Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.758
Filter
1.
Sci Rep ; 14(1): 19082, 2024 08 17.
Article in English | MEDLINE | ID: mdl-39154109

ABSTRACT

Therapeutic hypothermia is the standard treatment for hypoxic-ischemic encephalopathy (HIE), but despite its widespread use, the rates of mortality and neurodevelopmental impairment for moderate to severe HIE remain around 30%. Methylxanthines, such as caffeine and aminophylline, have potential neuroprotective effects in the setting of hypoxic-ischemic injury. However, data on the safety and efficacy of methylxanthines in the setting of therapeutic hypothermia for HIE are limited. This retrospective multicenter study examined in-hospital outcomes in 52 infants with HIE receiving methylxanthines and therapeutic hypothermia. The frequency of mortality and in-hospital morbidities were similar to those of infants enrolled in clinical trials undergoing therapeutic hypothermia without adjunctive therapies. Clinical trials of methylxanthines for neuroprotection in HIE are needed to determine safety and efficacy and should explore optimal dosing and timing of methylxanthine administration.


Subject(s)
Hypothermia, Induced , Hypoxia-Ischemia, Brain , Neuroprotective Agents , Xanthines , Humans , Hypoxia-Ischemia, Brain/drug therapy , Retrospective Studies , Male , Female , Xanthines/therapeutic use , Infant, Newborn , Neuroprotective Agents/therapeutic use , Hypothermia, Induced/methods , Caffeine/therapeutic use , Caffeine/administration & dosage , Infant , Treatment Outcome , Aminophylline/therapeutic use , Aminophylline/administration & dosage
2.
Eur J Pharmacol ; 981: 176847, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39089463

ABSTRACT

Insomnia is one of the most common sleep disorders, affecting 10-15% of the global population. Because classical remedies used to treat insomnia have various side effects, new therapeutics for insomnia are attracting attention. In the present study, we found that N2-Ethyl-N4-(furan-2-ylmethyl) quinazoline-2,4-diamine (AR-001) has adenosine A1 receptor agonistic activity and exhibits hypnotic efficacy by decreasing sleep onset latency and increasing total sleep time in a pentobarbital-induced sleep model. This hypnotic effect of AR-001 was significantly inhibited by the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). As a result of immunohistochemistry, AR-001 was shown to increase neural activity in the sleep-promoting region, ventrolateral preoptic nucleus (VLPO), and decrease neural activity in the wake-promoting region, basal forebrain (BF), and lateral hypothalamus (LH), and that these effects of AR-001 were significantly inhibited by DPCPX treatment. In addition, AR-001 increased adenosine A1 receptor mRNA levels in the hypothalamus. In conclusion, this study suggests that AR-001 has a hypnotic effect, at least partially, through adenosine A1 receptor and may have therapeutic potential for insomnia.


Subject(s)
Adenosine A1 Receptor Agonists , Hypnotics and Sedatives , Receptor, Adenosine A1 , Sleep , Animals , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A1/genetics , Male , Hypnotics and Sedatives/pharmacology , Sleep/drug effects , Adenosine A1 Receptor Agonists/pharmacology , Quinazolines/pharmacology , Rats, Sprague-Dawley , Rats , Mice , Sleep Initiation and Maintenance Disorders/drug therapy , Furans/pharmacology , Hypothalamus/drug effects , Hypothalamus/metabolism , Xanthines/pharmacology , RNA, Messenger/metabolism , RNA, Messenger/genetics , Adenosine A1 Receptor Antagonists/pharmacology , Pentobarbital/pharmacology
3.
Int J Toxicol ; 43(4_suppl): 42-77, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39049435

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of three methylxanthines, Caffeine, Theobromine, and Theophylline, as used in cosmetics. All of these ingredients are reported to function as skin-conditioning agents in cosmetic products. The Panel reviewed the data relevant to the safety of these ingredients and concluded that Caffeine, Theobromine, and Theophylline are safe in cosmetics in the present practices of use and concentration described in this safety assessment.


Subject(s)
Consumer Product Safety , Cosmetics , Humans , Cosmetics/toxicity , Cosmetics/chemistry , Animals , Caffeine/toxicity , Caffeine/pharmacokinetics , Theobromine/toxicity , Theophylline/toxicity , Theophylline/pharmacokinetics , Risk Assessment , Toxicity Tests , Xanthines/toxicity
4.
Neuroscience ; 555: 125-133, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39038598

ABSTRACT

The role of adenosine receptors in fascial manipulation-induced analgesia has not yet been investigated. The purpose of this study was to evaluate the involvement of the adenosine A1 receptor (A1R) in the antihyperalgesic effect of plantar fascia manipulation (PFM), specifically in mice with peripheral inflammation. Mice injected with Complete Freund's Adjuvant (CFA) underwent behavioral, i.e. mechanical hyperalgesia and edema. The mice underwent PFM for either 3, 9 or 15 min. Response frequency to mechanical stimuli was then assessed at 24 and 96 h after plantar CFA injection. The adenosinergic receptors were assessed by systemic (intraperitoneal, i.p.), central (intrathecal, i.t.), and peripheral (intraplantar, i.pl.) administration of caffeine. The participation of the A1R was investigated using the 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a selective A1R subtype antagonist. PFM inhibited mechanical hyperalgesia induced by CFA injection and did not reduce paw edema. Furthermore, the antihyperalgesic effect of PFM was prevented by pretreatment of the animals with caffeine given by i.p., i.pl., and i.t. routes. In addition, i.pl. and i.t. administrations of DPCPX blocked the antihyperalgesia caused by PFM. These observations indicate that adenosine receptors mediate the antihyperalgesic effect of PFM. Caffeine's inhibition of PFM-induced antihyperalgesia suggests that a more precise understanding of how fascia-manipulation and caffeine interact is warranted.


Subject(s)
Disease Models, Animal , Freund's Adjuvant , Hyperalgesia , Inflammation , Receptor, Adenosine A1 , Xanthines , Animals , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A1/drug effects , Mice , Male , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Xanthines/pharmacology , Fascia/drug effects , Caffeine/pharmacology , Caffeine/administration & dosage , Analgesia/methods , Spinal Cord/metabolism , Spinal Cord/drug effects , Adenosine A1 Receptor Antagonists/pharmacology
5.
Pharmacol Rep ; 76(5): 1012-1031, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39048810

ABSTRACT

BACKGROUND: The objective of the study was to ascertain the antidepressant potential of the co-administration of NMDA receptor ligands and selective adenosine A1 and A2A receptor antagonists. METHODS: The forced swim test (FST) and spontaneous locomotor activity test were carried out in adult male naïve mice. Before the behavioral testing, animals received DPCPX (a selective adenosine A1 receptor antagonist, 1 mg/kg) or istradefylline (a selective adenosine A2A receptor antagonist, 0.5 mg/kg) in combination with L-701,324 (a potent NMDA receptor antagonist, 1 mg/kg), D-cycloserine (a partial agonist at the glycine recognition site of NMDA receptor, 2.5 mg/kg), CGP 37849 (a competitive NMDA receptor antagonist, 0.3 mg/kg) or MK-801 (a non-competitive NMDA receptor antagonist, 0.05 mg/kg). Additionally, serum BDNF level and the mRNA level of the Adora1, Comt, and Slc6a15 genes in the murine prefrontal cortex were determined. RESULTS: The obtained results showed that DPCPX and istradefylline administered jointly with NMDA receptor ligands (except for DPCPX + D-cycloserine combination) produced an antidepressant effect in the FST in mice without enhancement in spontaneous motility of animals. An elevation in BDNF concentration was noted in the D-cycloserine-treated group. Adora1 expression increased with L-701,324, DPCPX + D-cycloserine, and DPCPX + CGP 37849, while D-cycloserine, CGP 37849, and MK-801 led to a decrease. Comt mRNA levels dropped with DPCPX + L-701,324, istradefylline + L-701,324/CGP 37849 but increased with D-cycloserine, MK-801, CGP 37849 and DPCPX + MK-801/ CGP 37849. Slc6a15 levels were reduced by D-cycloserine, DPCPX + L-701,324 but rose with DPCPX + CGP 37849/MK-801 and istradefylline + D-cycloserine/MK-801/CGP 37849. CONCLUSION: Our study suggests that selective antagonists of adenosine receptors may enhance the antidepressant efficacy of NMDA receptor ligands highlighting a potential synergistic interaction between the adenosinergic and glutamatergic systems. Wherein, A2A receptor antagonists are seen as more promising candidates in this context. Given the intricate nature of changes in BDNF levels and the expression of Adora1, Comt, and Slc6a15 seen after drug combinations exerting antidepressant properties, further research and integrative approaches are crucial understand better the mechanisms underlying their antidepressant action.


Subject(s)
Adenosine A1 Receptor Antagonists , Adenosine A2 Receptor Antagonists , Antidepressive Agents , Receptor, Adenosine A1 , Receptors, N-Methyl-D-Aspartate , Animals , Mice , Male , Antidepressive Agents/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Receptor, Adenosine A1/metabolism , Adenosine A2 Receptor Antagonists/pharmacology , Adenosine A1 Receptor Antagonists/pharmacology , Ligands , Xanthines/pharmacology , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Receptor, Adenosine A2A/metabolism , Purines/pharmacology , Depression/drug therapy , Depression/metabolism , Quinolones
6.
Yakugaku Zasshi ; 144(7): 715-732, 2024.
Article in Japanese | MEDLINE | ID: mdl-38945846

ABSTRACT

An aqueous solution of 2,3-cis gallate type catechin (-)-epigallocatechin-3-O-gallate (EGCg) and caffeine afforded a precipitate of Creaming-down Phenomenon, which crystallized slowly for about three months to give a colorless block crystal. By X-ray crystallographic analysis, the crystal was determined to be a 2 : 2 complex of EGCg and caffeine, in which caffeine molecules were captured in a hydrophobic space formed with three aromatic A, B, and B' rings of EGCg. It was considered that the solubility of the 2 : 2 complex in water rapidly decreased and the 2 : 2 complex precipitated from aqueous solution. The hydrophobic spaces of EGCg captured a variety of heterocyclic compounds, and the molecular capture abilities of heterocyclic compounds using EGCg from the aqueous solutions were evaluated. Since the C ring of EGCg has two chiral carbon atoms, C2 and C3, the hydrophobic space of EGCg was a chiral space. EGCg captured diketopiperazine cyclo(Pro-Xxx) (Xxx=Phe, Tyr) and pharmaceuticals with a xanthine skeleton, proxyphylline and diprophylline, in the hydrophobic space, and recognized their chirality.


Subject(s)
Caffeine , Catechin , Hydrophobic and Hydrophilic Interactions , Solubility , Tea , Catechin/chemistry , Catechin/analogs & derivatives , Tea/chemistry , Caffeine/chemistry , Crystallography, X-Ray , Stereoisomerism , Water/chemistry , Crystallization , Solutions , Heterocyclic Compounds/chemistry , Xanthines/chemistry
7.
Molecules ; 29(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38893312

ABSTRACT

Gain-of-function mutations in the KCNT1 gene, which encodes the sodium-activated potassium channel known as SLACK, are associated with the rare but devastating developmental and epileptic encephalopathy known as epilepsy of infancy with migrating focal seizures (EIMFS). The design of small molecule inhibitors of SLACK channels represents a potential therapeutic approach to the treatment of EIMFS, other childhood epilepsies, and developmental disorders. Herein, we describe a hit optimization effort centered on a xanthine SLACK inhibitor (8) discovered via a high-throughput screen. Across three distinct regions of the chemotype, we synthesized 58 new analogs and tested each one in a whole-cell automated patch-clamp assay to develop structure-activity relationships for inhibition of SLACK channels. We further evaluated selected analogs for their selectivity versus a variety of other ion channels and for their activity versus clinically relevant SLACK mutants. Selectivity within the series was quite good, including versus hERG. Analog 80 (VU0948578) was a potent inhibitor of WT, A934T, and G288S SLACK, with IC50 values between 0.59 and 0.71 µM across these variants. VU0948578 represents a useful in vitro tool compound from a chemotype that is distinct from previously reported small molecule inhibitors of SLACK channels.


Subject(s)
Potassium Channel Blockers , Structure-Activity Relationship , Humans , Potassium Channel Blockers/chemistry , Potassium Channel Blockers/pharmacology , Potassium Channels, Sodium-Activated , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Xanthine/chemistry , Xanthine/pharmacology , Patch-Clamp Techniques , HEK293 Cells , Molecular Structure , Xanthines/chemistry , Xanthines/pharmacology
8.
J Endocrinol ; 262(3)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38885075

ABSTRACT

Coffee is one of the three most consumed beverages in the world. It is made by first roasting coffee beans, and then grinding and boiling or steeping the roasted beans in water (brewing). The process of roasting and brewing produces a complex mix of bioactive compounds, including methylxanthines (caffeine, theobromine, theophylline), diterpenes, chlorogenic acid, trigonelline, flavonoids, and hydroxycinnamic acid. In the body, these compounds may be metabolized to produce other bioactive compounds. For example, caffeine is primarily (80%) broken down by demethylation to produce paraxanthine. In the post-ingestion period, levels of paraxanthine may be higher than caffeine due to its slower elimination. Hence, while paraxanthine is not found in coffee itself, it has many of the same properties as caffeine and may be a major contributor to its metabolic effects. The impacts of caffeine and paraxanthine on metabolism relate to their impact on adenosine receptors (notably the A2A receptor). It has been known for almost 100 years that intake of coffee stimulates metabolism by between 5% and 20% for at least 3 h. About half of the increase in metabolic rate after drinking coffee is due to caffeine and derivatives, but the source of the other half is unclear. There are large differences in the response to the same amount of coffee in different individuals, which may be related to caffeine clearance rates, effects of other unknown pathways, genetic polymorphism, age, sex, and body composition.


Subject(s)
Caffeine , Coffee , Coffee/metabolism , Coffee/chemistry , Caffeine/metabolism , Humans , Theophylline/metabolism , Xanthines/metabolism , Theobromine/metabolism , Animals
9.
mSystems ; 9(7): e0130123, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38899930

ABSTRACT

Platinum-based chemotherapy failure represents a significant challenge in the management of ovarian cancer (OC) and contributes to disease recurrence and poor prognosis. Recent studies have shed light on the involvement of the gut microbiota in modulating anticancer treatments. However, the precise underlying mechanisms, by which gut microbiota regulates the response to platinum-based therapy, remain unclear. Here, we investigated the role of gut microbiota on the anticancer response of cisplatin and its underlying mechanisms. Our results demonstrate a substantial improvement in the anticancer efficacy of cisplatin following antibiotic-induced perturbation of the gut microbiota in OC-bearing mice. 16S rRNA sequencing showed a pronounced alteration in the composition of the gut microbiome in the cecum contents following exposure to cisplatin. Through metabolomic analysis, we identified distinct metabolic profiles in the antibiotic-treated group, with a notable enrichment of the gut-derived metabolite 3-methylxanthine in antibiotic-treated mice. Next, we employed a strategy combining transcriptome analysis and chemical-protein interaction network databases. We identified metabolites that shared structural similarity with 3-methylxanthine, which interacted with genes enriched in cancer-related pathways. It is identified that 3-methylxanthinesignificantly enhances the effectiveness of cisplatin by promoting apoptosis both in vivo and in vitro. Importantly, through integrative multiomics analyses, we elucidated the mechanistic basis of this enhanced apoptosis, revealing a dopamine receptor D1-dependent pathway mediated by 3-methylxanthine. This study elucidated the mechanism by which gut-derived metabolite 3-methylxanthine mediated cisplatin-induced apoptosis. Our findings highlight the potential translational significance of 3-methylxanthine as a promising adjuvant in conjunction with cisplatin, aiming to improve treatment outcomes for OC patients.IMPORTANCEThe precise correlation between the gut microbiota and the anticancer effect of cisplatin in OC remains inadequately understood. Our investigation has revealed that manipulation of the gut microbiota via the administration of antibiotics amplifies the efficacy of cisplatin through the facilitation of apoptosis in OC-bearing mice. Metabolomic analysis has demonstrated that the cecum content from antibiotic-treated mice exhibits an increase in the levels of 3-methylxanthine, which has been shown to potentially enhance the therapeutic effectiveness of cisplatin by an integrated multiomic analysis. This enhancement appears to be attributable to the promotion of cisplatin-induced apoptosis, with 3-methylxanthine potentially exerting its influence via the dopamine receptor D1-dependent pathway. These findings significantly contribute to our comprehension of the impact of the gut microbiota on the anticancer therapy in OC. Notably, the involvement of 3-methylxanthine suggests its prospective utility as a supplementary component for augmenting treatment outcomes in patients afflicted with ovarian cancer.


Subject(s)
Apoptosis , Cisplatin , Gastrointestinal Microbiome , Ovarian Neoplasms , Receptors, Dopamine D1 , Animals , Cisplatin/pharmacology , Female , Apoptosis/drug effects , Mice , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Gastrointestinal Microbiome/drug effects , Receptors, Dopamine D1/metabolism , Antineoplastic Agents/pharmacology , Humans , Cell Line, Tumor , Disease Models, Animal , Xanthines/pharmacology , Metabolomics
10.
Plant Sci ; 345: 112117, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38750798

ABSTRACT

Coffee plants contain well-known xanthines as caffeine. Three Coffea species grown in a controlled greenhouse environment were the focus of this research. Coffea arabica and C. canephora are two first principal commercial species and commonly known as arabica and robusta, respectively. Originating in Central Africa, C. anthonyi is a novel species with small leaves. The xanthine metabolites in flower, fruit and leaf extracts were compared using both targeted and untargeted metabolomics approaches. We evaluated how the xanthine derivatives and FQA isomers relate to the expression of biosynthetic genes encoding N- and O-methyltransferases. Theobromine built up in leaves of C. anthonyi because caffeine biosynthesis was hindered in the absence of synthase gene expression. Despite this, green fruits expressed these genes and they produced caffeine. Given that C. anthonyi evolved successfully over time, these findings put into question the defensive role of caffeine in leaves. An overview of the histolocalisation of xanthines in the different flower parts of Coffea arabica was also provided. The gynoecium contained more theobromine than the flower buds or petals. This could be attributed to increased caffeine biosynthesis before fructification. The presence of theophylline and the absence of theobromine in the petals indicate that caffeine is catabolized more in the petals than in the gynoecium.


Subject(s)
Caffeine , Coffea , Metabolomics , Methyltransferases , Plant Leaves , Coffea/genetics , Coffea/metabolism , Coffea/enzymology , Methyltransferases/genetics , Methyltransferases/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Caffeine/metabolism , Flowers/genetics , Flowers/metabolism , Gene Expression Profiling , Xanthines/metabolism , Fruit/genetics , Fruit/metabolism , Theobromine/metabolism , Gene Expression Regulation, Plant
11.
Kidney Int ; 106(3): 408-418, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38801992

ABSTRACT

The mechanisms responsible for glomerular hemodynamic regulation with sodium-glucose co-transporter 2 (SGLT2) inhibitors in kidney disease due to type 2 diabetes remain unclear. Therefore, we investigated changes in glomerular hemodynamic function using an animal model of type 2 diabetes, treated with an SGLT2 inhibitor alone or in combination with a renin-angiotensin-aldosterone system inhibitor using male Zucker lean (ZL) and Zucker diabetic fatty (ZDF) rats. Afferent and efferent arteriolar diameter and single-nephron glomerular filtration rate (SNGFR) were evaluated in ZDF rats measured at 0, 30, 60, 90, and 120 minutes after the administration of a SGLT2 inhibitor (luseogliflozin). Additionally, we assessed these changes under the administration of the adenosine A1 receptor (A1aR) antagonist (8-cyclopentyl-1,3-dipropylxanthine), along with coadministration of luseogliflozin and an angiotensin II receptor blocker (ARB), telmisartan. ZDF rats had significantly increased SNGFR, and afferent and efferent arteriolar diameters compared to ZL rats, indicating glomerular hyperfiltration. Administration of luseogliflozin significantly reduced afferent vasodilatation and glomerular hyperfiltration, with no impact on efferent arteriolar diameter. Urinary adenosine levels were increased significantly in the SGLT2 inhibitor group compared to the vehicle group. A1aR antagonism blocked the effect of luseogliflozin on kidney function. Co-administration of the SGLT2 inhibitor and ARB decreased the abnormal expansion of glomerular afferent arterioles, whereas the efferent arteriolar diameter was not affected. Thus, regulation of afferent arteriolar vascular tone via the A1aR pathway is associated with glomerular hyperfiltration in type 2 diabetic kidney disease.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Glomerular Filtration Rate , Kidney Glomerulus , Sodium-Glucose Transporter 2 Inhibitors , Animals , Male , Rats , Adenosine A1 Receptor Antagonists/pharmacology , Arterioles/drug effects , Arterioles/physiopathology , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/drug therapy , Diabetic Nephropathies/etiology , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/physiopathology , Glomerular Filtration Rate/drug effects , Hemodynamics/drug effects , Kidney Glomerulus/drug effects , Kidney Glomerulus/physiopathology , Kidney Glomerulus/pathology , Kidney Glomerulus/blood supply , Rats, Zucker , Renin-Angiotensin System/drug effects , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sorbitol/analogs & derivatives , Xanthines/pharmacology
12.
J Chromatogr A ; 1726: 464973, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38729044

ABSTRACT

Hydrophilic interaction chromatography (HILIC) offers different selectivity than reversed-phase liquid chromatography (RPLC). However, our knowledge of the driving force for selectivity is limited and there is a need for a better understanding of the selectivity in HILIC. Quantitative assessment of retention mechanisms makes it possible to investigate selectivity based on understanding the underlying retention mechanisms. In this study, selected model compounds from the Ikegami selectivity tests were evaluated on different polar stationary phases. The study results revealed significant insights into the selectivity in HILIC. First, hydroxy and methylene selectivity is driven by hydrophilic partitioning; but surface adsorption for 2-deoxyuridine or 5-methyluridine reduces the selectivity factor. Furthermore, the retention of 2-deoxyuridine or 5-methyluridine by surface adsorption in combination with the phase ratio explain the difference in hydroxy or methylene selectivity observed among different stationary phases. Investigations on xanthine positional isomers (1-methylxanthine/3-methylxanthine, theophylline/theobromine) indicate that isomeric selectivity is controlled by surface adsorption; however, hydrophilic partitioning may contribute to resolution by enhancing overall retention. In addition, two pairs of nucleoside isomers (adenosine/vidarabine, 2'-deoxy and 3'-deoxyguanosine) provide an example that isomeric selectivity can also be controlled by hydrophilic partitioning if their partitioning coefficients are significantly different in HILIC. Although more data is needed, the current study provides a mechanistic based understanding of the selectivity in HILIC and potentially a new way to design selectivity tests.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Adsorption , Chromatography, Liquid/methods , Isomerism , Nucleosides/chemistry , Nucleosides/analysis , Chromatography, Reverse-Phase/methods , Xanthines/chemistry
13.
Eur J Med Chem ; 271: 116380, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38615410

ABSTRACT

Imaging of the A1 adenosine receptor (A1R) by positron emission tomography (PET) with 8-cyclopentyl-3-(3-[18F]fluoropropyl)-1-propyl-xanthine ([18F]CPFPX) has been widely used in preclinical and clinical studies. However, this radioligand suffers from rapid peripheral metabolism and subsequent accumulation of radiometabolites in the vascular compartment. In the present work, we prepared four derivatives of CPFPX by replacement of the cyclopentyl group with norbornane moieties. These derivatives were evaluated by competition binding studies, microsomal stability assays and LC-MS analysis of microsomal metabolites. In addition, the 18F-labeled isotopologue of 8-(1-norbornyl)-3-(3-fluoropropyl)-1-propylxanthine (1-NBX) as the most promising candidate was prepared by radiofluorination of the corresponding tosylate precursor and the resulting radioligand ([18F]1-NBX) was evaluated by permeability assays with Caco-2 cells and in vitro autoradiography in rat brain slices. Our results demonstrate that 1-NBX exhibits significantly improved A1R affinity and selectivity when compared to CPFPX and that it does not give rise to lipophilic metabolites expected to cross the blood-brain-barrier in microsomal assays. Furthermore, [18F]1-NBX showed a high passive permeability (Pc = 6.9 ± 2.9 × 10-5 cm/s) and in vitro autoradiography with this radioligand resulted in a distribution pattern matching A1R expression in the brain. Moreover, a low degree of non-specific binding (5%) was observed. Taken together, these findings identify [18F]1-NBX as a promising candidate for further preclinical evaluation as potential PET tracer for A1R imaging.


Subject(s)
Positron-Emission Tomography , Receptor, Adenosine A1 , Xanthines , Receptor, Adenosine A1/metabolism , Humans , Animals , Xanthines/chemistry , Xanthines/chemical synthesis , Rats , Caco-2 Cells , Male , Molecular Structure , Structure-Activity Relationship , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Dose-Response Relationship, Drug , Fluorine Radioisotopes/chemistry
14.
Chem Biodivers ; 21(7): e202400823, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38687255

ABSTRACT

The design of novel agrochemicals starting from bioactive natural products is one of the most effective ways in the discovery and development of new pesticidal agents. In this paper, a series of novel butenolide-containing methylxanthine derivatives (Ia-Ir) were designed based on natural methylxanthine caffeine and stemofoline, and the derivatized insecticide flupyradifurone of the latter. The structures of the synthesized compounds were confirmed via 1H-NMR, 13C NMR, HRMS and X-ray single crystal diffraction analyses. The biological activities of the compounds were evaluated against a variety of agricultural pests including oriental armyworm, bean aphid, diamondback moth, fall armyworm, cotton bollworm, and corn borer; the results indicated that some of them have favorable insecticidal potentials, particularly toward diamondback moth. Among others, Ic and Iq against diamondback moth possessed LC50 values of 6.187 mg ⋅ L-1 and 3.269 mg ⋅ L-1, respectively, - 2.5- and 4.8-fold of relative insecticidal activity respectively to that of flupyradifurone (LC50=15.743 mg ⋅ L-1). Additionally, both the DFT theoretical calculation and molecular docking with acetylcholine binding protein were conducted for the highly bioactive compound (Ic). Ic and Iq derived from the integration of caffeine (natural methylxanthine) and butenolide motifs can serve as novel leading insecticidal compounds for further optimization.


Subject(s)
4-Butyrolactone , Density Functional Theory , Insecticides , Molecular Docking Simulation , Moths , Insecticides/chemistry , Insecticides/pharmacology , Insecticides/chemical synthesis , Animals , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/chemistry , 4-Butyrolactone/pharmacology , 4-Butyrolactone/chemical synthesis , Moths/drug effects , Crystallography, X-Ray , Molecular Structure , Xanthines/pharmacology , Xanthines/chemistry , Xanthines/chemical synthesis , Aphids/drug effects , Structure-Activity Relationship
15.
Schweiz Arch Tierheilkd ; 166(4): 207-215, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572822

ABSTRACT

INTRODUCTION: This case report describes the long-term success of a subcutaneous ureteral bypass device in a dog for treatment of a ureteral obstruction. The suspected xanthine urolithiasis was secondary to treatment with allopurinol for leishmaniasis. The dog presented initially with lethargy, anuria and abdominal pain. Mild azotemia was found on biochemical analysis and abdominal ultrasound revealed bilateral ureteral obstruction. A subcutaneous ureteral bypass was subsequently placed using a standard surgical technique. The dog recovered uneventfully and the azotemia resolved within days. Follow-up examinations were performed every trimester for over three years and no complications like obstruction of the bypass tubes, urinary tract infection or azotemia were recognized during this follow-up period. Allopurinol was replaced with domperidone as long-term treatment against Leishmaniasis which resulted in a mild increase of the leishmania serum antibody titer. The subcutaneous ureteral bypass placement was successful and safe in this dog and is a valuable alternative in cases of ureteral obstruction also in dogs.


INTRODUCTION: Ce rapport de cas décrit le succès à long terme d'une dérivation urétérale sous-cutanée chez un chien pour le traitement d'une obstruction urétérale. L'urolithiase xanthique suspectée était secondaire à un traitement à l'allopurinol contre la leishmaniose. Le chien a d'abord présenté une léthargie, une anurie et des douleurs abdominales. L'analyse biochimique a révélé une légère azotémie et l'échographie abdominale a révélé une obstruction urétérale bilatérale. Une dérivation urétérale sous-cutanée a été mise en place selon une technique chirurgicale standard. Le chien s'est rétabli sans incident et l'azotémie a disparu en quelques jours. Des examens de suivi ont été effectués tous les trimestres pendant plus de trois ans et aucune complication telle qu'une obstruction du tube de dérivation, une infection urinaire ou une azotémie n'a été constatée au cours de cette période de suivi. L'allopurinol a été remplacé par de la dompéridone dans le cadre d'un traitement à long terme contre la leishmaniose, ce qui a entraîné une légère augmentation du titre des anticorps sériques contre la leishmaniose. La mise en place d'une dérivation urétérale sous-cutanée s'est avérée efficace et sûre chez ce chien et constitue une alternative intéressante en cas d'obstruction urétérale, y compris chez les chiens.


Subject(s)
Azotemia , Cat Diseases , Dog Diseases , Leishmaniasis , Ureteral Obstruction , Urolithiasis , Animals , Dogs , Cats , Ureteral Obstruction/etiology , Ureteral Obstruction/surgery , Ureteral Obstruction/veterinary , Allopurinol/therapeutic use , Azotemia/veterinary , Urolithiasis/surgery , Urolithiasis/veterinary , Leishmaniasis/veterinary , Xanthines , Stents/veterinary , Dog Diseases/drug therapy , Dog Diseases/surgery
16.
Basic Clin Pharmacol Toxicol ; 134(6): 818-832, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583870

ABSTRACT

BACKGROUND: Autophagy can have either beneficial or detrimental effects on various heart diseases. Pharmacological interventions improve cardiac function, which is correlated with enhanced autophagy. To assess whether a xanthine derivative (KMUP-3) treatment coincides with enhanced autophagy while also providing cardio-protection, we investigated the hypothesis that KMUP-3 treatment activation of autophagy through PI3K/Akt/eNOS signalling offered cardioprotective properties. METHODS: The pro-autophagic effect of KMUP-3 was performed in a neonatal rat model targeting cardiac fibroblasts and cardiomyocytes, and by assessing the impact of KMUP-3 treatment on cardiotoxicity, we used antimycin A-induced cardiomyocytes. RESULTS: As determined by transmission electron microscopy observation, KMUP-3 enhanced autophagosome formation in cardiac fibroblasts. Furthermore, KMUP-3 significantly increased the expressions of autophagy-related proteins, LC3 and Beclin-1, both in a time- and dose-dependent manner; moreover, the pro-autophagy and nitric oxide enhancement effects of KMUP-3 were abolished by inhibitors targeting eNOS and PI3K in cardiac fibroblasts and cardiomyocytes. Notably, KMUP-3 ameliorated cytotoxic effects induced by antimycin A, demonstrating its protective autophagic response. CONCLUSION: These findings enable the core pathway of PI3K/Akt/eNOS axis in KMUP-3-enhanced autophagy activation and suggest its principal role in safeguarding against cardiotoxicity.


Subject(s)
Autophagy , Myocytes, Cardiac , Nitric Oxide Synthase Type III , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Animals , Rats , Animals, Newborn , Autophagy/drug effects , Beclin-1/metabolism , Cardiotonic Agents/pharmacology , Cardiotoxicity/prevention & control , Cells, Cultured , Fibroblasts/drug effects , Fibroblasts/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Xanthines/pharmacology
17.
ChemMedChem ; 19(15): e202400118, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38668124

ABSTRACT

Xanthines are purine derivatives predominantly found in plants. These include compounds such as caffeine, theophylline, and theobromine and exhibit a variety of pharmacological properties, demonstrating efficacy in treating neurodegenerative disorders, respiratory dysfunctions, and also cancer. The versatile attributes of these materials render them privileged scaffolds for the development of compounds for various biological applications. Xanthines are N-heterocyclic carbene precursors that combine a pyrimidine and an imidazole ring. Owing to their biological relevance, xanthines have been employed as N-heterocyclic carbenes in the development of metallodrugs for anticancer and antimicrobial purposes. In this conceptual review, we examine key examples of N-heterocyclic carbene complexes derived from caffeine and other xanthines, elucidating their synthetic methods and describing their pertinent medicinal applications.


Subject(s)
Caffeine , Heterocyclic Compounds , Methane , Caffeine/chemistry , Caffeine/pharmacology , Caffeine/chemical synthesis , Methane/analogs & derivatives , Methane/chemistry , Methane/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , Humans , Xanthines/chemistry , Xanthines/pharmacology , Xanthines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Molecular Structure , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis
18.
Nat Commun ; 15(1): 3625, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684649

ABSTRACT

Modern, highly evolved nucleoside-processing enzymes are known to exhibit perfect regioselectivity over the glycosylation of purine nucleobases at N9. We herein report an exception to this paradigm. Wild-type nucleoside phosphorylases also furnish N7-xanthosine, a "non-native" ribosylation regioisomer of xanthosine. This unusual nucleoside possesses several atypical physicochemical properties such as redshifted absorption spectra, a high equilibrium constant of phosphorolysis and low acidity. Ultimately, the biosynthesis of this previously unknown natural product illustrates how even highly evolved, essential enzymes from primary metabolism are imperfect catalysts.


Subject(s)
Pentosyltransferases , Ribonucleosides , Xanthines , Glycosylation , Xanthines/metabolism , Xanthines/chemistry
19.
Front Immunol ; 15: 1338714, 2024.
Article in English | MEDLINE | ID: mdl-38469308

ABSTRACT

Background: Autoimmune encephalitis is a neurological condition caused by abnormal immune responses, manifesting as cognitive impairments, behavioral abnormalities, and seizures. Its diagnosis depends on the detecting neuronal surface antibodies in serum or cerebrospinal fluid. Despite recent advances in understanding, clinical recognition remains challenging, especially with rare antibodies such as anti-dopamine D2 receptor (D2R) and anti-dipeptidyl-peptidase-like protein 6 (DPPX) antibodies. Delayed diagnosis can lead to severe complications. This case presentation emphasizes the diagnostic intricacies and effective treatment of the anti-D2R and DPPX antibody-associated autoimmune encephalitis. Case description: The patient presented with a 3-day history of fatigue and limb soreness followed by a 3-h episode of confusion and limb convulsions. Upon admission to our facility, the initial diagnosis included status epilepticus, aspiration pneumonia, metabolic acidosis, respiratory alkalosis, and suspected encephalitis. Despite receiving antiepileptic, anti-infection, and antivirus therapy, the patient's condition deteriorated. Both computed tomography (CT) scan and magnetic resonance imaging (MRI) of the brain showed no significant abnormalities. No pathogen was identified in the cerebrospinal fluid (CSF). However, further CSF and serum examination revealed positive results of anti-D2R and anti-DPPX antibodies, confirming a diagnosis of anti-D2R and DPPX antibody-associated autoimmune encephalitis. The patient underwent a comprehensive treatment regimen, including high-dose methylprednisolone pulse therapy combined with intravenous immunoglobulin (IVIG), antiviral and anti-infection treatments, and antiepileptic medications. Significant clinical improvement was observed, and by the 18th day of admission, the patient was stable and coherent. Conclusions: The current patient represents the first reported case of double-positive autoimmune encephalitis for anti-D2R and DPPX antibodies, with epilepsy as a prominent feature. High-dose methylprednisolone pulse therapy combined with IVIG has shown significant safety and efficacy in treating anti-D2R and DPPX antibody-positive autoimmune encephalitis-associated epilepsy.


Subject(s)
Autoimmune Diseases of the Nervous System , Encephalitis , Epilepsy , Hashimoto Disease , Xanthines , Humans , Immunoglobulins, Intravenous/therapeutic use , Methylprednisolone/therapeutic use , Anticonvulsants , Encephalitis/diagnosis , Encephalitis/drug therapy , Encephalitis/etiology , Antibodies , Seizures/complications , Autoimmune Diseases of the Nervous System/complications
20.
J Am Chem Soc ; 146(7): 4892-4902, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38319883

ABSTRACT

Nidulaxanthone A is a dimeric, dihydroxanthone natural product that was isolated in 2020 from Aspergillus sp. Structurally, the compound features an unprecedented heptacyclic 6/6/6/6/6/6/6 ring system which is unusual for natural xanthone dimers. Biosynthetically, nidulaxanthone A originates from the monomer nidulalin A via stereoselective Diels-Alder dimerization. To expedite the synthesis of nidulalin A and study the proposed dimerization, we developed methodology involving the use of allyl triflate for chromone ester activation, followed by vinylogous addition, to rapidly forge the nidulalin A scaffold in a four-step sequence which also features ketone desaturation using Bobbitt's oxoammonium salt. An asymmetric synthesis of nidulalin A was achieved using acylative kinetic resolution (AKR) of chiral, racemic 2H-nidulalin A. Dimerization of enantioenriched nidulalin A to nidulaxanthone A was achieved using solvent-free, thermolytic conditions. Computational studies have been conducted to probe both the oxoammonium-mediated desaturation and (4 + 2) dimerization events.


Subject(s)
Ketones , Xanthines , Sodium Chloride , Dimerization
SELECTION OF CITATIONS
SEARCH DETAIL