Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
Anal Chem ; 96(25): 10152-10160, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38818902

ABSTRACT

Assessing the effectiveness of nanomedicines involves evaluating the drug content at the target site. Currently, most research focuses on monitoring the signal responses from loaded drugs, neglecting the changes caused by the nanohosts. Here, we propose a strategy to quantitatively evaluate the content of loaded drugs by detecting the signal variations resulting from the alterations in the microenvironment of the nanohosts. Specifically, hyperpolarized (HP) 129Xe atoms are employed as probes to sense the nanohosts' environment and generate a specific magnetic resonance (MR) signal that indicates their accessibility. The introduction of drugs reduces the available space in the nanohosts, leading to a crowded microenvironment that hinders the access of the 129Xe atoms. By employing 129Xe atoms as a signal source to detect the alterations in the microenvironment, we constructed a three-dimensional (3D) map that indicated the concentration of the nanohosts and established a linear relationship to quantitatively measure the drug content within the nanohosts based on the corresponding MR signals. Using the developed strategy, we successfully quantified the uptake of the nanohosts and drugs in living cells through HP 129Xe MR imaging. Overall, the proposed HP 129Xe atom-sensing approach can be used to monitor alterations in the microenvironment of nanohosts induced by loaded drugs and provides a new perspective for the quantitative evaluation of drug presence in various nanomedicines.


Subject(s)
Magnetic Resonance Imaging , Xenon Isotopes , Magnetic Resonance Imaging/methods , Xenon Isotopes/chemistry , Humans , Nanoparticles/chemistry
2.
J Vis Exp ; (206)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38682932

ABSTRACT

Hyperpolarized 129Xe gas MRI is an emerging technique to evaluate and measure regional lung function including pulmonary gas distribution and gas exchange. Chest computed tomography (CT) still remains the clinical gold standard for imaging of the lungs, though, in part due to the rapid CT protocols that acquire high-resolution images in seconds and the widespread availability of CT scanners. Quantitative approaches have enabled the extraction of structural lung parenchymal, airway and vascular measurements from chest CT that have been evaluated in many clinical research studies. Together, CT and 129Xe MRI provide complementary information that can be used to evaluate regional lung structure and function, resulting in new insights into lung health and disease. 129Xe MR-CT image registration can be performed to measure regional lung structure-function to better understand lung disease pathophysiology, and to perform image-guided pulmonary interventions. Here, a method for 129Xe MRI-CT registration is outlined to support implementation in research or clinical settings. Registration methods and applications that have been employed to date in the literature are also summarized, and suggestions are provided for future directions that may further overcome technical challenges related to 129Xe MR-CT image registration and facilitate broader implementation of regional lung structure-function evaluation.


Subject(s)
Lung , Magnetic Resonance Imaging , Tomography, X-Ray Computed , Xenon Isotopes , Magnetic Resonance Imaging/methods , Xenon Isotopes/chemistry , Lung/diagnostic imaging , Humans , Tomography, X-Ray Computed/methods , Multimodal Imaging/methods , Animals
3.
Angew Chem Int Ed Engl ; 63(22): e202403771, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38551448

ABSTRACT

The immune checkpoint blockade strategy has improved the survival rate of late-stage lung cancer patients. However, the low immune response rate limits the immunotherapy efficiency. Here, we report a ROS-responsive Fe3O4-based nanoparticle that undergoes charge reversal and disassembly in the tumor microenvironment, enhancing the uptake of Fe3O4 by tumor cells and triggering a more severe ferroptosis. In the tumor microenvironment, the nanoparticle rapidly disassembles and releases the loaded GOx and the immune-activating peptide Tuftsin under overexpressed H2O2. GOx can consume the glucose of tumor cells and generate more H2O2, promoting the disassembly of the nanoparticle and drug release, thereby enhancing the therapeutic effect of ferroptosis. Combined with Tuftsin, it can more effectively reverse the immune-suppressive microenvironment and promote the recruitment of effector T cells in tumor tissues. Ultimately, in combination with α-PD-L1, there is significant inhibition of the growth of lung metastases. Additionally, the hyperpolarized 129Xe method has been used to evaluate the Fe3O4 nanoparticle-mediated immunotherapy, where the ventilation defects in lung metastases have been significantly improved with complete lung structure and function recovered. The ferroptosis-enhanced immunotherapy combined with non-radiation evaluation methodology paves a new way for designing novel theranostic agents for cancer therapy.


Subject(s)
Ferroptosis , Immunotherapy , Magnetic Resonance Imaging , Reactive Oxygen Species , Ferroptosis/drug effects , Humans , Reactive Oxygen Species/metabolism , Tumor Microenvironment/drug effects , Mice , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Xenon Isotopes/chemistry , Magnetite Nanoparticles/chemistry , Cell Line, Tumor
4.
Chemistry ; 30(25): e202304071, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38381807

ABSTRACT

Hyperpolarized 129Xe gas was FDA-approved as an inhalable contrast agent for magnetic resonance imaging of a wide range of pulmonary diseases in December 2022. Despite the remarkable success in clinical research settings, the widespread clinical translation of HP 129Xe gas faces two critical challenges: the high cost of the relatively low-throughput hyperpolarization equipment and the lack of 129Xe imaging capability on clinical MRI scanners, which have narrow-bandwidth electronics designed only for proton (1H) imaging. To solve this translational grand challenge of gaseous hyperpolarized MRI contrast agents, here we demonstrate the utility of batch-mode production of proton-hyperpolarized diethyl ether gas via heterogeneous pairwise addition of parahydrogen to ethyl vinyl ether. An approximately 0.1-liter bolus of hyperpolarized diethyl ether gas was produced in 1 second and injected in excised rabbit lungs. Lung ventilation imaging was performed using sub-second 2D MRI with up to 2×2 mm2 in-plane resolution using a clinical 0.35 T MRI scanner without any modifications. This feasibility demonstration paves the way for the use of inhalable diethyl ether as a gaseous contrast agent for pulmonary MRI applications using any clinical MRI scanner.


Subject(s)
Contrast Media , Lung , Magnetic Resonance Imaging , Xenon Isotopes , Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Animals , Lung/diagnostic imaging , Rabbits , Xenon Isotopes/chemistry , Gases/chemistry , Ether/chemistry
5.
Magn Reson Med ; 92(3): 967-981, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38297511

ABSTRACT

PURPOSE: Hyperpolarized xenon MRI suffers from heterogeneous coil bias and magnetization decay that obscure pulmonary abnormalities. Non-physiological signal variability can be mitigated by measuring and mapping the nominal flip angle, and by rescaling the images to correct for signal bias and decay. While flip angle maps can be calculated from sequentially acquired images, scan time and breath-hold duration are doubled. Here, we exploit the low-frequency oversampling of 2D-spiral and keyhole reconstruction to measure flip angle maps from a single acquisition. METHODS: Flip angle maps were calculated from two images generated from a single dataset using keyhole reconstructions and a Bloch-equation-based model suitable for hyperpolarized substances. Artifacts resulting from acquisition and reconstruction schemes (e.g., keyhole reconstruction radius, slice-selection profile, spiral-ordering, and oversampling) were assessed using point-spread functions. Simulated flip angle maps generated using keyhole reconstruction were compared against the paired-image approach using RMS error (RMSE). Finally, feasibility was demonstrated for in vivo xenon ventilation imaging. RESULTS: Simulations demonstrated accurate flip angle maps and B1-inhomogeneity correction can be generated with only 1.25-fold central-oversampling and keyhole reconstruction radius = 5% (RMSE = 0.460°). These settings also generated accurate flip angle maps in a healthy control (RSME = 0.337°) and a person with cystic fibrosis (RMSE = 0.404°) in as little as 3.3 s. CONCLUSION: Regional lung ventilation images with reduced impact of B1-inhomogeneity can be acquired rapidly by combining 2D-spiral acquisition, Bloch-equation-based modeling, and keyhole reconstruction. This approach will be especially useful for breath-hold studies where short scan durations are necessary, such as dynamic imaging and applications in children or people with severely compromised respiratory function.


Subject(s)
Artifacts , Image Processing, Computer-Assisted , Lung , Magnetic Resonance Imaging , Xenon Isotopes , Humans , Magnetic Resonance Imaging/methods , Xenon Isotopes/chemistry , Image Processing, Computer-Assisted/methods , Lung/diagnostic imaging , Computer Simulation , Algorithms , Male , Female , Phantoms, Imaging , Adult , Breath Holding , Cystic Fibrosis/diagnostic imaging
6.
Int J Mol Sci ; 25(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38339217

ABSTRACT

Molecular magnetic resonance imaging (MRI) is an emerging field that is set to revolutionize our perspective of disease diagnosis, treatment efficacy monitoring, and precision medicine in full concordance with personalized medicine. A wide range of hyperpolarized (HP) 129Xe biosensors have been recently developed, demonstrating their potential applications in molecular settings, and achieving notable success within in vitro studies. The favorable nuclear magnetic resonance properties of 129Xe, coupled with its non-toxic nature, high solubility in biological tissues, and capacity to dissolve in blood and diffuse across membranes, highlight its superior role for applications in molecular MRI settings. The incorporation of reporters that combine signal enhancement from both hyperpolarized 129Xe and chemical exchange saturation transfer holds the potential to address the primary limitation of low sensitivity observed in conventional MRI. This review provides a summary of the various applications of HP 129Xe biosensors developed over the last decade, specifically highlighting their use in MRI. Moreover, this paper addresses the evolution of in vivo applications of HP 129Xe, discussing its potential transition into clinical settings.


Subject(s)
Magnetic Resonance Imaging , Xenon Isotopes , Xenon Isotopes/chemistry , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Solubility , Xenon/chemistry
7.
IEEE Trans Med Imaging ; 43(5): 1828-1840, 2024 May.
Article in English | MEDLINE | ID: mdl-38194397

ABSTRACT

Magnetic resonance imaging (MRI) using hyperpolarized noble gases provides a way to visualize the structure and function of human lung, but the long imaging time limits its broad research and clinical applications. Deep learning has demonstrated great potential for accelerating MRI by reconstructing images from undersampled data. However, most existing deep convolutional neural networks (CNN) directly apply square convolution to k-space data without considering the inherent properties of k-space sampling, limiting k-space learning efficiency and image reconstruction quality. In this work, we propose an encoding enhanced (EN2) complex CNN for highly undersampled pulmonary MRI reconstruction. EN2 complex CNN employs convolution along either the frequency or phase-encoding direction, resembling the mechanisms of k-space sampling, to maximize the utilization of the encoding correlation and integrity within a row or column of k-space. We also employ complex convolution to learn rich representations from the complex k-space data. In addition, we develop a feature-strengthened modularized unit to further boost the reconstruction performance. Experiments demonstrate that our approach can accurately reconstruct hyperpolarized 129Xe and 1H lung MRI from 6-fold undersampled k-space data and provide lung function measurements with minimal biases compared with fully sampled images. These results demonstrate the effectiveness of the proposed algorithmic components and indicate that the proposed approach could be used for accelerated pulmonary MRI in research and clinical lung disease patient care.


Subject(s)
Image Processing, Computer-Assisted , Lung , Magnetic Resonance Imaging , Neural Networks, Computer , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Algorithms , Phantoms, Imaging , Deep Learning , Xenon Isotopes/chemistry
8.
NMR Biomed ; 37(4): e5078, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38086710

ABSTRACT

Prognosticating acute lung injury (ALI) is challenging, in part because of a lack of sensitive biomarkers. Hyperpolarized gas magnetic resonance (MR) has unique advantages in pulmonary function measurement and can provide promising biomarkers for the assessment of lung injuries. Herein, we employ hyperpolarized 129 Xe MRI and generate a number of imaging biomarkers to detect the pulmonary physiological and morphological changes during the progression of ALI in an animal model. We find the measured ratio of 129 Xe in red blood cells to interstitial tissue/plasma (RBC/TP) is significantly lower in the ALI group on the second (0.32 ± 0.03, p = 0.004), seventh (0.23 ± 0.03, p < 0.001), and 14th (0.29 ± 0.04, p = 0.001) day after lipopolysaccharide treatment compared with that in the control group (0.41 ± 0.04). In addition, significant differences are also observed for RBC/TP measurements between the second and seventh day (p = 0.001) and between the seventh and 14th day (p = 0.018) in the ALI group after treatment. Besides RBC/TP, significant differences are also observed in the measured exchange time constant (T) on the second (p = 0.038) and seventh day (p = 0.009) and in the measured apparent diffusion coefficient (ADC) and alveolar surface-to-volume ratio (SVR) on the 14th day (ADC: p = 0.009 and SVR: p = 0.019) after treatment in the ALI group compared with that in the control group. These findings indicate that the parameters measured with 129 Xe MR can detect the dynamic changes in pulmonary structure and function in an ALI animal model.


Subject(s)
Acute Lung Injury , Magnetic Resonance Imaging , Animals , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Lung/pathology , Acute Lung Injury/diagnostic imaging , Acute Lung Injury/pathology , Xenon Isotopes/chemistry , Biomarkers
9.
ACS Sens ; 8(12): 4707-4715, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38064687

ABSTRACT

Hyperpolarized (HP) xenon-129 (129Xe) magnetic resonance imaging (MRI) has the potential to be used as a molecular imaging modality. For this purpose, numerous supramolecular cages have been developed and evaluated in the past. Herein, we report a novel and unique macrocycle that can be successfully utilized for xenon MRI, the resorcinarene trimer methanesulfonate (R3-Noria-MeSO3H). This molecule is capable of two different contrast mechanisms for xenon-MRI, resulting from an increase in the effective spin-spin relaxation and hyperpolarized chemical exchange saturation transfer (HyperCEST). We have demonstrated a superior negative contrast caused by R3-Noria-MeSO3H on HP 129Xe MRI at 3.0 T as well as HyperCEST imaging of the studied macrocycle. Additionally, we have found that the complex aggregation behaviors of R3-Noria-methanesulfonate and its impact on xenon-129 relaxivity are an area for future study.


Subject(s)
Magnetic Resonance Imaging , Xenon Isotopes , Magnetic Resonance Imaging/methods , Xenon Isotopes/chemistry , Xenon/chemistry , Contrast Media/chemistry , Mesylates
10.
J Vis Exp ; (201)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38009715

ABSTRACT

Hyperpolarized Xenon-129 (HXe) magnetic resonance imaging (MRI) provides tools for obtaining 2- or 3-dimensional maps of lung ventilation patterns, gas diffusion, Xenon uptake by lung parenchyma, and other lung function metrics. However, by trading spatial for temporal resolution, it also enables tracing of pulmonary Xenon gas exchange on a ms timescale. This article describes one such technique, chemical shift saturation recovery (CSSR) MR spectroscopy. It illustrates how it can be used to assess capillary blood volume, septal wall thickness, and the surface-to-volume ratio in the alveoli. The flip angle of the applied radiofrequency pulses (RF) was carefully calibrated. Single-dose breath-hold and multi-dose free-breathing protocols were employed for administering the gas to the subject. Once the inhaled Xenon gas reached the alveoli, a series of 90° RF pulses was applied to ensure maximum saturation of the accumulated Xenon magnetization in the lung parenchyma. Following a variable delay time, spectra were acquired to quantify the regrowth of the Xenon signal due to gas exchange between the alveolar gas volume and the tissue compartments of the lung. These spectra were then analyzed by fitting complex pseudo-Voigt functions to the three dominant peaks. Finally, the delay time-dependent peak amplitudes were fitted to a one-dimensional analytical gas-exchange model to extract physiological parameters.


Subject(s)
Xenon Isotopes , Xenon , Xenon Isotopes/chemistry , Lung/diagnostic imaging , Lung/physiology , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy
11.
Chemphyschem ; 24(23): e202300346, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37713677

ABSTRACT

Molecular imaging is the future of personalized medicine; however, it requires effective contrast agents. Hyperpolarized chemical exchange saturation transfer (HyperCEST) can boost the signal of Hyperpolarized 129 Xe MRI and render it a molecular imaging modality of high efficiency. Cucurbit[6]uril (CB6) has been successfully employed in vivo as a contrast agent for HyperCEST MRI, however its performance in a clinical MRI scanner has yet to be optimized. In this study, MRI pulse sequence parameter optimization was first performed in CB6 solutions in phosphate-buffered saline (PBS), and subsequently in whole sterile citrated bovine blood. The performance of four different depolarization pulse shapes (sinusoidal, 3-lobe sinc (3LS), rectangular (block), and hyperbolic secant (hypsec) was optimized. The detectability limits of CB6 in a clinical 3.0T MRI scanner was assessed using the optimized pulse sequences. The 3LS depolarization pulses performed best, and demonstrated 24 % depletion in a 25 µM solution of CB6 in PBS. It performed similarly in blood. The CB6 detectability limit was found to be 100 µM in citrated bovine blood with a correspondent HyperCEST depletion of 30 % ±9 %. For the first time, the HP 129 Xe HyperCEST effect was observed in red blood cells (RBC) and had a similar strength as HyperCEST in plasma.


Subject(s)
Magnetic Resonance Imaging , Xenon Isotopes , Animals , Cattle , Magnetic Resonance Spectroscopy/methods , Xenon Isotopes/chemistry , Magnetic Resonance Imaging/methods , Contrast Media , Molecular Imaging
12.
Int J Mol Sci ; 24(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37511071

ABSTRACT

Hyperpolarized (HP) xenon-129 (129Xe), when dissolved in blood, has two NMR resonances: one in red blood cells (RBC) and one in plasma. The impact of numerous blood components on these resonances, however, has not yet been investigated. This study evaluates the effects of elevated glucose levels on the chemical shift (CS) and T2* relaxation times of HP 129Xe dissolved in sterile citrated sheep blood for the first time. HP 129Xe was mixed with sheep blood samples premixed with a stock glucose solution using a liquid-gas exchange module. Magnetic resonance spectroscopy was performed on a 3T clinical MRI scanner using a custom-built quadrature dual-tuned 129Xe/1H coil. We observed an additional resonance for the RBCs (129Xe-RBC1) for the increased glucose levels. The CS of 129Xe-RBC1 and 129Xe-plasma peaks did not change with glucose levels, while the CS of 129Xe-RBC2 (original RBC resonance) increased linearly at a rate of 0.015 ± 0.002 ppm/mM with glucose level. 129Xe-RBC1 T2* values increased nonlinearly from 1.58 ± 0.24 ms to 2.67 ± 0.40 ms. As a result of the increased glucose levels in blood samples, the novel additional HP 129Xe dissolved phase resonance was observed in blood and attributed to the 129Xe bound to glycated hemoglobin (HbA1c).


Subject(s)
Maillard Reaction , Xenon Isotopes , Animals , Sheep , Xenon Isotopes/chemistry , Magnetic Resonance Imaging/methods , Hemoglobins , Glucose , Xenon , Lung
13.
J Magn Reson ; 352: 107430, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37141801

ABSTRACT

The accuracy of inertial measurement performed by the nuclear magnetic resonance gyroscope (NMRG) with two isotopes depends on the duration of transverse relaxation. Extending the relaxation of the xenon isotopes at the same time plays a very important role in the accuracy of gyro. The relaxation time of 129Xe and 131Xe can be increased to about 15-20 s by optimizing the buffer gas pressure of N2 at about 0.57 amg and coating RbH, respectively. According to the results of theoretical analysis and experimentation, the gyro stability reaches 0.6°/h, and the active measurement volume is 3 × 3 × 3 âˆ¼ mm3.


Subject(s)
Magnetic Resonance Imaging , Xenon Isotopes , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging/methods , Xenon Isotopes/chemistry , Isotopes , Xenon/chemistry
14.
Magn Reson Med ; 89(6): 2217-2226, 2023 06.
Article in English | MEDLINE | ID: mdl-36744585

ABSTRACT

PURPOSE: Imaging of the different resonances of hyperpolarized 129 Xe in the brain and lungs was performed using a 3D sampling density-weighted MRSI technique in healthy volunteers. METHODS: Four volunteers underwent dissolved-phase hyperpolarized 129 Xe imaging in the lung with the MRSI technique, which was designed to improve the point-spread function while preserving SNR (1799 phase-encoding steps, 14-s breath hold, 2.1-cm isotropic resolution). A frequency-tailored RF excitation pulse was implemented to reliably excite both the 129 Xe gas and dissolved phase (tissue/blood signal) with 0.1° and 10° flip angles, respectively. Images of xenon gas in the lung airspaces and xenon dissolved in lung tissue/blood were used to generate quantitative signal ratio maps. The method was also optimized and used for imaging dissolved resonances of 129 Xe in the brain in 2 additional volunteers. RESULTS: High-quality regional spectra of hyperpolarized 129 Xe were achieved in both the lung and the brain. Ratio maps of the different xenon resonances were obtained in the lung with sufficient SNR (> 10) at both 1.5 T and 3 T, making a triple Lorentzian fit possible and enabling the measurement of relaxation times and xenon frequency shifts on a voxel-wise basis. The imaging technique was successfully adapted for brain imaging, resulting in the first demonstration of 3D xenon brain images with a 2-cm isotropic resolution. CONCLUSION: Density-weighted MRSI is an SNR and encoding-efficient way to image 129 Xe resonances in the lung and the brain, providing a valuable tool to quantify regional spectroscopic information.


Subject(s)
Magnetic Resonance Imaging , Xenon Isotopes , Humans , Xenon Isotopes/chemistry , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Xenon , Imaging, Three-Dimensional/methods
15.
J Mol Model ; 28(11): 372, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36318276

ABSTRACT

In recent years, the study of new probes has aroused great interest in the scientific community around the world. Therefore, in the present work, we present a potential candidate for a new spectroscopic probe, the Xe(CO)3(NNO) conjugated to 2-(4'-aminophenyl) benzothiazole complex, XeABT. For this proposal, chemical shift calculations at the DFT level were performed; thus, a factorial design was carried out in order to choose the best computational method. The best combination was the base function ZORA-def2-TZVP, with the functional PBE0 and considering the relativistic effects with the ZORA implementation. Our findings reveal that the 129Xe chemical shifts are affected by thermal and solvent effects, and considering an enzymatic environment, a significant decrease in δ(129Xe) values is observed, suggesting with the XeABT complex it may be a promising spectroscopic probe.


Subject(s)
Thiazoles , Xenon Isotopes , Solvents/chemistry , Xenon Isotopes/chemistry , Magnetic Resonance Spectroscopy/methods
16.
Magn Reson Med ; 88(6): 2447-2460, 2022 12.
Article in English | MEDLINE | ID: mdl-36046917

ABSTRACT

PURPOSE: To demonstrate the utility of continuous-wave (CW) saturation pulses in xenon-polarization transfer contrast (XTC) MRI and MRS, to investigate the selectivity of CW pulses applied to dissolved-phase resonances, and to develop a correction method for measurement biases from saturation of the nontargeted dissolved-phase compartment. METHODS: Studies were performed in six healthy Sprague-Dawley rats over a series of end-exhale breath holds. Discrete saturation schemes included a series of 30 Gaussian pulses (8 ms FWHM), spaced 25 ms apart; CW saturation schemes included single block pulses, with variable flip angle and duration. In XTC imaging, saturation pulses were applied on both dissolved-phase resonance frequencies and off-resonance, to correct for other sources of signal loss and compromised selectivity. In spectroscopy experiments, saturation pulses were applied at a set of 19 frequencies spread out between 185 and 200 ppm to map out modified z-spectra. RESULTS: Both modified z-spectra and imaging results showed that CW RF pulses offer sufficient depolarization and improved selectivity for generating contrast between presaturation and postsaturation acquisitions. A comparison of results obtained using a variety of saturation parameters confirms that saturation pulses applied at higher powers exhibit increased cross-contamination between dissolved-phase resonances. CONCLUSION: Using CW RF saturation pulses in XTC contrast preparation, with the proposed correction method, offers a potentially more selective alternative to traditional discrete saturation. The suppression of the red blood cell contribution to the gas-phase depolarization opens the door to a novel way of quantifying exchange time between alveolar volume and hemoglobin.


Subject(s)
Xenon Isotopes , Xenon , Animals , Lung , Magnetic Resonance Imaging/methods , Rats , Rats, Sprague-Dawley , Xenon Isotopes/chemistry
17.
STAR Protoc ; 3(3): 101499, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35776640

ABSTRACT

Due to limited detection sensitivity and contrast limitation, imaging substrates with 129Xe MRI in living cells is still a challenge. Here, we present an effective protocol to detect and image substrates in human lung cancer cells A549 with hyperpolarized 129Xe MRI. This protocol was optimized for a cryptophane-based probe sensitive to biothiols and can be expanded to other Xe-based probes to detect potential biomarkers in other mammalian cells. For complete details on the use and execution of this protocol, please refer to Zeng et al. (2021).


Subject(s)
Lung Neoplasms , Xenon Isotopes , Animals , Humans , Lung Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Mammals , Molecular Probes , Xenon Isotopes/chemistry
18.
Molecules ; 28(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36615208

ABSTRACT

Accurate knowledge of the rubidium (Rb) vapor density, [Rb], is necessary to correctly model the spin dynamics of 129Xe-Rb spin-exchange optical pumping (SEOP). Here we present a systematic evaluation of [Rb] within a high-throughput 129Xe-Rb hyperpolarizer during continuous-flow SEOP. Near-infrared (52S1/2→52P1/2 (D1)/52P3/2 (D2)) and violet (52S1/2→62P1/2/62P3/2) atomic absorption spectroscopy was used to measure [Rb] within 3.5 L cylindrical SEOP cells containing different spatial distributions and amounts of Rb metal. We were able to quantify deviation from the Beer-Lambert law at high optical depth for D2 and 62P3/2 absorption by comparison with measurements of the D1 and 62P1/2 absorption lines, respectively. D2 absorption deviates from the Beer-Lambert law at [Rb]D2>4×1017 m−3 whilst 52S1/2→62P3/2 absorption deviates from the Beer-Lambert law at [Rb]6P3/2>(4.16±0.01)×1019 m−3. The measured [Rb] was used to estimate a 129Xe-Rb spin exchange cross section of γ'=(1.2±0.1)×10−21 m3 s−1, consistent with spin-exchange cross sections from the literature. Significant [Rb] heterogeneity was observed in a SEOP cell containing 1 g of Rb localized at the back of the cell. While [Rb] homogeneity was improved for a greater surface area of the Rb source distribution in the cell, or by using a Rb presaturator, the measured [Rb] was consistently lower than that predicted by saturation Rb vapor density curves. Efforts to optimize [Rb] and thermal management within spin polarizer systems are necessary to maximize potential future enhancements of this technology.


Subject(s)
Rubidium , Xenon Isotopes , Xenon Isotopes/chemistry , Magnetic Resonance Spectroscopy/methods , Rubidium/chemistry , Temperature
19.
Chemphyschem ; 22(12): 1219-1228, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33852753

ABSTRACT

Gas microbubbles are an established clinical ultrasound contrast agent. They could also become a powerful magnetic resonance (MR) intravascular contrast agent, but their low susceptibility-induced contrast requires high circulating concentrations or the addition of exogenous paramagnetic nanoparticles for MR detection. In order to detect clinical in vivo concentrations of raw microbubbles via MR, an alternative detection scheme must be used. HyperCEST is an NMR technique capable of indirectly detecting signals from very dilute molecules (concentrations well below the NMR detection threshold) that exchange hyperpolarized 129 Xe. Here, we use quantitative hyperCEST to show that microbubbles are very efficient hyperCEST agents. They can accommodate and saturate millions of 129 Xe atoms at a time, allowing for their indirect detection at concentrations as low as 10 femtomolar. The increased MR sensitivity to microbubbles achieved via hyperCEST can bridge the gap for microbubbles to become a dual modality contrast agent.


Subject(s)
Contrast Media/chemistry , Fluorocarbons/chemistry , Microbubbles , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods , Xenon Isotopes/chemistry
20.
Sci Rep ; 11(1): 6287, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737599

ABSTRACT

Understanding the mechanisms underlying general anesthesia would be a key step towards understanding consciousness. The process of xenon-induced general anesthesia has been shown to involve electron transfer, and the potency of xenon as a general anesthetic exhibits isotopic dependence. We propose that these observations can be explained by a mechanism in which the xenon nuclear spin influences the recombination dynamics of a naturally occurring radical pair of electrons. We develop a simple model inspired by the body of work on the radical-pair mechanism in cryptochrome in the context of avian magnetoreception, and we show that our model can reproduce the observed isotopic dependence of the general anesthetic potency of xenon in mice. Our results are consistent with the idea that radical pairs of electrons with entangled spins could be important for consciousness.


Subject(s)
Anesthesia, General/methods , Anesthetics, General/administration & dosage , Consciousness/drug effects , Electrons , Models, Molecular , Xenon Isotopes/administration & dosage , Anesthetics, General/chemistry , Anesthetics, General/metabolism , Animals , Catalytic Domain , Cryptochromes/metabolism , Electron Transport , Magnetic Fields , Mice , Reactive Oxygen Species/metabolism , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism , Xenon Isotopes/chemistry , Xenon Isotopes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL