic ulcer treatment for Poria cocos (Schw.) Wolf, with five hub genes (JUN, MAPK1, STAT3, AKT1, and CTNNB1). Enrichment analysis revealed the involvement of multiple pathways in the therapeutic process, with the PI3K-AKT signaling pathway showing significant enrichment. Through molecular docking, we discovered that relevant targets within this pathway exhibited strong binding with the active components of Poria cocos (Schw.) Wolf. In vitro experiments unveiled that PTE (10 mg/L) facilitated the migration of human umbilical vein vascular endothelial cells (P < 0.05). PTE also increased the expression of CD31 and VEGF mRNA (P < 0.05) while activating the expressions of p-PI3K and p-AKT (P < 0.05). Moreover, PTE demonstrated its potential by reducing the expression of IL-1ß, IL-6, TNF-α, and NF-κB mRNA in THP-1 (P < 0.05) and fostering M2 macrophage polarization. These results signify the potential therapeutic effects of PTE in treating diabetic ulcers, with its beneficial actions mediated through the PI3K-AKT signaling pathway. CONCLUSIONS: PTE is the main active ingredient in Poria cocos (Schw.) Wolf that exerts therapeutic effects. Through PI3K-AKT signaling pathway activation and inflammatory response reduction, PTE promotes angiogenesis, thereby healing diabetic ulcers.


Subject(s)
Antineoplastic Agents , Diabetes Mellitus , Drugs, Chinese Herbal , Hyperglycemia , Triterpenes , Wolfiporia , Wolves , Animals , Humans , Proto-Oncogene Proteins c-akt , Wolfiporia/chemistry , Phosphatidylinositol 3-Kinases , Ulcer , Molecular Docking Simulation , Endothelial Cells , Signal Transduction , Antineoplastic Agents/pharmacology , Triterpenes/pharmacology , Triterpenes/therapeutic use , Triterpenes/analysis , RNA, Messenger , Diabetes Mellitus/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
16.
Microb Cell Fact ; 23(1): 34, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273342

ABSTRACT

BACKGROUND: Squalene epoxidase is one of the rate-limiting enzymes in the biosynthetic pathway of membrane sterols and triterpenoids. The enzyme catalyzes the formation of oxidized squalene, which is a common precursor of sterols and triterpenoids. RESULT: In this study, the squalene epoxidase gene (PcSE) was evaluated in Poria cocos. Molecular docking between PcSE and squalene was performed and the active amino acids were identified. The sgRNA were designed based on the active site residues. The effect on triterpene synthesis in P. cocos was consistent with the results from ultra-high-performance liquid chromatography-quadruplex time-of-flight-double mass spectrometry (UHPLC-QTOF-MS/MS) analysis. The results showed that deletion of PcSE inhibited triterpene synthesis. In vivo verification of PcSE function was performed using a PEG-mediated protoplast transformation approach. CONCLUSION: The findings from this study provide a foundation for further studies on heterologous biosynthesis of P. cocos secondary metabolites.


Subject(s)
Phytosterols , Triterpenes , Wolfiporia , Tandem Mass Spectrometry/methods , Squalene Monooxygenase/genetics , Squalene Monooxygenase/metabolism , Wolfiporia/genetics , Wolfiporia/metabolism , Molecular Docking Simulation , Squalene , CRISPR-Cas Systems , Gene Editing , RNA, Guide, CRISPR-Cas Systems , Triterpenes/metabolism
17.
Int J Biol Macromol ; 261(Pt 1): 129555, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278384

ABSTRACT

Poria cocos is a popular medicinal food. Polysaccharides are the key component of Poria cocos, forming 70-90 % of the dry sclerotia mass. Recent studies indicate that Poria cocos polysaccharides (PCP-Cs) have multiple beneficial functions and applications. A literature search was conducted using the Web of Science Core Collection and PubMed databases. For this review, we provided an updated research progress in chemical structures, various extraction and analysis technologies, bioactivities of PCP-Cs, and insights into the directions for future research. The main polysaccharides identified in Poria cocos are water-soluble polysaccharides and acidic polysaccharides. Hot water, alkali, supercritical fluid, ultrasonic, enzyme, and deep eutectic solvent-based methods are the most common methods for PCP-Cs extraction. Technologies such as near-infrared spectroscopy, high-performance liquid chromatography, and ultraviolet-visible spectrophotometry, are commonly used to evaluate the qualities of PCP-Cs. In addition, PCP-Cs have antioxidant, immunomodulatory, neuroregulatory, anticancer, hepatoprotective, and gut microbiota regulatory properties. Future research is needed to focus on scaling up extraction, enhancing quality control, elucidating mechanisms of bioactivities, and the utilisation of PCP-Cs in food industries. Overall, Poria cocos is a good source of edible fungi polysaccharides, which can be developed into functional foods with potential health benefits.


Subject(s)
Fungal Polysaccharides , Poria , Wolfiporia , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Wolfiporia/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Water , Quality Control , Poria/chemistry
18.
Int Dent J ; 74(1): 88-94, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37758581

ABSTRACT

INTRODUCTION: The Chinese traditional herbs Cortex Moutan, Poria cocos, and Alisma orientale are considered to have potential to ameliorate periodontitis, although the possible underlying mechanisms remain mostly unknown. Due to the complex formulation of Chinese herbs, it is important to understand the mechanisms of pharmacologic effects of traditional herbs for better application in modern medical treatment. METHODS: Network pharmacology was applied to explore the mechanism of Cortex Moutan, Poria cocos, and Alisma orientale. First we analysed their chemical ingredients using the Traditional Chinese Medicine Systems Pharmacology database and identified 20 active ingredients. Then we analysed the target genes of these 20 active ingredients as well as genes associated with periodontitis and found 74 co-target genes. We further analysed the protein-protein interaction network of these 74 co-target genes using the STRING database and enriched the pathways using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. RESULTS: The top 10 core targets elicited were vascular endothelial growth factor A (VEGFA), interlukin-6 (IL-6), tumour necrosis factor (TNF), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-9 (MMP9), AKT serine/threonine kinase 1 (AKT1), prostaglandin-endoperoxide synthase 2 (PTGS2), kinase insert domain receptor (KDR), fibroblast growth factor 2 (FGF2), and serpin family E member 1 (SERPINE1). Using these a network of "herbs-ingredients-targetgenes-KEGG pathways." was constructed. CONCLUSIONS: The target and bioprocess network suggested that the pharmacologic effects of Cortex Moutan, Poria cocos, and Alisma orientale may be mainly dependent on their anti-inflammatory potential. Further work is required to eucidate their detailed mechanisms of activity.


Subject(s)
Alisma , Periodontitis , Wolfiporia , Humans , Matrix Metalloproteinase 2 , Alisma/chemistry , Vascular Endothelial Growth Factor A
19.
Chin J Integr Med ; 30(3): 230-242, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37815727

ABSTRACT

OBJECTIVE: To examine the therapeutic effect of Fangji Fuling Decoction (FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments. METHODS: A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide (LPS). RAW264.7 cells were stimulated by 250 ng/mL LPS to establish an in vitro cell model. Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis. Through ectopic expression and depletion experiments, the effect of FFD on multiple organ damage in septic mice, as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A (MAPK14/FOXO3A) signaling pathway, was analyzed. RESULTS: FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro (P<0.05). Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis. As confirmed by in vitro cell experiments, FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation (P<0.05). Furthermore, FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice (P<0.05). CONCLUSION: FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.


Subject(s)
Mitogen-Activated Protein Kinase 14 , Oxygen Radioisotopes , Sepsis , Wolfiporia , Mice , Animals , Mitogen-Activated Protein Kinase 14/metabolism , Lipopolysaccharides/pharmacology , Sepsis/complications , Signal Transduction , Inflammation/drug therapy
20.
J Ethnopharmacol ; 321: 117532, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38048892

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Poria cocos (Schw.) Wolf (Polyporaceae, P.cocos), which is born on the pine root, has a history of more than two thousand years of medicine in China. P.cocos was first recorded in the Shennong's Herbal Classic, studies have proved its lipid-lowering effect. AIM OF STUDY: The aim of study was to investigate the underlying mechanism of P.cocos extract on hyperlipidemia. MATERIALS AND METHODS: Male Sprague-Dawley (SD) rats aged 9-12 weeks were intraperitoneally (IP) injected with Triton-WR 1339 to establish an acute hyperlipidemia model. At 0 h and 20 h after the model was established, low and high doses of P.cocos extract or simvastatin were given twice. After 48 h, the rats were sacrificed, and liver and serum samples were collected for analysis. The cell model was constructed by treating L02 cells with 1% fat emulsion-10% FBS-RPMI 1640 medium for 48 h. At the same time, low and high doses of P.cocos extract and simvastatin were administered. Oil red O staining was used to evaluate the lipid accumulation in the cells, and H&E staining was used to evaluate the liver lesions of rats. Real-time quantitative PCR and western blotting were used to detect the expressions of lipid metabolism-related genes. RESULTS: P.cocos extract relieved lipid accumulation in vitro and alleviated hyperlipidemia in vivo. Both gene and protein expressions of peroxisome proliferator-activated receptor α (PPARα) were shown to be up-regulated by P.cocos extract. Additionally, P.cocos extract down-regulated the expressions of fatty acid synthesis-related genes sterol regulatory element-binding protein-1 (SREBP-1), Acetyl-CoA Carboxylase 1 (ACC1) and fatty acid synthase (FAS), while up-regulated the expressions of cholesterol metabolism-related genes liver X receptor-α (LXRα), ATP-binding cassette transporter A1 (ABCA1), cholesterol 7alpha-hydroxylase (CYP7A1) and low density lipoprotein receptor (LDLR), which were reversed by the treatment with the PPARα inhibitor GW6471. CONCLUSION: P.cocos extract ameliorates hyperlipidemia and lipid accumulation by regulating cholesterol homeostasis in hepatocytes through PPARα pathway. This study provides evidence that supplementation with P.cocos extract could be a potential strategy for the treatment of hyperlipidemia.


Subject(s)
Hyperlipidemias , Wolfiporia , Wolves , Rats , Male , Animals , PPAR alpha/genetics , PPAR alpha/metabolism , Wolves/metabolism , Rats, Sprague-Dawley , Liver , Lipid Metabolism , Hyperlipidemias/metabolism , Hepatocytes/metabolism , Lipids , Cholesterol/metabolism , Homeostasis , Simvastatin/pharmacology , Simvastatin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL