Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Sci Adv ; 9(40): eadg9959, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37801507

ABSTRACT

Lentiviral vector (LV)-based gene therapy holds promise for a broad range of diseases. Analyzing more than 280,000 vector integration sites (VISs) in 273 samples from 10 patients with X-linked severe combined immunodeficiency (SCID-X1), we discovered shared LV integrome signatures in 9 of 10 patients in relation to the genomics, epigenomics, and 3D structure of the human genome. VISs were enriched in the nuclear subcompartment A1 and integrated into super-enhancers close to nuclear pore complexes. These signatures were validated in T cells transduced with an LV encoding a CD19-specific chimeric antigen receptor. Intriguingly, the one patient whose VISs deviated from the identified integrome signatures had a distinct clinical course. Comparison of LV and gamma retrovirus integromes regarding their 3D genome signatures identified differences that might explain the lower risk of insertional mutagenesis in LV-based gene therapy. Our findings suggest that LV integrome signatures, shaped by common features such as genome organization, may affect the efficacy of LV-based cellular therapies.


Subject(s)
Genetic Vectors , X-Linked Combined Immunodeficiency Diseases , Humans , Genetic Vectors/genetics , Genetic Therapy , Retroviridae/genetics , X-Linked Combined Immunodeficiency Diseases/genetics , X-Linked Combined Immunodeficiency Diseases/therapy , T-Lymphocytes
2.
Genes (Basel) ; 13(12)2022 12 13.
Article in English | MEDLINE | ID: mdl-36553615

ABSTRACT

X-linked severe combined immunodeficiency (X-SCID) is a primary immunodeficiency that is caused by mutations in the interleukin-2 receptor gamma (IL2RG) gene. Some patients present atypical X-SCID with mild clinical symptoms due to somatic revertant mosaicism. CRISPR/Cas9 and prime editing are two advanced genome editing tools that paved the way for treating immune deficiency diseases. Prime editing overcomes the limitations of the CRISPR/Cas9 system, as it does not need to induce double-strand breaks (DSBs) or exogenous donor DNA templates to modify the genome. Here, we applied CRISPR/Cas9 with single-stranded oligodeoxynucleotides (ssODNs) and prime editing methods to generate an in vitro model of the disease in K-562 cells and healthy donors' T cells for the c. 458T>C point mutation in the IL2RG gene, which also resulted in a useful way to optimize the gene correction approach for subsequent experiments in patients' cells. Both methods proved to be successful and were able to induce the mutation of up to 31% of treated K-562 cells and 26% of treated T cells. We also applied similar strategies to correct the IL2RG c. 458T>C mutation in patient T cells that carry the mutation with revertant somatic mosaicism. However, both methods failed to increase the frequency of the wild-type sequence in the mosaic T cells of patients due to limited in vitro proliferation of mutant cells and the presence of somatic reversion. To the best of our knowledge, this is the first attempt to treat mosaic cells from atypical X-SCID patients employing CRISPR/Cas9 and prime editing. We showed that prime editing can be applied to the formation of specific-point IL2RG mutations without inducing nonspecific on-target modifications. We hypothesize that the feasibility of the nucleotide substitution of the IL2RG gene using gene therapy, especially prime editing, could provide an alternative strategy to treat X-SCID patients without revertant mutations, and further technological improvements need to be developed to correct somatic mosaicism mutations.


Subject(s)
X-Linked Combined Immunodeficiency Diseases , Humans , X-Linked Combined Immunodeficiency Diseases/genetics , X-Linked Combined Immunodeficiency Diseases/therapy , CRISPR-Cas Systems/genetics , Mosaicism , Gene Editing/methods , Genetic Therapy/methods
3.
Nat Commun ; 13(1): 3710, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35764638

ABSTRACT

X-linked Severe Combined Immunodeficiency (SCID-X1) due to IL2RG mutations is potentially fatal in infancy where 'emergency' life-saving stem cell transplant may only achieve incomplete immune reconstitution following transplant. Salvage therapy SCID-X1 patients over 2 years old (NCT01306019) is a non-randomized, open-label, phase I/II clinical trial for administration of lentiviral-transduced autologous hematopoietic stem cells following busulfan (6 mg/kg total) conditioning. The primary and secondary objectives assess efficacy in restoring immunity and safety by vector insertion site analysis (VISA). In this ongoing study (19 patients treated), we report VISA in blood lineages from first eight treated patients with longer follow up found a > 60-fold increase in frequency of forward-orientated VIS within intron 3 of the High Mobility Group AT-hook 2 gene. All eight patients demonstrated emergence of dominant HMGA2 VIS clones in progenitor and myeloid lineages, but without disturbance of hematopoiesis. Our molecular analysis demonstrated a cryptic splice site within the chicken ß-globin hypersensitivity 4 insulator element in the vector generating truncated mRNA transcripts from many transcriptionally active gene containing forward-oriented intronic vector insert. A two base-pair change at the splice site within the lentiviral vector eliminated splicing activity while retaining vector functional capability. This highlights the importance of functional analysis of lentivectors for cryptic splicing for preclinical safety assessment and a redesign of clinical vectors to improve safety.


Subject(s)
X-Linked Combined Immunodeficiency Diseases , Antigens, CD34/genetics , Clone Cells , Genetic Therapy , Genetic Vectors/genetics , Humans , Lentivirus/genetics , X-Linked Combined Immunodeficiency Diseases/genetics , X-Linked Combined Immunodeficiency Diseases/therapy
4.
Front Immunol ; 13: 1067417, 2022.
Article in English | MEDLINE | ID: mdl-36685559

ABSTRACT

Introduction: Ex vivo gene therapy for treatment of Inborn errors of Immunity (IEIs) have demonstrated significant clinical benefit in multiple Phase I/II clinical trials. Current approaches rely on engineered retroviral vectors to randomly integrate copy(s) of gene-of-interest in autologous hematopoietic stem/progenitor cells (HSPCs) genome permanently to provide gene function in transduced HSPCs and their progenies. To circumvent concerns related to potential genotoxicities due to the random vector integrations in HSPCs, targeted correction with CRISPR-Cas9-based genome editing offers improved precision for functional correction of multiple IEIs. Methods: We compare the two approaches for integration of IL2RG transgene for functional correction of HSPCs from patients with X-linked Severe Combined Immunodeficiency (SCID-X1 or XSCID); delivery via current clinical lentivector (LV)-IL2RG versus targeted insertion (TI) of IL2RG via homology-directed repair (HDR) when using an adeno-associated virus (AAV)-IL2RG donor following double-strand DNA break at the endogenous IL2RG locus. Results and discussion: In vitro differentiation of LV- or TI-treated XSCID HSPCs similarly overcome differentiation block into Pre-T-I and Pre-T-II lymphocytes but we observed significantly superior development of NK cells when corrected by TI (40.7% versus 4.1%, p = 0.0099). Transplants into immunodeficient mice demonstrated robust engraftment (8.1% and 23.3% in bone marrow) for LV- and TI-IL2RG HSPCs with efficient T cell development following TI-IL2RG in all four patients' HSPCs. Extensive specificity analysis of CRISPR-Cas9 editing with rhAmpSeq covering 82 predicted off-target sites found no evidence of indels in edited cells before (in vitro) or following transplant, in stark contrast to LV's non-targeted vector integration sites. Together, the improved efficiency and safety of IL2RG correction via CRISPR-Cas9-based TI approach provides a strong rationale for a clinical trial for treatment of XSCID patients.


Subject(s)
X-Linked Combined Immunodeficiency Diseases , Animals , Mice , X-Linked Combined Immunodeficiency Diseases/genetics , X-Linked Combined Immunodeficiency Diseases/therapy , Dependovirus , CRISPR-Cas Systems , Mice, SCID , Hematopoietic Stem Cells
5.
Blood ; 138(26): 2768-2780, 2021 12 30.
Article in English | MEDLINE | ID: mdl-34086870

ABSTRACT

XMEN disease, defined as "X-linked MAGT1 deficiency with increased susceptibility to Epstein-Barr virus infection and N-linked glycosylation defect," is a recently described primary immunodeficiency marked by defective T cells and natural killer (NK) cells. Unfortunately, a potentially curative hematopoietic stem cell transplantation is associated with high mortality rates. We sought to develop an ex vivo targeted gene therapy approach for patients with XMEN using a CRISPR/Cas9 adeno-associated vector (AAV) to insert a therapeutic MAGT1 gene at the constitutive locus under the regulation of the endogenous promoter. Clinical translation of CRISPR/Cas9 AAV-targeted gene editing (GE) is hampered by low engraftable gene-edited hematopoietic stem and progenitor cells (HSPCs). Here, we optimized GE conditions by transient enhancement of homology-directed repair while suppressing AAV-associated DNA damage response to achieve highly efficient (>60%) genetic correction in engrafting XMEN HSPCs in transplanted mice. Restored MAGT1 glycosylation function in human NK and CD8+ T cells restored NK group 2 member D (NKG2D) expression and function in XMEN lymphocytes for potential treatment of infections, and it corrected HSPCs for long-term gene therapy, thus offering 2 efficient therapeutic options for XMEN poised for clinical translation.


Subject(s)
Cation Transport Proteins/genetics , Gene Editing , Hematopoietic Stem Cells/metabolism , Lymphocytes/metabolism , X-Linked Combined Immunodeficiency Diseases/genetics , Animals , CRISPR-Cas Systems , Cation Transport Proteins/deficiency , Cells, Cultured , Female , Gene Editing/methods , Genetic Therapy , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/pathology , Humans , Lymphocytes/pathology , Male , Mice, Inbred NOD , X-Linked Combined Immunodeficiency Diseases/pathology , X-Linked Combined Immunodeficiency Diseases/therapy
6.
Front Immunol ; 12: 644687, 2021.
Article in English | MEDLINE | ID: mdl-33959125

ABSTRACT

Mutations of the interleukin 2 receptor γ chain (IL2RG) result in the most common form of severe combined immunodeficiency (SCID), which is characterized by severe and persistent infections starting in early life with an absence of T cells and natural killer cells, normal or elevated B cell counts and hypogammaglobulinemia. SCID is commonly fatal within the first year of life, unless the immune system is reconstituted by hematopoietic stem cell transplantation (HSCT) or gene therapy. We herein describe a male infant with X-linked severe combined immunodeficiency (X-SCID) diagnosed at 5 months of age. Genetic testing revealed a novel C to G missense mutation in exon 1 resulting in a 3' splice site disruption with premature stop codon and aberrant IL2 receptor signaling. Following the diagnosis of X-SCID, the patient subsequently underwent a TCRαß/CD19-depleted haploidentical HSCT. Post transplantation the patient presented with early CD8+ T cell recovery with the majority of T cells (>99%) being non-donor T cells. Genetic analysis of CD4+ and CD8+ T cells revealed a spontaneous 14 nucleotide insertion at the mutation site resulting in a novel splice site and restoring the reading frame although defective IL2RG function was still demonstrated. In conclusion, our findings describe a spontaneous second-site mutation in IL2RG as a novel cause of somatic mosaicism and early T cell recovery following haploidentical HSCT.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Hematopoietic Stem Cell Transplantation , Mutation , X-Linked Combined Immunodeficiency Diseases , Allografts , Humans , Infant , Interleukin Receptor Common gamma Subunit/genetics , Interleukin Receptor Common gamma Subunit/immunology , Male , X-Linked Combined Immunodeficiency Diseases/genetics , X-Linked Combined Immunodeficiency Diseases/immunology , X-Linked Combined Immunodeficiency Diseases/therapy
7.
Am J Transplant ; 21(9): 3184-3189, 2021 09.
Article in English | MEDLINE | ID: mdl-33793086

ABSTRACT

Maternal T cells from perinatal transplacental passage have been identified in up to 40% of patients with severe combined immunodeficiency (SCID). Although engrafted maternal T cells sometimes injure newborn tissue, liver failure due to maternal T cells has not been reported. We rescued a boy with X-linked SCID who developed liver failure due to engrafted maternal T cell invasion following living donor liver transplantation (LDLT) following unrelated umbilical cord blood transplantation (UCBT). After developing respiratory failure 3 weeks postpartum, he was diagnosed with X-linked SCID. Pathological findings showed maternal T cells engrafted in his liver and hepatic fibrosis gradually progressed. He underwent UCBT at 6 months, but hepatic function did not recover and liver failure progressed. Therefore, he underwent LDLT using an S2 monosegment graft at age 1.3 years. The patient had a leak at the Roux-en-Y anastomosis, which was repaired. Despite occasional episodes of pneumonia and otitis media, he is generally doing well 6 years after LDLT with continued immunosuppression agents. In conclusion, the combination of hematopoietic stem cell transplantation (HSCT) and liver transplantation may be efficacious, and HSCT should precede liver transplantation for children with X-linked SCID and liver failure.


Subject(s)
Cord Blood Stem Cell Transplantation , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Liver Failure , Liver Transplantation , X-Linked Combined Immunodeficiency Diseases , Cord Blood Stem Cell Transplantation/adverse effects , Female , Humans , Infant , Liver Failure/surgery , Liver Transplantation/adverse effects , Living Donors , Male , Pregnancy , T-Lymphocytes , X-Linked Combined Immunodeficiency Diseases/genetics , X-Linked Combined Immunodeficiency Diseases/therapy
8.
Front Immunol ; 12: 648951, 2021.
Article in English | MEDLINE | ID: mdl-33717203

ABSTRACT

Gene therapy is an innovative treatment for Primary Immune Deficiencies (PIDs) that uses autologous hematopoietic stem cell transplantation to deliver stem cells with added or edited versions of the missing or malfunctioning gene that causes the PID. Initial studies of gene therapy for PIDs in the 1990-2000's used integrating murine gamma-retroviral vectors. While these studies showed clinical efficacy in many cases, especially with the administration of marrow cytoreductive conditioning before cell re-infusion, these vectors caused genotoxicity and development of leukoproliferative disorders in several patients. More recent studies used lentiviral vectors in which the enhancer elements of the long terminal repeats self-inactivate during reverse transcription ("SIN" vectors). These SIN vectors have excellent safety profiles and have not been reported to cause any clinically significant genotoxicity. Gene therapy has successfully treated several PIDs including Adenosine Deaminase Severe Combined Immunodeficiency (SCID), X-linked SCID, Artemis SCID, Wiskott-Aldrich Syndrome, X-linked Chronic Granulomatous Disease and Leukocyte Adhesion Deficiency-I. In all, gene therapy for PIDs has progressed over the recent decades to be equal or better than allogeneic HSCT in terms of efficacy and safety. Further improvements in methods should lead to more consistent and reliable efficacy from gene therapy for a growing list of PIDs.


Subject(s)
Genetic Therapy/methods , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/metabolism , Primary Immunodeficiency Diseases/therapy , Genetic Therapy/trends , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/therapy , Hematopoietic Stem Cells/cytology , Humans , Primary Immunodeficiency Diseases/genetics , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/therapy , Treatment Outcome , Wiskott-Aldrich Syndrome/genetics , Wiskott-Aldrich Syndrome/therapy , X-Linked Combined Immunodeficiency Diseases/genetics , X-Linked Combined Immunodeficiency Diseases/therapy
9.
Hum Gene Ther ; 32(1-2): 113-127, 2021 01.
Article in English | MEDLINE | ID: mdl-32741228

ABSTRACT

Hematopoietic stem and progenitor cell (HSPC)-based ex vivo gene therapy has demonstrated clinical success for X-linked severe combined immunodeficiency (SCID-X1) patients who lack a suitable donor for HSPC transplantation. Nevertheless, this form of treatment is associated with an increased risk of infectious disease complications and genotoxicity mainly due to the conditioning regimen. In addition, ex vivo gene therapy approaches require sophisticated facilities to manufacture gene-modified cells and to care for the patients after chemotherapy. Considering these impediments, we have developed an in vivo gene therapy approach to treat canine SCID-X1 after HSPC mobilization and systemic delivery of the therapeutic vector. Here, we investigated the use of the cocal envelope to pseudotype a lentiviral (LV) vector expressing a functional gammaC gene. The cocal envelope is resistant to serum inactivation compared with the commonly used vesicular stomatitis virus envelope glycoprotein (VSV-G) envelope and thus well suited for systemic delivery. Two SCID-X1 neonatal canines treated with this approach achieved long-term therapeutic immune reconstitution with no prior conditioning. Therapeutic levels of gene-corrected CD3+ T cells were demonstrated for at least 16 months, and all other correlates of T cell functionality were within normal range. Retroviral integration-site analysis demonstrated polyclonal T cell reconstitution. Comparative analysis of integration profiles of foamy viral (FV) vector and cocal LV vector after in vivo gene therapy found distinct integration-site patterns. These data demonstrate that clinically relevant and durable correction of canine SCID-X1 can be achieved with in vivo delivery of cocal LV. Since manufacturing of cocal LV is similar to VSV-G LV, this approach is easily translatable to a clinical setting, thus providing for a highly portable and accessible gene therapy platform for SCID-X1.


Subject(s)
Spumavirus , X-Linked Combined Immunodeficiency Diseases , Animals , Dogs , Genetic Therapy , Genetic Vectors/genetics , Hematopoietic Stem Cells , Humans , Lentivirus/genetics , Transduction, Genetic , X-Linked Combined Immunodeficiency Diseases/genetics , X-Linked Combined Immunodeficiency Diseases/therapy
11.
Cell Mol Gastroenterol Hepatol ; 10(1): 83-100, 2020.
Article in English | MEDLINE | ID: mdl-32017983

ABSTRACT

BACKGROUND & AIMS: Organ-level research using an animal model lacking Il2rg, the gene responsible for X-linked severe combined immunodeficiency (X-SCID), is clinically unavailable and would be a powerful tool to gain deeper insights into the symptoms of patients with X-SCID. METHODS: We used an X-SCID animal model, which was first established in our group by the deletion of Il2rg gene in pigs, to understand the clinical signs from multiple perspectives based on pathology, immunology, microbiology, and nutrition. We also treated the X-SCID pigs with bone marrow transplantation (BMT) for mimicking a current therapeutic treatment for patients with X-SCID and investigated the effect at the organ-level. Moreover, the results were confirmed using serum and fecal samples collected from patients with X-SCID. RESULTS: We demonstrated that X-SCID pigs completely lacked Peyer's patches (PPs) and IgA production in the small intestine, but possessed some dysfunctional intestinal T and B cells. Another novel discovery was that X-SCID pigs developed a heterogeneous intestinal microflora and possessed abnormal plasma metabolites, indicating that X-SCID could be an immune disorder that affects various in vivo functions. Importantly, the organogenesis of PPs in X-SCID pigs was not promoted by BMT. Although a few isolated lymphoid follicles developed in the small intestine of BMT-treated X-SCID pigs, there was no evidence that they contributed to IgA production and microflora formation. Consistently, most patients with X-SCID who received BMT possessed abnormal intestinal immune and microbial environments regardless of the presence of sufficient serum IgG. CONCLUSIONS: These results indicate that the current BMT therapies for patients with X-SCID may be insufficient to induce the organogenesis of intestinal lymphoid tissues that are associated with numerous functions in vivo.


Subject(s)
Bone Marrow Transplantation , Interleukin Receptor Common gamma Subunit/genetics , Intestinal Mucosa/growth & development , Peyer's Patches/growth & development , X-Linked Combined Immunodeficiency Diseases/therapy , Adolescent , Adult , Animals , Animals, Genetically Modified , Child , Child, Preschool , Disease Models, Animal , Female , Gastrointestinal Microbiome/immunology , Gene Knockout Techniques , Humans , Immunity, Mucosal , Immunoglobulin G/blood , Immunoglobulin G/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Male , Organogenesis/genetics , Organogenesis/immunology , Peyer's Patches/immunology , Swine , Treatment Outcome , X-Linked Combined Immunodeficiency Diseases/genetics , X-Linked Combined Immunodeficiency Diseases/immunology , X-Linked Combined Immunodeficiency Diseases/pathology
13.
J Exp Med ; 217(2)2020 01 06.
Article in English | MEDLINE | ID: mdl-31826240

ABSTRACT

Ex vivo retrovirally mediated gene therapy has been shown within the last 20 yr to correct the T cell immunodeficiency caused by γc-deficiency (SCID X1) and adenosine deaminase (ADA) deficiency. The rationale was brought up by the observation of the revertant of SCIDX1 and ADA deficiency as a kind of natural gene therapy. Nevertheless, the first attempts of gene therapy for SCID X1 were associated with insertional mutagenesis causing leukemia, because the viral enhancer induced transactivation of oncogenes. Removal of this element and use of a promoter instead led to safer but still efficacious gene therapy. It was observed that a fully diversified T cell repertoire could be generated by a limited set (<1,000) of progenitor cells. Further advances in gene transfer technology, including the use of lentiviral vectors, has led to success in the treatment of Wiskott-Aldrich syndrome, while further applications are pending. Genome editing of the mutated gene may be envisaged as an alternative strategy to treat SCID diseases.


Subject(s)
Adenosine Deaminase/deficiency , Agammaglobulinemia/therapy , Genetic Therapy/methods , Severe Combined Immunodeficiency/therapy , Wiskott-Aldrich Syndrome/therapy , X-Linked Combined Immunodeficiency Diseases/therapy , Animals , Gene Editing , Gene Transfer Techniques , Genetic Therapy/adverse effects , Genetic Vectors/genetics , Humans , Interleukin Receptor Common gamma Subunit/genetics , Leukemia/etiology , Mutagenesis, Insertional/methods , Mutation, Missense , Retroviridae/genetics , T-Lymphocytes/immunology
14.
Viruses ; 11(12)2019 11 23.
Article in English | MEDLINE | ID: mdl-31771194

ABSTRACT

Foamy viruses (FVs) are nonpathogenic retroviruses that infect various animals including bovines, felines, nonhuman primates (NHPs), and can be transmitted to humans through zoonotic infection. Due to their non-pathogenic nature, broad tissue tropism and relatively safe integration profile, FVs have been engineered as novel vectors (foamy virus vector, FVV) for stable gene transfer into different cells and tissues. FVVs have emerged as an alternative platform to contemporary viral vectors (e.g., adeno associated and lentiviral vectors) for experimental and therapeutic gene therapy of a variety of monogenetic diseases. Some of the important features of FVVs include the ability to efficiently transduce hematopoietic stem and progenitor cells (HSPCs) from humans, NHPs, canines and rodents. We have successfully used FVV for proof of concept studies to demonstrate safety and efficacy following in-vivo delivery in large animal models. In this review, we will comprehensively discuss FVV based in-vivo gene therapy approaches established in the X-linked severe combined immunodeficiency (SCID-X1) canine model.


Subject(s)
Genetic Therapy , Genetic Vectors , Spumavirus/genetics , X-Linked Combined Immunodeficiency Diseases/veterinary , Animals , Cats , Cattle , Disease Models, Animal , Dogs , Hematopoietic Stem Cells/physiology , Humans , Stem Cells/physiology , Transduction, Genetic/veterinary , X-Linked Combined Immunodeficiency Diseases/genetics , X-Linked Combined Immunodeficiency Diseases/therapy
15.
Curr Opin Allergy Clin Immunol ; 19(6): 571-577, 2019 12.
Article in English | MEDLINE | ID: mdl-31464718

ABSTRACT

PURPOSE OF REVIEW: X-linked agammaglobulinaemia (XLA) is a congenital defect of development of B lymphocytes leading to agammaglobulinaemia. It was one of the first primary immunodeficiencies described, but treatment has remained relatively unchanged over the last 60 years. This summary aims to outline the current outcomes, treatments and future research areas for XLA. RECENT FINDINGS: Immunoglobulin therapy lacks IgA and IgM, placing patients at theoretical risk of experiencing recurrent respiratory tract infections and developing bronchiectasis despite best current therapy. Recent cohort studies from Italy and the USA conform that bronchiectasis remains a major burden for this group despite best current efforts. However, gene therapy offers a potential cure for these patients with proven proof of concept murine models. SUMMARY: The potential limitations of current immunoglobulin therapy appear to be confirmed by recent cohort studies, and therefore further work in the development of gene therapy is warranted. Until this is available, clinicians should strive to reduce the diagnostic delay, regularly monitor for lung disease and individualize target immunoglobulin doses to reduce infection rates for their patients.


Subject(s)
Agammaglobulinemia/diagnosis , Immunoglobulins, Intravenous/therapeutic use , X-Linked Combined Immunodeficiency Diseases/diagnosis , Agammaglobulinemia/therapy , Animals , Delayed Diagnosis , Genetic Therapy , Humans , Mice , X-Linked Combined Immunodeficiency Diseases/therapy
17.
Nat Commun ; 10(1): 1634, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30967552

ABSTRACT

Gene correction in human long-term hematopoietic stem cells (LT-HSCs) could be an effective therapy for monogenic diseases of the blood and immune system. Here we describe an approach for X-linked sSevere cCombined iImmunodeficiency (SCID-X1) using targeted integration of a cDNA into the endogenous start codon to functionally correct disease-causing mutations throughout the gene. Using a CRISPR-Cas9/AAV6 based strategy, we achieve up to 20% targeted integration frequencies in LT-HSCs. As measures of the lack of toxicity we observe no evidence of abnormal hematopoiesis following transplantation and no evidence of off-target mutations using a high-fidelity Cas9 as a ribonucleoprotein complex. We achieve high levels of targeting frequencies (median 45%) in CD34+ HSPCs from six SCID-X1 patients and demonstrate rescue of lymphopoietic defect in a patient derived HSPC population in vitro and in vivo. In sum, our study provides specificity, toxicity and efficacy data supportive of clinical development of genome editing to treat SCID-Xl.


Subject(s)
DNA, Complementary/genetics , Gene Editing/methods , Hematopoietic Stem Cell Transplantation , Interleukin Receptor Common gamma Subunit/genetics , X-Linked Combined Immunodeficiency Diseases/therapy , Animals , Antigens, CD34/metabolism , CRISPR-Cas Systems/genetics , Cell Line , Codon, Initiator/genetics , Dependovirus , Exons/genetics , Fetal Blood/cytology , Genetic Vectors/genetics , Healthy Volunteers , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice , Mutation , Parvovirinae/genetics , Primary Cell Culture , Time Factors , Transduction, Genetic/methods , Transplantation Chimera/genetics , Transplantation, Heterologous/methods , X-Linked Combined Immunodeficiency Diseases/genetics
18.
N Engl J Med ; 380(16): 1525-1534, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30995372

ABSTRACT

BACKGROUND: Allogeneic hematopoietic stem-cell transplantation for X-linked severe combined immunodeficiency (SCID-X1) often fails to reconstitute immunity associated with T cells, B cells, and natural killer (NK) cells when matched sibling donors are unavailable unless high-dose chemotherapy is given. In previous studies, autologous gene therapy with γ-retroviral vectors failed to reconstitute B-cell and NK-cell immunity and was complicated by vector-related leukemia. METHODS: We performed a dual-center, phase 1-2 safety and efficacy study of a lentiviral vector to transfer IL2RG complementary DNA to bone marrow stem cells after low-exposure, targeted busulfan conditioning in eight infants with newly diagnosed SCID-X1. RESULTS: Eight infants with SCID-X1 were followed for a median of 16.4 months. Bone marrow harvest, busulfan conditioning, and cell infusion had no unexpected side effects. In seven infants, the numbers of CD3+, CD4+, and naive CD4+ T cells and NK cells normalized by 3 to 4 months after infusion and were accompanied by vector marking in T cells, B cells, NK cells, myeloid cells, and bone marrow progenitors. The eighth infant had an insufficient T-cell count initially, but T cells developed in this infant after a boost of gene-corrected cells without busulfan conditioning. Previous infections cleared in all infants, and all continued to grow normally. IgM levels normalized in seven of the eight infants, of whom four discontinued intravenous immune globulin supplementation; three of these four infants had a response to vaccines. Vector insertion-site analysis was performed in seven infants and showed polyclonal patterns without clonal dominance in all seven. CONCLUSIONS: Lentiviral vector gene therapy combined with low-exposure, targeted busulfan conditioning in infants with newly diagnosed SCID-X1 had low-grade acute toxic effects and resulted in multilineage engraftment of transduced cells, reconstitution of functional T cells and B cells, and normalization of NK-cell counts during a median follow-up of 16 months. (Funded by the American Lebanese Syrian Associated Charities and others; LVXSCID-ND ClinicalTrials.gov number, NCT01512888.).


Subject(s)
Busulfan/administration & dosage , Genetic Therapy , Genetic Vectors , Interleukin Receptor Common gamma Subunit/genetics , Lentivirus , Transplantation Conditioning , X-Linked Combined Immunodeficiency Diseases/therapy , Antigens, Differentiation, T-Lymphocyte/blood , B-Lymphocytes/physiology , Hematopoietic Stem Cell Transplantation , Humans , Immunoglobulin M/blood , Infant , Killer Cells, Natural , Lymphocyte Count , Male , T-Lymphocytes , X-Linked Combined Immunodeficiency Diseases/genetics , X-Linked Combined Immunodeficiency Diseases/immunology
19.
Immunity ; 50(4): 832-850, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30995502

ABSTRACT

The common cytokine receptor γ chain, γc, is a component of the receptors for interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21. Mutation of the gene encoding γc results in X-linked severe combined immunodeficiency in humans, and γc family cytokines collectively regulate development, proliferation, survival, and differentiation of immune cells. Here, we review the basic biology of these cytokines, highlighting mechanisms of signaling and gene regulation that have provided insights for immunodeficiency, autoimmunity, allergic diseases, and cancer. Moreover, we discuss how studies of this family stimulated the development of JAK3 inhibitors and present an overview of current strategies targeting these pathways in the clinic, including novel antibodies, antagonists, and partial agonists. The diverse roles of these cytokines on a range of immune cells have important therapeutic implications.


Subject(s)
Cytokines/classification , Interleukin Receptor Common gamma Subunit/genetics , Multigene Family/immunology , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Cytokines/genetics , Cytokines/immunology , Evolution, Molecular , Gene Expression Regulation , Genetic Therapy , Humans , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/therapy , Janus Kinase 3/antagonists & inhibitors , Janus Kinases/antagonists & inhibitors , Janus Kinases/physiology , Lymphocyte Subsets/immunology , Mice , Molecular Targeted Therapy , Multigene Family/genetics , Neoplasms/genetics , Neoplasms/immunology , Protein Subunits , STAT Transcription Factors/physiology , Signal Transduction , Translational Research, Biomedical , X-Linked Combined Immunodeficiency Diseases/genetics , X-Linked Combined Immunodeficiency Diseases/immunology , X-Linked Combined Immunodeficiency Diseases/therapy
20.
J Korean Med Sci ; 34(6): e46, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30787679

ABSTRACT

BACKGROUND: The impact of early peripheral blood chimerism on the outcome of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is unclear. We aimed to determine whether day 14 peripheral blood chimerism after allo-HSCT predicts outcomes in patients with non-malignant diseases. METHODS: Data from 56 patients who received allo-HSCT between April 2007 and March 2016 were retrospectively analyzed. Chimerism was evaluated using short-tandem repeat polymerase chain reaction, with mixed chimerism (MC) defined as greater than 1% recipient cells which was further categorized into low-level MC (> 1% and < 15% of recipient-derived cells) and high-level MC (≥ 15% of the recipient-derived cells). RESULTS: Thirty-six patients showed complete donor chimerism (CC), 14 low-level MC, and 6 high-level MC at day 14 post-transplant. The estimated 5-year event-free survival (EFS) was higher in the CC or low-level MC groups than in the high-level MC group (86.1% vs. 71.4% vs. 33.3%; P = 0.001). In BM or peripheral blood stem cell (BM/PBSC) transplants, the 5-year EFS was higher in the CC or low-level MC group than in the high-level MC group (93.1% vs. 66.7% vs. 0%; P < 0.001). However, in cord blood transplants, the 5-year OS and EFS according to the day 14 peripheral blood chimerism did not reach statistical significance. CONCLUSION: Although CC is not always necessary after allo-HSCT for non-malignant diseases, our data suggest that day 14 peripheral blood chimerism may predict outcomes in patients with non-malignant diseases who underwent BM/PBSC transplants.


Subject(s)
Hematopoietic Stem Cell Transplantation , Transplantation Chimera/genetics , Adolescent , Adult , Anemia, Aplastic/mortality , Anemia, Aplastic/pathology , Anemia, Aplastic/therapy , Child , Child, Preschool , Disease-Free Survival , Female , Graft vs Host Disease , Humans , Infant , Infant, Newborn , Male , Red-Cell Aplasia, Pure/mortality , Red-Cell Aplasia, Pure/pathology , Red-Cell Aplasia, Pure/therapy , Retrospective Studies , Survival Rate , Transplantation Chimera/blood , Transplantation, Homologous , X-Linked Combined Immunodeficiency Diseases/mortality , X-Linked Combined Immunodeficiency Diseases/pathology , X-Linked Combined Immunodeficiency Diseases/therapy , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...