Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Methods ; 224: 35-46, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373678

ABSTRACT

Bivalent Smac mimetics have been shown to possess binding affinity and pro-apoptotic activity similar to or more potent than that of native Smac, a protein dimer able to neutralize the anti-apoptotic activity of an inhibitor of caspase enzymes, XIAP, which endows cancer cells with resistance to anticancer drugs. We design five new bivalent Smac mimetics, which are formed by various linkers tethering two diazabicyclic cores being the IAP binding motifs. We built in silico models of the five mimetics by the TwistDock workflow and evaluated their conformational tendency, which suggests that compound 3, whose linker is n-hexylene, possess the highest binding potency among the five. After synthesis of these compounds, their ability in tumour cell growth inhibition and apoptosis induction displayed in experiments with SK-OV-3 and MDA-MB-231 cancer cell lines confirms our prediction. Among the five mimetics, compound 3 displays promising pro-apoptotic activity and deserves further optimization.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Inhibitor of Apoptosis Proteins/metabolism , Inhibitor of Apoptosis Proteins/pharmacology , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Molecular Conformation , Apoptosis , Cell Line, Tumor
2.
Environ Toxicol ; 39(4): 1989-2005, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38088504

ABSTRACT

Hyperthermia, as an adjuvant therapy, has shown promising anti-tumor effects. Ovarian tumor domain-containing 7B (OTUD7B) is a deubiquitinating enzyme that is frequently found in a variety of cancers. The aim of this study is to investigate the role of OTUD7B in lung cancer hyperthermia and the underlying mechanism. A549 and CALU-3 cells were respectively exposed to 42 or 44°C for the indicated times (0, 1, 3, or 6 h) followed by incubation at 37°C for 24 h. We found a temperature- and time-dependent decrease in cell viability and an increase in apoptosis levels. Compared with 0 h, heat treatment for 3 h inhibited the proliferation and invasion of A549 cells, reduced the expression levels of mitochondrial membrane potential, IAP family members (cIAP-1 and XIAP) proteins and ubiquitination of Smac, and increased Smac protein expression. Treatment with 10 µM Smac mimic BV6 further enhanced the anti-tumor effect of hyperthermia. Next, co-IP validation showed that OTUD7B interacted with Smac and stabilized Smac through deubiquitination. OTUD7B overexpression induced damage in A549 and CALU-3 cells, while silencing OTUD7B caused opposite effects. Overexpressing OTUD7B enhanced the anti-cancer effect of hyperthermia, while si-OTUD7B reversed the anti-cancer effect of hyperthermia, which was verified in the xenograft tumor model in nude mice. Taken together, OTUD7B may serve as a potential anticancer factor with potential clinical efficacy in the thermotherapeutic treatment of lung cancer.


Subject(s)
Hyperthermia, Induced , Lung Neoplasms , Mitochondrial Diseases , Animals , Humans , Mice , Apoptosis , Cell Line, Tumor , Deubiquitinating Enzymes , Intracellular Signaling Peptides and Proteins , Mice, Nude , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/pharmacology
3.
J Pharmacol Sci ; 154(1): 30-36, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38081681

ABSTRACT

Overexpression of inhibitor of apoptosis (IAP) proteins is associated with poor prognosis. In multiple myeloma (MM), the IAP inhibitors (IAPi), LCL161, have been evaluated in preclinical and clinical settings but are not fully effective. Among IAPs, XIAP has the strongest anti-apoptotic function with direct binding activity to caspases and cIAP1 and cIAP2 are positive regulator of NF-κB signaling. Prior IAPi such as LCL161 has high affinity to cIAP1 and cIAP2 resulting in inferior inhibiting activity against XIAP. A novel dimeric IAPi, AZD5582 (C58H78N8O8), have high binding potency to XIAP with EC50 dose of 15 nM, enabling to simultaneous inhibit XIAP and cIAP1/2. AZD5582 monotherapy showed cell growth inhibition for all MM cell lines, MM1S, RPMI8226, U266 and KMS-5 and induced apoptosis. AZD5582 further showed anti-proliferation effect under the IL-6 additional condition and inhibited JAK-STAT signaling triggered by IL-6. AZD5582 combined with carfilzomib therapy showed a synergistic effect. Enhanced apoptosis was also observed in combination therapy. Synergistic effect was further observed with other conventional therapeutics. Simultaneous XIAP and cIAP1/2 inhibition by the dimeric IAPi AZD5582 is promising. This study provides a rationale of AZD5582 as a new treatment strategy in monotherapy and in combination therapy.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Interleukin-6 , Cell Line, Tumor , Apoptosis , Inhibitor of Apoptosis Proteins/metabolism , Inhibitor of Apoptosis Proteins/pharmacology , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/pharmacology
4.
Toxicol Lett ; 390: 25-32, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37944651

ABSTRACT

Triptolide (TP) is extracted from the traditional Chinese medicine Tripterygium wilfordii Hook. F. (TWHF). Its severe toxic side effects, especially hepatotoxicity, have limited the clinical application of TP-related drugs. In this study, we investigated the mechanism of the hepatotoxic effects of TP from the perspective that TP inhibited the expression of the pro-survival protein X-linked inhibitor of apoptosis protein (XIAP) and enhanced FasL-mediated apoptosis of hepatocytes. TP and CD95/Fas antibody (Jo-2) were administered by gavage to C57BL/6 mice for 7 consecutive days. After co-administration of TP and Jo-2, mouse livers showed large areas of necrosis and apoptosis and significantly increased Caspase-3 activity. KEGG pathway enrichment analysis indicated that TP may cause the development of liver injury through the apoptotic signaling pathway. Proteinprotein interaction networks showed that XIAP played an essential role in this process. TP reduced the protein expression of XIAP after combination treatment with Jo-2/FasL in vivo/in vitro. TP and FasL co-stimulation significantly increased microRNA-137 (miR-137) levels in AML12 cells, while inhibition of miR-137 expression induced a rebound in XIAP protein expression. In conclusion, TP presensitizes hepatocytes and enhances the sensitivity of hepatocytes to the Fas/FasL pathway by inhibiting the protein expression of XIAP, leading to hepatocyte apoptosis.


Subject(s)
MicroRNAs , X-Linked Inhibitor of Apoptosis Protein , Mice , Animals , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/pharmacology , Mice, Inbred C57BL , Liver/metabolism , Hepatocytes , Apoptosis , MicroRNAs/metabolism
5.
Chemotherapy ; 68(4): 210-218, 2023.
Article in English | MEDLINE | ID: mdl-37429260

ABSTRACT

INTRODUCTION: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered to be an effective apoptosis inducer due to its selectivity for tumor cells. However, many cancer cells, especially metastatic cancer cells, often exhibit resistance to TRAIL because their apoptotic pathway is impaired or their pro-survival pathway is overactivated. TRAIL resistance is the main obstacle to current TRAIL therapy. Nowadays, ceramide analogs represent a new class of potential anticancer agents. Therefore, we hypothesized that disrupting pro-survival signaling with ceramide analogs would increase TRAIL-mediated apoptosis. METHODS: MTT assay and flow cytometry were conducted to evaluate the synergistic effect of ceramide analog 5cc on TRAIL in metastatic colon cancer cells. Western blot was used to detect signaling proteins affected by 5cc. RNA interference was performed to analyze the effects of specific gene on 5cc-enhanced apoptosis. RESULTS: Ceramide analog 5cc markedly enhanced TRAIL-induced apoptosis evidenced by increased propidium iodide/annexin V double-positive cells and PARP cleavage in SW620 and LS411N cells. At the molecular level, 5cc significantly reduced the expression of anti-apoptotic protein X-linked inhibitor of apoptosis protein (XIAP) through the activation of the c-Jun n-terminal kinase (JNK) pathway which is critically involved in sensitizing tumor cells to TRAIL/5cc combination. JNK-silenced cells exhibited a significant reversal of TRAIL/5cc-mediated apoptosis. CONCLUSION: Our data demonstrated that ceramide analog 5cc overcomes TRAIL resistance by enhancing JNK activation and repressing XIAP expression in metastatic colon cancer cells.


Subject(s)
Colonic Neoplasms , X-Linked Inhibitor of Apoptosis Protein , Humans , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/pharmacology , Ceramides/pharmacology , Ligands , Cell Line, Tumor , Apoptosis , Colonic Neoplasms/drug therapy , Tumor Necrosis Factor-alpha/pharmacology , TNF-Related Apoptosis-Inducing Ligand/pharmacology
6.
Eur J Med Chem ; 255: 115423, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37130471

ABSTRACT

Overexpression of both human murine double minute 2 (MDM2) and X-linked inhibitor of apoptosis protein (XIAP) is detected in tumor cells from several cancer types, including childhood acute leukemia lymphoma (ALL), neuroblastoma (NB), and prostate cancer, and is associated with disease progression and treatment resistance. In this report, we described the design and syntheses of a series of dual MDM2/XIAP inhibitors based on the tetrahydroquinoline scaffold from our previously reported lead compound JW-2-107 and tested their cytotoxicity in a panel of human cancer cell lines. The best compound identified in this study is compound 3e. Western blot analyses demonstrated that treatments with 3e decreased MDM2 and XIAP protein levels and increased expression of p53, resulting in cancer cell growth inhibition and cell death. Furthermore, compound 3e effectively inhibited tumor growth in vivo when tested using a human 22Rv1 prostate cancer xenograft model. Collectively, results in this study strongly suggest that the tetrahydroquinoline scaffold, represented by 3e and our earlier lead compound JW-2-107, has abilities to dual target MDM2 and XIAP and is promising for further preclinical development.


Subject(s)
Leukemia, Myeloid, Acute , Prostatic Neoplasms , Male , Humans , Animals , Mice , Child , Proto-Oncogene Proteins c-mdm2/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/pharmacology , Apoptosis , Cell Line, Tumor , Tumor Suppressor Protein p53/metabolism
7.
J Surg Res ; 283: 1038-1046, 2023 03.
Article in English | MEDLINE | ID: mdl-36914994

ABSTRACT

INTRODUCTION: Little is known about the protective effects of butylphthalide on cerebral ischemia-reperfusion injury. This study aims to investigate the impact on the second mitochondrial-derived activator of Caspases (Smac) and X-linked inhibitor of apoptosis protein (XIAP) expression in the ischemic semidark area using a rat model of carotid artery stenosis. METHODS: Thirty Sprague-Dawley rats were randomly divided into the sham-operated group, carotid stenosis model controls, low-dose (20 mg/kg), medium-dose (40 mg/kg), and high-dose (80 mg/kg) butylphthalide groups. The neurological function was scored by the balance beam test (BBT). The morphological changes of brain tissue were detected by Hematoxylin-eosin (HE) staining, with apoptosis detected by Terminal Deoxynucleotidyl Transferase mediated dUTP Nick-End Labeling (TUNEL) staining. Smac and XIAP protein expression were detected by immunohistochemistry (IHC). The expressions of Smac and XIAP mRNA were detected by real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: HE showed that neuronal loss, nuclear consolidation, and vacuolar degeneration were significantly reduced in the medium and high-dose butylphthalide groups compared with the model controls. The BBT scores and apoptotic index were significantly lower in the medium and high doses of butylphthalide compared with the model controls. RT-qPCR and IHC showed that Smac, XIAP mRNA and protein expressions in the ischemic hemispheric region were significantly reduced in low, medium, and high doses of butylphthalide compared with the model controls (P < 0.05), showing some concentration effect. CONCLUSIONS: Butylphthalide can significantly reduce Smac and XIAP mRNA and protein expression, inhibit neuronal apoptosis induced by ischemia-reperfusion injury in rats with carotid stenosis, and exert neuroprotective effects.


Subject(s)
Brain Ischemia , Carotid Stenosis , Reperfusion Injury , Rats , Animals , Caspases/metabolism , Caspases/pharmacology , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/pharmacology , Rats, Sprague-Dawley , Capsules/pharmacology , Apoptosis , Ischemia , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion , RNA, Messenger , Brain Ischemia/drug therapy
8.
Exp Dermatol ; 32(4): 368-378, 2023 04.
Article in English | MEDLINE | ID: mdl-36401800

ABSTRACT

The infiltration of neutrophils in the epidermis and the release of neutrophil extracellular traps (NETs) are important events in the pathogenesis of psoriasis, but the regulatory roles and internal mechanism of NETs in psoriasis are largely unknown. Here, we demonstrate that NETs can activate the absent-in-melanoma-2 (AIM2) inflammasome in keratinocytes through the p38-MAPK signalling pathway, and targeting NETs with CI-amidine in vivo reduces AIM2 expression and ameliorates imiquimod-induced psoriasis-like phenotype in mice. Notably, NETs-activated AIM2 in keratinocytes not only promotes IL-1ß production through the classical inflammasome pathway but also promotes IFN-γ production via X-linked inhibitor of apoptosis protein (XIAP), thereby mediating the immune responses of keratinocytes. In conclusion, our study demonstrates that the NETs-AIM2 axis exerts multiple pro-inflammatory effects on keratinocytes and may serve as a potential target for psoriasis therapy.


Subject(s)
Extracellular Traps , Melanoma , Psoriasis , Animals , Mice , Extracellular Traps/metabolism , Inflammasomes/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/pharmacology , Keratinocytes/metabolism , Psoriasis/metabolism , Inflammation/metabolism , Melanoma/metabolism , DNA-Binding Proteins
9.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(5): 569-576, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-37088772

ABSTRACT

OBJECTIVE: To analyze the molecular mechanisms of skeletal muscle cells apoptosis induced by heavy-load exercise with Omi as the entry point. METHODS: One hundred and twenty-six adult SD rats were randomly divided into five groups: control group(C), eccentric exercise group (E), simple blocking group (U), DMSO group (D) and exercise block group (EU). In addition to the C group, the other four groups were randomly divided into 0 h after experiment, 12 h after experiment, 24 h after experiment, 48 h after experiment and 72 h after experiment with 6 rats in each group. E and EU group were submitted to a heavy-load exercise on a treadmill down a 16° decline, 16 m/min for 90 minutes. U, D and EU group were one-time intervened with drugs. U and EU groups were intraperitoneally injected with 1.5 µmol/kg ucf-101, D group were intraperitoneally injected with 1.5 µmoL/kg 0.5% DMSO. The rats were sacrificed in batches at different time points after experiment, then the soleus were saved to detect the Caspase-3,-8,-9,-12 activities and protein expressions of Omi and XIAP. RESULTS: Compared with group C, the mitochondrial distribution and morphology appeared the typical ultrastructure pathological changes, the opening degree of MPTP was increased significantly (P<0.01) or (P<0.05), protein expressions of Omi and XIAP were increased significantly (P<0.01 or P<0.05), the activities of Caspase-9 and Caspase-3 were increased significantly (P<0.01 or P<0.05) in group E. Compared with group C, there was no significant difference in XIAP protein and caspase-9, - 3 activities in group U and Group D. The change trend of XIAP protein and Caspase-9, - 3 activities was the same as those between EU group and E group, but the change range of XIAP protein in EU group was significantly higher than that in E group (P<0.01), and the change ranges of caspase-9, - 3 activities in EU group were significantly lower than those in E group (P<0.01). CONCLUSION: A single heavy-load exercise can induce changes in the mitochondria morphology and structure in rats, open the high permeability of MPTP, and improve the expression of Omi protein, then through its downstream XIAP-Caspase pathway, start the mitochondrial apoptosis pathway mediated by caspase-9, and finally lead to myocyte apoptosis. The inhibition of Omi can reduce the cell apoptosis level of motor induced skeletal muscle cells.


Subject(s)
Dimethyl Sulfoxide , X-Linked Inhibitor of Apoptosis Protein , Rats , Animals , Caspase 3/metabolism , Caspase 9/metabolism , Caspase 9/pharmacology , Rats, Sprague-Dawley , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/pharmacology , Dimethyl Sulfoxide/pharmacology , Apoptosis , Mitochondria , Muscle, Skeletal/metabolism
10.
Tissue Eng Regen Med ; 19(1): 93-103, 2022 02.
Article in English | MEDLINE | ID: mdl-34741748

ABSTRACT

BACKGROUND: In vitro follicular maturation (IVFM) of ovarian follicles is an emerging option for fertility preservation. Many paracrine factors and two-dimensional or three-dimensional (3D) environments have been used for optimization. However, since most studies were conducted using the murine model, the physiological differences between mice and humans limit the interpretation and adaptation of the results. Marmoset monkey is a non-human primate (NHPs) with more similar reproductive physiology to humans. In this study, we attempted to establish a 3D matrix (Matrtigel)-based IVFM condition for marmoset ovarian follicles in combination with anti-apoptotic factor, X-linked inhibitor of apoptosis protein (XIAP). METHODS: Marmoset follicles were isolated as individual follicles and cultured in a single drop with the addition of 0, 10, and 100 µg/mL of XIAP molecules. Matured oocytes and granulosa cells from mature follicles were collected and analyzed. The average number of isolated follicles was less than 100, and primordial and antral follicles were abundant in the ovaries. RESULTS: IVFM of marmoset follicles in 3D matrix conditions with XIAP increased the rates of survival and in vitro follicle development. Furthermore, oocytes from the 3D cultures were successfully fertilized and developed in vitro. The addition of XIAP increased the secretion of estradiol and aromatase. Furthermore, expression of granulosa-specific genes, such as bone morphogenetic protein 15, Oct4, and follicle-stimulating hormone receptor were upregulated in the in vitro-matured follicles than in normal, well-grown, and atretic follicles. Apoptosis-related B-cell lymphoma-2 was highly expressed in the atretic follicles than in the XIAP-treated follicles, and higher caspase-3 was localized in the XIAP-treated follicles. CONCLUSION: In this study, we attempted to establish a 3D-matrix-based marmoset IVFM condition and demonstrated the synergistic effects of XIAP. The use of a 3D matrix may be applied as an optimal culture condition for marmoset ovarian follicles.


Subject(s)
Callithrix , X-Linked Inhibitor of Apoptosis Protein , Animals , Callithrix/metabolism , Female , Granulosa Cells/metabolism , Mice , Oocytes , Ovarian Follicle , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/pharmacology
11.
Int J Mol Sci ; 22(3)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498210

ABSTRACT

Protein inhibitors of proteases are an important tool of nature to regulate and control proteolysis in living organisms under physiological and pathological conditions. In this review, we analyzed the mechanisms of inhibition of cysteine proteases on the basis of structural information and compiled kinetic data. The gathered structural data indicate that the protein fold is not a major obstacle for the evolution of a protease inhibitor. It appears that nature can convert almost any starting fold into an inhibitor of a protease. In addition, there appears to be no general rule governing the inhibitory mechanism. The structural data make it clear that the "lock and key" mechanism is a historical concept with limited validity. However, the analysis suggests that the shape of the active site cleft of proteases imposes some restraints. When the S1 binding site is shaped as a pocket buried in the structure of protease, inhibitors can apply substrate-like binding mechanisms. In contrast, when the S1 binding site is in part exposed to solvent, the substrate-like inhibition cannot be employed. It appears that all proteases, with the exception of papain-like proteases, belong to the first group of proteases. Finally, we show a number of examples and provide hints on how to engineer protein inhibitors.


Subject(s)
Cysteine Proteases/chemistry , Cysteine Proteinase Inhibitors/chemistry , Animals , Cystatins/chemistry , Cystatins/metabolism , Cystatins/pharmacology , Cysteine Proteases/metabolism , Cysteine Proteinase Inhibitors/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Humans , Protein Binding , Securin/chemistry , Securin/metabolism , Securin/pharmacology , X-Linked Inhibitor of Apoptosis Protein/chemistry , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/pharmacology
12.
Biochim Biophys Acta Gen Subj ; 1862(7): 1602-1611, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29631059

ABSTRACT

BACKGROUND: Regulating apoptosis is a common and essential therapeutic strategy for cancer and neurodegenerative disorders. Based on basic studies of apoptotic mechanisms, various researches have attempted to overcome the pathogenesis of such diseases by activating or inhibiting apoptosis. Generally, the biochemical characteristics of the target molecules should be evaluated along with understanding of their mechanisms of action during drug development. Among apoptotic regulators, XIAP serves as a potent negative regulator to block apoptosis through the inhibition of caspase (CASP)-9 and -3/7. Although XIAP is an attractive target with such apoptotic-modulating property, biochemical and biophysical studies of XIAP are still challenging. METHODS: In this study, the CASP-9 and -3/7 inhibitors XIAP, 242Δ and Δ230 were prepared using the pGEX expression system and biochemically characterized. RESULTS: These inhibitors were expressed in Escherichia coli at a concentration of ≥20 mg/L culture under a native condition with 0.01 mM IPTG induction. Notably, using a simple and rapid affinity purification technique, these CASP-9 and -3/7 inhibitors have been purified, yielding ≥5 mg/L culture at approximately 90% purity. CONCLUSIONS: We have determined that HtrA2 specifically binds to the BIR2 and BIR3 of XIAP at a 1:1 molecular ratio. Moreover, in vitro cell-free CASP-9 and -3/7 activation-apoptosis assays have demonstrated that these purified XIAP proteins dramatically inhibit CASP-9 and -3/7 action. GENERAL SIGNIFICANCE: Our system is suitable for biochemical studies, such as quantitation of the number of molecules acting on the apoptosis regulation, and provides a basis and insights that can be applied to the development of therapeutic agents for neurodegenerative disorders and cancer.


Subject(s)
Apoptosis/drug effects , X-Linked Inhibitor of Apoptosis Protein/pharmacology , Caspases/metabolism , Drug Evaluation, Preclinical , Enzyme Activation/drug effects , HEK293 Cells , High-Temperature Requirement A Serine Peptidase 2/metabolism , Humans , Neoplasms/drug therapy , Neurodegenerative Diseases/drug therapy , Protein Binding , Protein Domains , Recombinant Fusion Proteins/metabolism , X-Linked Inhibitor of Apoptosis Protein/analysis , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/isolation & purification
13.
Sci Rep ; 7: 44918, 2017 03 22.
Article in English | MEDLINE | ID: mdl-28327595

ABSTRACT

Early brain injury following subarachnoid hemorrhage (SAH) strongly determines the prognosis of patients suffering from an aneurysm rupture, and apoptosis is associated with early brain injury after SAH. This study was designed to explore the role of X-linked inhibitor of apoptosis (XIAP) in early brain injury following SAH. The expression of XIAP was detected using western blotting and real-time RT-PCR in an autologous blood injection model of SAH. We also studied the role of XIAP in early brain injury and detected apoptosis-related proteins. The results showed that XIAP was significantly up-regulated in the cortex and hippocampus and that XIAP was mainly expressed in neuronal cells following SAH. The inhibition of endogenous XIAP aggravated blood-brain barrier disruption, neurological deficits and brain edema. Recombinant XIAP preserved the blood-brain barrier, improved the neurological scores and ameliorated brain edema. Recombinant XIAP treatment also decreased the expression of cleaved caspase-3, caspase-8 and caspase-9, whereas there was no effect on the expression of p53, apoptosis-inducing factor or cytochrome c. These results show that XIAP acts as an endogenous neuroprotective and anti-apoptotic agent following SAH. The effects of XIAP on early brain injury was associated with the inhibition of the caspase-dependent apoptosis pathway.


Subject(s)
Apoptosis/genetics , Blood-Brain Barrier/metabolism , Subarachnoid Hemorrhage/metabolism , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Blood-Brain Barrier/drug effects , Capillary Permeability/drug effects , Cell Membrane Permeability/drug effects , Disease Models, Animal , Gene Expression , Humans , Male , Rats , Recombinant Proteins , Subarachnoid Hemorrhage/etiology , Subarachnoid Hemorrhage/pathology , Subarachnoid Hemorrhage/physiopathology , X-Linked Inhibitor of Apoptosis Protein/pharmacology
14.
Int J Oncol ; 44(5): 1443-54, 2014 May.
Article in English | MEDLINE | ID: mdl-24626292

ABSTRACT

The intrinsic apoptosis pathway represents an important mechanism of stress-induced death of cancer cells. To gain insight into the functional status of the apoptosome apparatus in non-small cell lung carcinoma (NSCLC), we studied its sensitivity to activation, the assembly of apoptosome complexes and stability of their precursors, and the importance of X-linked inhibitor of apoptosis (XIAP) in the regulation of apoptosome activity, using cell-free cytosols from NSCLC cell lines and NSCLC tumours and lungs from 62 surgically treated patients. Treatment of cytosol samples with cytochrome c (cyt-c) and dATP induced proteolytic processing of procaspase-9 to caspase-9, which was followed by procaspase-3 processing to caspase-3, and by generation of caspase-3-like activity in 5 of 7 studied NSCLC cell lines. Further analysis demonstrated formation of high-Mr Apaf-1 complexes associated with cleaved caspase-9 in the (cyt-c + dATP)-responsive COLO-699 and CALU-1 cells. By contrast, in A549 cells, Apaf-1 and procaspase-9 co-eluted in the high-Mr fractions, indicating formation of an apoptosome complex unable of procaspase-9 processing. Thermal pre-treatment of cell-free cytosols in the absence of exogenous cyt-c and dATP lead to formation of Apaf-1 aggregates, unable to recruit and activate procaspase-9 in the presence of cyt-c and dATP, and to generate caspase­3­like activity. Further studies showed that the treatment with cyt-c and dATP induced a substantially higher increase of caspase-3-like activity in cytosol samples from NSCLC tumours compared to matched lungs. Tumour histology, grade and stage had no significant impact on the endogenous and the (cyt-c + dATP)-induced caspase-3-like activity. Upon addition into the cytosol, the XIAP-neutralizing peptides AVPIAQK and ATPFQEG only moderately heightened the (cyt-c + dATP)-induced caspase­3­like activity in some NSCLC tumours. Taken together, the present study provides evidence that the apoptosome apparatus is functional in the majority of NSCLCs and that its sensitivity to the (cyt-c + dATP)-mediated activation is often enhanced in NSCLCs compared to lungs. They also indicate that XIAP does not frequently and effectively suppress the activity of apoptosome apparatus in NSCLCs.


Subject(s)
Apoptosis , Apoptotic Protease-Activating Factor 1/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Lung Neoplasms/metabolism , Lung/metabolism , Aged , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/pathology , Caspase Inhibitors/pharmacology , Cell Line, Tumor , Cytochromes c/pharmacology , Cytosol/metabolism , Deoxyadenine Nucleotides/pharmacology , Female , Gene Expression Regulation, Neoplastic , Humans , Lung/cytology , Lung Neoplasms/pathology , Male , Middle Aged , X-Linked Inhibitor of Apoptosis Protein/pharmacology
15.
Eye (Lond) ; 27(11): 1299-307, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23928877

ABSTRACT

PURPOSE: Müller cells have important roles in the pathogenesis of diabetic retinopathy by promoting cell proliferation and inducing the production of vascular endothelial growth factor (VEGF) under hyperglycemic conditions. The objective of this study was to determine the potential mechanism of Müller cell proliferation and VEGF production due to high-glucose conditions. METHODS: Primary cultured rat Müller cells were incubated with medium containing variable concentrations of glucose and/or embelin, a specific inhibitor of X-linked inhibitor of apoptosis protein (XIAP), for 72 h. The proliferation of Müller cells was assessed by the MTT assay. The expression and/or phosphorylation of 146 proteins were assessed using protein pathway array. RESULTS: High concentrations of glucose-induced Müller cell proliferation and altered expression and/or phosphorylation of 47 proteins that have been identified to have key roles in several important signaling pathways (XIAP, VEGF, HIF1α, NFκB, etc) and are involved in the regulation of cell survival, proliferation, or apoptosis. However, Müller cell alterations induced by high-glucose conditions were counteracted by the XIAP inhibitor embelin, and 26 proteins/phosphorylations (out of 47) were restored to their normal levels. Nine proteins, including NFκB p65, p-p38, tumor necrosis factor-α, urokinase-type plasminogen activator, CREB, IL-1ß, HCAM, estrogen receptor-α, and p-Stat3, were involved in regulatory networks between XIAP and VEGF. CONCLUSIONS: The current study suggests that XIAP may be a potential regulator that can mediate a series of pathological changes induced by high-glucose conditions in Müller cells. Therefore, embelin could be a potential agent for the prevention and treatment of diabetic retinopathy.


Subject(s)
Cell Proliferation/drug effects , Ependymoglial Cells/drug effects , Glucose/pharmacology , Vascular Endothelial Growth Factor A/metabolism , X-Linked Inhibitor of Apoptosis Protein/pharmacology , Analysis of Variance , Animals , Benzoquinones/pharmacology , Blotting, Western , Cells, Cultured , Ependymoglial Cells/cytology , Ependymoglial Cells/metabolism , Rats , Rats, Sprague-Dawley
16.
Curr Top Microbiol Immunol ; 348: 89-113, 2011.
Article in English | MEDLINE | ID: mdl-21072626

ABSTRACT

Smac/DIABLO, discovered in 2000 as a protein released from mitochondria into the cytosol in response to apoptotic stimuli, functions as an endogenous antagonist of X-linked inhibitor of apoptosis protein (XIAP) and several other IAP proteins through direct binding. The interaction between Smac and IAPs involves the AVPI tetrapeptide binding motif on the N-terminus of Smac and a well-defined groove on the surface of these IAP proteins, providing an ideal site for the design of small-molecule Smac mimetics. Potent and cell-permeable small-molecule Smac mimetics have provided powerful pharmacological tools for study of the regulation of apoptosis by IAP proteins, and several such compounds are now in early clinical trials as new anticancer agents.


Subject(s)
Biomimetics , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Caspase Inhibitors , Caspases/metabolism , Drug Design , Humans , Inhibitor of Apoptosis Proteins/chemistry , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/pharmacology , Molecular Mimicry , Neoplasms/drug therapy , Oligopeptides/chemistry , Protein Binding , Protein Structure, Tertiary , Structure-Activity Relationship , X-Linked Inhibitor of Apoptosis Protein/chemistry , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/pharmacology
17.
Br J Cancer ; 102(12): 1717-23, 2010 Jun 08.
Article in English | MEDLINE | ID: mdl-20485285

ABSTRACT

BACKGROUND: In various tumour types, elevated expression of the X-linked inhibitor of apoptosis protein (XIAP) has been observed and XIAP targeting in diverse tumour entities enhanced the susceptibility to chemotherapeutic agents. Therefore, XIAP has been described and reviewed repeatedly as a chemoresistance factor in different tumour entities. However, rather than being an adverse prognostic marker, recent data suggest that elevated XIAP expression may be associated with a favourable clinical outcome. These somewhat conflicting findings, and the fact that in early studies XIAP suppressed apoptosis only when expressed transiently at levels far in excess of its physiological concentration, argue that the function of XIAP as an anti-apoptotic factor in tumour cells is both more complex and diverse than previously appreciated. METHODS: To better understand the impact of long-term elevated XIAP expression on resistance to chemotherapy, we generated cell lines stably overexpressing XIAP. The role of mitochondria was examined by stable expression of Bcl2 or stable knockdown of second mitochondria-derived activator of caspase (SMAC) in combination with up- or downregulation of XIAP expression. RESULTS: Our data show that long-term expression of XIAP at concentrations comparable to that in tumour cells (two- to five-fold increase) resulted in little or no resistance towards chemotherapeutic drugs. The XIAP overexpression only in conjunction with stable knockdown of a single XIAP-antagonising factor such as SMAC resulted in severe resistance to cytostatic agents demonstrating XIAP as a potent chemoresistance factor only in cells lacking functional XIAP regulatory circuits. CONCLUSION: Our results demonstrated that elevated XIAP expression alone cannot serve as a predictive marker of chemoresistance. Our data suggest that in order to predict the impact of XIAP on chemosusceptibility for a given tumour entity, the expression levels and functional states of all XIAP modulators need to be taken into account.


Subject(s)
Drug Resistance, Neoplasm , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/pharmacology , Apoptosis Regulatory Proteins , Caspases/metabolism , Down-Regulation , Gene Knockdown Techniques , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mitochondrial Proteins/metabolism
18.
J Biotechnol ; 144(4): 299-303, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19799944

ABSTRACT

Previously, overexpression of X-linked inhibitor of apoptosis (XIAP), which is known to inhibit activities of caspase-3, -7, and -9 in CHO-K1 cells offered protection against Sindbis virus-induced apoptosis. In this study, the potential role of XIAP overexpression in recombinant CHO (rCHO) cells treated with sodium butyrate (NaBu), which can increase the specific productivity, was investigated by establishing erythropoietin (EPO)-producing rCHO cells with regulated XIAP overexpression (EPO-off-XIAP). The XIAP overexpression in EPO-off-XIAP was tightly regulated by doxycycline. The XIAP overexpression could simultaneously reduce the activation of caspase-3, -7, and -9 induced by NaBu addition. However, XIAP overexpression could not inhibit NaBu-induced apoptosis, as evidenced by DNA fragmentation. In addition, it also did not help the maintenance of the mitochondrial membrane potential in the presence of NaBu, suggesting that the release of mitochondrial proteins might induce caspase-independent apoptosis. As a result, XIAP overexpression did not affect cell growth and EPO production significantly. Taken together, XIAP overexpression, which was reported to inhibit Sindbis virus-induced apoptosis, could not inhibit the NaBu-induced apoptosis in rCHO cells.


Subject(s)
Apoptosis/drug effects , Butyrates/pharmacology , CHO Cells/metabolism , Erythropoietin/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism , Animals , CHO Cells/physiology , Caspase 3 , Cell Proliferation , Cricetinae , Cricetulus , Erythropoietin/genetics , Gene Expression Regulation , Recombinant Proteins , Up-Regulation , X-Linked Inhibitor of Apoptosis Protein/pharmacology
19.
Ann Thorac Surg ; 86(1): 109-14; discussion 114, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18573408

ABSTRACT

BACKGROUND: Idiopathic dilated cardiomyopathy (DCM) is characterized by ventricular wall remodeling and an increased frequency of cardiac cell apoptosis. Apollon is a 528kD cell membrane-anchored protein that inhibits apoptosis by ubiquitinylation facilitating the degradation of Smac/Diablo and caspase-9. The present study tested the hypothesis that the Apollon/Smac system may mediate programmed cell death in DCM. METHODS: Apollon and caspase-9 protein expression was assessed in left ventricular biopsies of explanted failing hearts using Western blotting in 36 DCM patients undergoing cardiac transplantation and in 10 controls. Human cardiac cells were transfected with a plasmid containing the human Apollon complementary DNA or control vector and were subsequently stressed by hypoxia. Apollon, Smac/Diablo, and caspase-9 expression were then examined in cell lysates by real-time polymerase chain reaction and a transferase-mediated dUTP nick-end labeling assay was used to determine the apoptotic index. RESULTS: In DCM myocardial tissue, Apollon messenger (m)RNA and protein expression was down-regulated compared with control hearts (p < 0.001 and p < 0.005, respectively) concomitant with an increase in activated caspase-9 protein levels (p < 0.001). Cell stress resulted in increased apoptosis in cardiac cells in vitro and down-regulation of Apollon mRNA expression compared with control cells (p < 0.001). Transfection increased Apollon mRNA expression in cell lysates (p < 0.001) and completely prevented hypoxia-induced apoptosis associated with reduced expression of Smac/Diablo and activated caspase-9. CONCLUSIONS: These results suggest that Apollon down-regulation plays a role in programmed cell death associated with DCM. Up-regulation of Apollon might therefore represent a novel therapeutic strategy in the treatment of DCM.


Subject(s)
Cardiomyopathy, Dilated/pathology , Caspase 8/metabolism , Cell Death/physiology , Inhibitor of Apoptosis Proteins/metabolism , Myocytes, Cardiac/drug effects , X-Linked Inhibitor of Apoptosis Protein/pharmacology , Adult , Biopsy, Needle , Blotting, Western , Cardiomyopathy, Dilated/mortality , Cardiomyopathy, Dilated/surgery , Case-Control Studies , Cell Death/drug effects , Cells, Cultured , DNA, Complementary/analysis , Down-Regulation , Female , Heart Transplantation , Humans , In Situ Nick-End Labeling , Inhibitor of Apoptosis Proteins/drug effects , Male , Middle Aged , Myocytes, Cardiac/cytology , Probability , Prospective Studies , Reference Values , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Transfection
20.
Acta Oncol ; 47(1): 135-44, 2008.
Article in English | MEDLINE | ID: mdl-17934893

ABSTRACT

RNA interference (RNAi) induced by small interfering RNA (siRNA) can trigger sequence-specific gene silencing in mammalian cells. It has been proposed that siRNA can be developed as a novel strategy for cancer therapy. However effective delivery of therapeutically active siRNAs into the target tissue/cells in vivo is still a major obstacle for successful application. Oncolytic adenoviral vector mediated RNAi provides the potential advantages of minimizing the harm of normal cells, regenerating siRNAs within the tumor microenvironment and inspiring an additive antitumor outcome through viral oncolysis. Hepatocellular carcinoma (HCC) displays a high resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated cell death, partially due to high expression levels of the X-linked Inhibitor-of-Apoptosis protein (XIAP). Here, we utilized an oncolytic adenovirus (ZD55) for expressing short hairpin RNA (shRNA), a precursor of siRNA, to knockdown XIAP. To increase sensitivity of HCC cells to TRAIL, we have used ZD55 to deliver both XIAP-shRNA and TRAIL into HCC cells. The results showed that the combination of ZD55-XIAP-shRNA and ZD55-TRAIL resulted in significant reduction of XIAP expression and potent antitumor activity both in HCC cells and in animal model with tumor. This pilot study offers a promise of using oncolytic adenovirus to deliver siRNA targeting overexpressed oncogenes and a novel strategy for cancer therapy by regulating the equilibrium between the proapoptotic and antiapoptotic factors.


Subject(s)
Adenoviridae , Liver Neoplasms, Experimental/therapy , Oncolytic Virotherapy , RNA Interference , TNF-Related Apoptosis-Inducing Ligand/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism , Animals , Apoptosis , Drug Synergism , Female , Gene Expression Regulation, Viral , Gene Silencing , Humans , Immunohistochemistry , In Vitro Techniques , Mice , Mice, Inbred BALB C , Mice, Nude , Pilot Projects , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Transplantation, Heterologous , X-Linked Inhibitor of Apoptosis Protein/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...