Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 380
Filter
1.
Genome Biol ; 25(1): 85, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570851

ABSTRACT

Cell type annotation and lineage construction are two of the most critical tasks conducted in the analyses of single-cell RNA sequencing (scRNA-seq). Four recent scRNA-seq studies of differentiating xylem propose four models on differentiating xylem development in Populus. The differences are mostly caused by the use of different strategies for cell type annotation and subsequent lineage interpretation. Here, we emphasize the necessity of using in situ transcriptomes and anatomical information to construct the most plausible xylem development model.


Subject(s)
Populus , Populus/genetics , Populus/metabolism , Gene Expression Profiling , Xylem/genetics , Xylem/growth & development , Transcriptome , Single-Cell Analysis
2.
Int J Biol Macromol ; 268(Pt 1): 131559, 2024 May.
Article in English | MEDLINE | ID: mdl-38631576

ABSTRACT

Expansins are important plant cell wall proteins. They can loosen and soften the cell walls and lead to wall extension and cell expansion. To investigate their role in wood formation and fiber elongation, the PagEXPA1 that highly expressed in cell differentiation and expansion tissues was cloned from 84K poplar (Populus alba × P. glandulosa). The subcellular localization showed that PagEXPA1 located in the cell wall and it was highly expressed in primary stems and young leaves. Compared with non-transgenic 84K poplar, overexpression of PagEXPA1 can promote plant-growth, lignification, and fiber cell elongation, while PagEXPA1 Cas9-editing mutant lines exhibited the opposite phenotype. Transcriptome analysis revealed that DEGs were mainly enriched in some important processes, which are associated with cell wall formation and cellulose synthesis. The protein interaction prediction and expression analysis showed that PagCDKB2:1 and PagEXPA1 might have an interaction relationship. The luciferase complementary assay and bimolecular fluorescence complementary assay validated that PagEXPA1 can combined with PagCDKB2;1. So they promoted the expansion of xylem vascular tissues and the development of poplar though participating in the regulation of cell division and differentiation by programming the cell-cycle. It provides good foundation for molecular breeding of fast-growing and high-quality poplar varieties.


Subject(s)
Cell Wall , Gene Expression Regulation, Plant , Plant Proteins , Populus , Populus/genetics , Populus/growth & development , Populus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cell Wall/metabolism , Cell Wall/genetics , Plants, Genetically Modified , Gene Expression Profiling , Xylem/metabolism , Xylem/genetics , Plant Development/genetics , Wood/genetics , Wood/growth & development
3.
Plant Sci ; 344: 112083, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38588982

ABSTRACT

Due to the extended generation cycle of trees, the breeding process for forest trees tends to be time-consuming. Genetic engineering has emerged as a viable approach to expedite the genetic breeding of forest trees. However, current genetic engineering techniques employed in forest trees often utilize continuous expression promoters such as CaMV 35S, which may result in unintended consequences by introducing genes into non-target tissues. Therefore, it is imperative to develop specific promoters for forest trees to facilitate targeted and precise design and breeding. In this study, we utilized single-cell RNA-Seq data and co-expression network analysis during wood formation to identify three vascular tissue-specific genes in poplar, PP2-A10, PXY, and VNS07, which are expressed in the phloem, cambium/expanding xylem, and mature xylem, respectively. Subsequently, we cloned the promoters of these three genes from '84K' poplar and constructed them into a vector containing the eyGFPuv visual selection marker, along with the 35S mini enhancer to drive GUS gene expression. Transgenic poplars expressing the ProPagPP2-A10::GUS, ProPagPXY::GUS, and ProPagVNS07::GUS constructs were obtained. To further elucidate the tissue specificity of these promoters, we employed qPCR, histochemical staining, and GUS enzyme activity. Our findings not only establish a solid foundation for the future utilization of these promoters to precisely express of specific functional genes in stems but also provide a novel perspective for the modular breeding of forest trees.


Subject(s)
Populus , Promoter Regions, Genetic , Populus/genetics , Populus/metabolism , Promoter Regions, Genetic/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Xylem/genetics , Xylem/metabolism , Phloem/genetics , Phloem/metabolism , Genes, Plant
4.
Plant Sci ; 344: 112106, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663480

ABSTRACT

PXY (Phloem intercalated with xylem) is a receptor kinase required for directional cell division during the development of plant vascular tissue. Drought stress usually affects plant stem cell division and differentiation thereby limiting plant growth. However, the role of PXY in cambial activities of woody plants under drought stress is unclear. In this study, we analyzed the biological functions of two PXY genes (PagPXYa and PagPXYb) in poplar growth and development and in response to drought stress in a hybrid poplar (Populus alba × P. glandulosa, '84K'). Expression analysis indicated that PagPXYs, similar to their orthologs PtrPXYs in Populus trichocarpa, are mainly expressed in the stem vascular system, and related to drought. Interestingly, overexpression of PagPXYa and PagPXYb in poplar did not have a significant impact on the growth status of transgenic plants under normal condition. However, when treated with 8 % PEG6000 or 100 mM H2O2, PagPXYa and PagPXYb overexpressing lines consistently exhibited more cambium cell layers, fewer xylem cell layers, and enhanced drought tolerance compared to the non-transgenic control '84K'. In addition, PagPXYs can alleviate the damage caused by H2O2 to the cambium under drought stress, thereby maintaining the cambial division activity of poplar under drought stress, indicating that PagPXYs play an important role in plant resistance to drought stress. This study provides a new insight for further research on the balance of growth and drought tolerance in forest trees.


Subject(s)
Cambium , Droughts , Plant Proteins , Populus , Reactive Oxygen Species , Populus/genetics , Populus/physiology , Populus/metabolism , Populus/growth & development , Cambium/genetics , Cambium/growth & development , Cambium/physiology , Cambium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Plants, Genetically Modified/genetics , Homeostasis , Gene Expression Regulation, Plant , Xylem/metabolism , Xylem/physiology , Xylem/genetics , Stress, Physiological , Drought Resistance
5.
EMBO J ; 43(9): 1822-1842, 2024 May.
Article in English | MEDLINE | ID: mdl-38565947

ABSTRACT

A key question in plant biology is how oriented cell divisions are integrated with patterning mechanisms to generate organs with adequate cell type allocation. In the root vasculature, a gradient of miRNA165/6 controls the abundance of HD-ZIP III transcription factors, which in turn control cell fate and spatially restrict vascular cell proliferation to specific cells. Here, we show that vascular development requires the presence of ARGONAUTE10, which is thought to sequester miRNA165/6 and protect HD-ZIP III transcripts from degradation. Our results suggest that the miR165/6-AGO10-HDZIP III module acts by buffering cytokinin responses and restricting xylem differentiation. Mutants of AGO10 show faster growth rates and strongly enhanced survival under severe drought conditions. However, this superior performance is offset by markedly increased variation and phenotypic plasticity in sub-optimal carbon supply conditions. Thus, AGO10 is required for the control of formative cell division and coordination of robust cell fate specification of the vasculature, while altering its expression provides a means to adjust phenotypic plasticity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Argonaute Proteins , Cell Division , Gene Expression Regulation, Plant , MicroRNAs , Plant Roots , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis/cytology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Cell Division/genetics , Plant Roots/cytology , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Differentiation , Xylem/cytology , Xylem/metabolism , Xylem/growth & development , Xylem/genetics
6.
EMBO J ; 43(9): 1843-1869, 2024 May.
Article in English | MEDLINE | ID: mdl-38565948

ABSTRACT

The RNA-silencing effector ARGONAUTE10 influences cell fate in plant shoot and floral meristems. ARGONAUTE10 also accumulates in the root apical meristem (RAM), yet its function(s) therein remain elusive. Here, we show that ARGONAUTE10 is expressed in the root cell initials where it controls overall RAM activity and length. ARGONAUTE10 is also expressed in the stele, where post-transcriptional regulation confines it to the root tip's pro-vascular region. There, variations in ARGONAUTE10 levels modulate metaxylem-vs-protoxylem specification. Both ARGONAUTE10 functions entail its selective, high-affinity binding to mobile miR165/166 transcribed in the neighboring endodermis. ARGONAUTE10-bound miR165/166 is degraded, likely via SMALL-RNA-DEGRADING-NUCLEASES1/2, thus reducing miR165/166 ability to silence, via ARGONAUTE1, the transcripts of cell fate-influencing transcription factors. These include PHABULOSA (PHB), which controls meristem activity in the initials and xylem differentiation in the pro-vasculature. During early germination, PHB transcription increases while dynamic, spatially-restricted transcriptional and post-transcriptional mechanisms reduce and confine ARGONAUTE10 accumulation to the provascular cells surrounding the newly-forming xylem axis. Adequate miR165/166 concentrations are thereby channeled along the ARGONAUTE10-deficient yet ARGONAUTE1-proficient axis. Consequently, inversely-correlated miR165/166 and PHB gradients form preferentially along the axis despite ubiquitous PHB transcription and widespread miR165/166 delivery inside the whole vascular cylinder.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Argonaute Proteins , Gene Expression Regulation, Plant , Meristem , MicroRNAs , Plant Roots , Xylem , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , MicroRNAs/metabolism , MicroRNAs/genetics , Meristem/metabolism , Meristem/growth & development , Meristem/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Xylem/metabolism , Xylem/growth & development , Xylem/genetics , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics
7.
Ann Bot ; 133(7): 953-968, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38366549

ABSTRACT

BACKGROUND AND AIMS: Secondary cell wall (SCW) thickening is a major cellular developmental stage determining wood structure and properties. Although the molecular regulation of cell wall deposition during tracheary element differentiation has been well established in primary growth systems, less is known about the gene regulatory processes involved in the multi-layered SCW thickening of mature trees. METHODS: Using third-generation [long-read single-molecule real-time (SMRT)] and second-generation [short-read sequencing by synthesis (SBS)] sequencing methods, we established a Pinus bungeana transcriptome resource with comprehensive functional and structural annotation for the first time. Using these approaches, we generated high spatial resolution datasets for the vascular cambium, xylem expansion regions, early SCW thickening, late SCW thickening and mature xylem tissues of 71-year-old Pinus bungeana trees. KEY RESULTS: A total of 79 390 non-redundant transcripts, 31 808 long non-coding RNAs and 5147 transcription factors were annotated and quantified in different xylem tissues at all growth and differentiation stages. Furthermore, using this high spatial resolution dataset, we established a comprehensive transcriptomic profile and found that members of the NAC, WRKY, SUS, CESA and LAC gene families are major players in early SCW formation in tracheids, whereas members of the MYB and LBD transcription factor families are highly expressed during late SCW thickening. CONCLUSIONS: Our results provide new molecular insights into the regulation of multi-layered SCW thickening in conifers. The high spatial resolution datasets provided can serve as important gene resources for improving softwoods.


Subject(s)
Cell Wall , Pinus , Xylem , Cell Wall/genetics , Cell Wall/metabolism , Pinus/genetics , Pinus/growth & development , Xylem/genetics , Xylem/growth & development , Transcriptome , Gene Expression Regulation, Plant , Genes, Plant , Wood/genetics , Wood/growth & development , Wood/anatomy & histology
8.
Plant Cell Environ ; 47(6): 2044-2057, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38392920

ABSTRACT

Blue light photoreceptor cryptochrome 1 (CRY1) in herbaceous plants plays crucial roles in various developmental processes, including cotyledon expansion, hypocotyl elongation and anthocyanin biosynthesis. However, the function of CRY1 in perennial trees is unclear. In this study, we identified two ortholog genes of CRY1 (PagCRY1a and PagCRY1b) from Populus, which displayed high sequence similarity to Arabidopsis CRY1. Overexpression of PagCRY1 substantially inhibited plant growth and promoted secondary xylem development in Populus, while CRISPR/Cas9-mediated knockout of PagCRY1 enhanced plant growth and delayed secondary xylem development. Moreover, overexpression of PagCRY1 dramatically increased anthocyanin accumulation. The further analysis supported that PagCRY1 functions specifically in response to blue light. Taken together, our results demonstrated that modulating the expression of blue light photoreceptor CRY1 ortholog gene in Populus could significantly influence plant biomass production and the process of wood formation, laying a foundation for further investigating the light-regulated tree growth.


Subject(s)
Anthocyanins , Arabidopsis Proteins , Cryptochromes , Gene Expression Regulation, Plant , Light , Populus , Wood , Populus/genetics , Populus/metabolism , Populus/growth & development , Cryptochromes/metabolism , Cryptochromes/genetics , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Wood/metabolism , Wood/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Xylem/metabolism , Xylem/genetics , Xylem/growth & development , Photoreceptors, Plant/metabolism , Photoreceptors, Plant/genetics , Blue Light
9.
Plant Cell ; 36(5): 1806-1828, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38339982

ABSTRACT

Wood formation involves consecutive developmental steps, including cell division of vascular cambium, xylem cell expansion, secondary cell wall (SCW) deposition, and programmed cell death. In this study, we identified PagMYB31 as a coordinator regulating these processes in Populus alba × Populus glandulosa and built a PagMYB31-mediated transcriptional regulatory network. PagMYB31 mutation caused fewer layers of cambial cells, larger fusiform initials, ray initials, vessels, fiber and ray cells, and enhanced xylem cell SCW thickening, showing that PagMYB31 positively regulates cambial cell proliferation and negatively regulates xylem cell expansion and SCW biosynthesis. PagMYB31 repressed xylem cell expansion and SCW thickening through directly inhibiting wall-modifying enzyme genes and the transcription factor genes that activate the whole SCW biosynthetic program, respectively. In cambium, PagMYB31 could promote cambial activity through TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF)/PHLOEM INTERCALATED WITH XYLEM (PXY) signaling by directly regulating CLAVATA3/ESR-RELATED (CLE) genes, and it could also directly activate WUSCHEL HOMEOBOX RELATED4 (PagWOX4), forming a feedforward regulation. We also observed that PagMYB31 could either promote cell proliferation through the MYB31-MYB72-WOX4 module or inhibit cambial activity through the MYB31-MYB72-VASCULAR CAMBIUM-RELATED MADS2 (VCM2)/PIN-FORMED5 (PIN5) modules, suggesting its role in maintaining the homeostasis of vascular cambium. PagMYB31 could be a potential target to manipulate different developmental stages of wood formation.


Subject(s)
Cambium , Gene Expression Regulation, Plant , Plant Proteins , Populus , Transcription Factors , Xylem , Populus/genetics , Populus/growth & development , Populus/metabolism , Xylem/metabolism , Xylem/genetics , Xylem/growth & development , Cambium/genetics , Cambium/growth & development , Cambium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Wall/metabolism , Cell Proliferation , Wood/growth & development , Wood/metabolism , Wood/genetics
10.
Plant Physiol ; 195(1): 395-409, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38198215

ABSTRACT

Dwarfism is an important agronomic trait in fruit breeding programs. However, the germplasm resources required to generate dwarf pear (Pyrus spp.) varieties are limited. Moreover, the mechanisms underlying dwarfism remain unclear. In this study, "Yunnan" quince (Cydonia oblonga Mill.) had a dwarfing effect on "Zaosu" pear. Additionally, the dwarfism-related NAC transcription factor gene PbNAC71 was isolated from pear trees comprising "Zaosu" (scion) grafted onto "Yunnan" quince (rootstock). Transgenic Nicotiana benthamiana and pear OHF-333 (Pyrus communis) plants overexpressing PbNAC71 exhibited dwarfism, with a substantially smaller xylem and vessel area relative to the wild-type controls. Yeast one-hybrid, dual-luciferase, chromatin immunoprecipitation-qPCR, and electrophoretic mobility shift assays indicated that PbNAC71 downregulates PbWalls are thin 1 expression by binding to NAC-binding elements in its promoter. Yeast two-hybrid assays showed that PbNAC71 interacts with the E3 ubiquitin ligase PbRING finger protein 217 (PbRNF217). Furthermore, PbRNF217 promotes the ubiquitin-mediated degradation of PbNAC71 by the 26S proteasome, thereby regulating plant height as well as xylem and vessel development. Our findings reveal a mechanism underlying pear dwarfism and expand our understanding of the molecular basis of dwarfism in woody plants.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Pyrus , Transcription Factors , Xylem , Xylem/metabolism , Xylem/genetics , Pyrus/genetics , Pyrus/metabolism , Pyrus/growth & development , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/growth & development , Promoter Regions, Genetic/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics
11.
Plant Sci ; 339: 111950, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070652

ABSTRACT

Trees play a pivotal role in terrestrial ecosystems as well as being an important natural resource. These attributes are primarily associated with the capacity of trees to continuously produce woody tissue from the vascular cambium, a ring of stem cells located just beneath the bark. Long-lived trees are exposed to a myriad of biological and environmental stresses that may result in wounding, leading to a loss of bark and the underlying vascular cambium. This affects both wood formation and the quality of timber arising from the tree. In addition, the exposed wound site is a potential entry point for pathogens that cause disease. In response to wounding, trees have the capacity to regenerate lost or damaged tissues at this site. Investigating gene expression changes associated with different stages of wound healing reveals complex and dynamic changes in the activity of transcription factors, signalling pathways and hormone responses. In this review we summarise these data and discuss how they relate to our current understanding of vascular cambium formation and xylem differentiation during secondary growth. Based on this analysis, a model for wound healing that provides the conceptual foundations for future studies aimed at understanding this intriguing process is proposed.


Subject(s)
Phloem , Trees , Phloem/physiology , Ecosystem , Xylem/genetics , Wound Healing
12.
Plant Sci ; 339: 111938, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072332

ABSTRACT

The storage root (SR) of cassava is the main staple food in sub-Saharan Africa, where it feeds over 500 million people. However, little is known about the genetic and molecular regulation underlying its development. Unraveling such regulation would pave the way for biotechnology approaches aimed at enhancing cassava productivity. Anatomical studies indicate that SR development relies on the massive accumulation of xylem parenchyma, a cell-type derived from the vascular cambium. The C3HDZ family of transcription factors regulate cambial cells proliferation and xylem differentiation in Arabidopsis and other species. We thus aimed at identifying C3HDZ proteins in cassava and determining whether any of them shows preferential activity in the SR cambium and/or xylem. Using phylogeny and synteny studies, we identified eight C3HDZ proteins in cassava, namely MeCH3DZ1-8. We observed that MeC3HDZ1 is the MeC3HDZ gene displaying the highest expression in SR and that, within that organ, the gene also shows high expression in cambium and xylem. In-silico analyses revealed the existence of a number of potential C3HDZ targets displaying significant preferential expression in the SR. Subsequent Y1H analyses proved that MeC3HDZ1 can bind canonical C3HDZ binding sites, present in the promoters of these targets. Transactivation assays demonstrated that MeC3HDZ1 can regulate the expression of genes downstream of promoters harboring such binding sites, thereby demonstrating that MeC3HDZ1 has C3HDZ transcription factor activity. We conclude that MeC3HDZ1 may be a key factor for the regulation of storage root development in cassava, holding thus great promise for future biotechnology applications.


Subject(s)
Arabidopsis , Manihot , Humans , Manihot/genetics , Manihot/metabolism , Arabidopsis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Proliferation , Xylem/genetics , Xylem/metabolism , Gene Expression Regulation, Plant
13.
Genes (Basel) ; 14(9)2023 08 26.
Article in English | MEDLINE | ID: mdl-37761838

ABSTRACT

Wood is the most important renewable resource not only for numerous practical utilizations but also for mitigating the global climate crisis by sequestering atmospheric carbon dioxide. The compressed wood (CW) of gymnosperms, such as conifers, plays a pivotal role in determining the structure of the tree through the reorientation of stems displaced by environmental forces and is characterized by a high content of lignin. Despite extensive studies on many genes involved in wood formation, the molecular mechanisms underlying seasonal and, particularly, CW formation remain unclear. This study examined the seasonal dynamics of two wood tissue types in Pinus densiflora: CW and opposite wood (OW). RNA sequencing of developing xylem for two consecutive years revealed comprehensive transcriptome changes and unique differences in CW and OW across seasons. During growth periods, such as spring and summer, we identified 2255 transcripts with differential expression in CW, with an upregulation in lignin biosynthesis genes and significant downregulation in stress response genes. Notably, among the laccases critical for monolignol polymerization, PdeLAC17 was found to be specifically expressed in CW, suggesting its vital role in CW formation. PdeERF4, an ERF transcription factor preferentially expressed in CW, seems to regulate PdeLAC17 activity. This research provides an initial insight into the transcriptional regulation of seasonal CW development in P. densiflora, forming a foundation for future studies to enhance our comprehension of wood formation in gymnosperms.


Subject(s)
Pinus , Wood , Wood/genetics , Seasons , Pinus/genetics , Lignin/genetics , Xylem/genetics , Gene Expression Profiling
14.
J Plant Physiol ; 287: 154055, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37506405

ABSTRACT

Long noncoding RNAs (lncRNAs) play essential roles in numerous biological processes in plants, such as regulating the gene expression. However, only a few studies have looked into their potential functions in xylem development. High-throughput sequencing of P. euramericana 'Zhonglin46' developing and mature xylem was performed in this study. Through sequencing analysis, 14,028 putative lncRNA transcripts were identified, including 4525 differentially expressed lncRNAs (DELs). Additional research revealed that in mature xylem, a total of 2320 DELs were upregulated and 2205 were downregulated compared to developing xylem. Meanwhile, there were a total of 8122 differentially expressed mRNAs (DEMs) that were upregulated and 16,424 that were downregulated in mature xylem compared with developing xylem. The cis- and trans-target genes of DELs were analyzed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, which indicated that these DELs participate in controlling the phenylpropanoid and lignin biosynthesis pathway as well as the starch and sucrose metabolism pathway. Among the cis-regulated DELs, LNC_006291, LNC_006292, and LNC_006532 all participate in regulating multiple HCT gene family membranes. As targets, POPTR_001G045900v3 (CCR2) and POPTR_018G063500v3 (SUS) both have only one cis-regulatory lncRNA, referred to as LNC_000057 and LNC_006212, respectively. Moreover, LNC_004484 and two DELs named LNC_008014 and LNC_010781 were revealed to be important nodes in the co-expression network of trans-lncRNAs and mRNAs associated to the lignin biosynthesis pathway and cellulose and xylan biosynthetic pathways, respectively. Finally, quantitative real-time PCR (qRT-PCR) was used to confirme 34 pairs of lncRNA-mRNA. Taken together, these findings may help to clarify the regulatory role that lncRNAs play in xylem development and wood formation.


Subject(s)
Populus , RNA, Long Noncoding , RNA, Messenger/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Populus/genetics , Lignin , Xylem/genetics , Xylem/metabolism , Gene Regulatory Networks , Gene Expression Profiling
15.
Int J Mol Sci ; 24(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446058

ABSTRACT

As a major component of the plant primary cell wall, structure changes in pectin may affect the formation of the secondary cell wall and lead to serious consequences on plant growth and development. Pectin-modifying enzymes including pectate lyase-like proteins (PLLs) participate in the remodeling of pectin during organogenesis, especially during fruit ripening. In this study, we used Arabidopsis as a model system to identify critical PLL genes that are of particular importance for vascular development. Four PLL genes, named AtPLL15, AtPLL16, AtPLL19, and AtPLL26, were identified for xylem-specific expression. A knock-out T-DNA mutant of AtPLL16 displayed an increased amount of pectin, soluble sugar, and acid-soluble lignin (ASL). Interestingly, the atpll16 mutant exhibited an irregular xylem phenotype, accompanied by disordered xylem ray cells and an absence of interfascicular phloem fibers. The xylem fiber cell walls in the atpll16 mutant were thicker than those of the wild type. On the contrary, AtPLL16 overexpression resulted in expansion of the phloem and a dramatic change in the xylem-to-phloem ratios. Altogether, our data suggest that AtPLL16 as a pectate lyase plays an important role during vascular development in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Pectins/metabolism , Xylem/genetics , Xylem/metabolism , Growth and Development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Cell Wall/genetics , Cell Wall/metabolism
16.
Carbohydr Polym ; 314: 120959, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37173053

ABSTRACT

Cellulose, the major component of secondary cell walls, is the most abundant renewable long-chain polymer on earth. Nanocellulose has become a prominent nano-reinforcement agent for polymer matrices in various industries. We report the generation of transgenic hybrid poplar overexpressing the Arabidopsis gibberellin 20-oxidase1 gene driven by a xylem-specific promoter to increase gibberellin (GA) biosynthesis in wood. X-ray diffraction (XRD) and sum frequency generation spectroscopic (SFG) analyses showed that cellulose in transgenic trees was less crystalline, but the crystal size was larger. The nanocellulose fibrils prepared from transgenic wood had an increased size compared to those from wild type. When such fibrils were used as a reinforcing agent in sheet paper preparation, the mechanical strength of the paper was significantly enhanced. Engineering the GA pathway can therefore affect nanocellulose properties, providing a new strategy for expanding nanocellulose applications.


Subject(s)
Arabidopsis , Populus , Gibberellins , Xylem/genetics , Xylem/metabolism , Mixed Function Oxygenases/metabolism , Wood/metabolism , Cellulose/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Populus/genetics , Populus/metabolism
17.
Int J Mol Sci ; 24(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37047459

ABSTRACT

Brassinosteroids (BRs) are important hormones that play crucial roles in plant growth, reproduction, and responses to abiotic and biotic stresses. CYP85A1 is a castasterone (CS) synthase that catalyzes C-6 oxidation of 6-deoxocastasterone (6-deoxoCS) to CS, after which CS is converted into brassinolide (BL) in a reaction catalyzed by CYP85A2. Here, we report the functional characteristics of rice (Oryza sativa L.) OsCYP85A1. Constitutive expression of OsCYP85A1 driven by the cauliflower mosaic virus 35S promoter increased endogenous BR levels and significantly promoted growth and biomass production in three groups of transgenic Populus tomentosa lines. The plant height and stem diameter of the transgenic poplar plants were increased by 17.6% and 33.6%, respectively, in comparison with control plants. Simultaneously, we showed that expression of OsCYP85A1 enhanced xylem formation in transgenic poplar without affecting cell wall thickness or the composition of cellulose. Our findings suggest that OsCYP85A1 represents a potential target candidate gene for engineering fast-growing trees with improved wood production.


Subject(s)
Oryza , Populus , Oryza/genetics , Oryza/metabolism , Trees/genetics , Biomass , Wood/genetics , Xylem/genetics , Xylem/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Populus/metabolism
18.
Plant Physiol ; 192(3): 1821-1835, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37002827

ABSTRACT

The relationships between aerial organ morpho-anatomy of woody polyploid plants with their functional hydraulics under water stress remain largely understudied. We evaluated growth-associated traits, aerial organ xylem anatomy, and physiological parameters of diploid, triploid, and tetraploid genotypes of atemoyas (Annona cherimola × Annona squamosa), which belong to the woody perennial genus Annona (Annonaceae), testing their performance under long-term soil water reduction. The contrasting phenotypes of vigorous triploids and dwarf tetraploids consistently showed stomatal size-density tradeoff. The vessel elements in aerial organs were ∼1.5 times wider in polyploids compared with diploids, and triploids displayed the lowest vessel density. Plant hydraulic conductance was higher in well-irrigated diploids while their tolerance to drought was lower. The phenotypic disparity of atemoya polyploids associated with contrasting leaf and stem xylem porosity traits that coordinate to regulate water balances between the trees and the belowground and aboveground environments. Polyploid trees displayed better performance under soil water scarcity, and consequently, could present more sustainable agricultural and forestry genotypes to cope with water stress.


Subject(s)
Soil , Trees , Trees/genetics , Triploidy , Dehydration , Plant Leaves/genetics , Xylem/genetics , Droughts , Tetraploidy
19.
Genome Biol ; 24(1): 3, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36624504

ABSTRACT

BACKGROUND: Xylem, the most abundant tissue on Earth, is responsible for lateral growth in plants. Typical xylem has a radial system composed of ray parenchyma cells and an axial system of fusiform cells. In most angiosperms, fusiform cells comprise vessel elements for water transportation and libriform fibers for mechanical support, while both functions are performed by tracheids in other vascular plants such as gymnosperms. Little is known about the developmental programs and evolutionary relationships of these xylem cell types. RESULTS: Through both single-cell and laser capture microdissection transcriptomic profiling, we determine the developmental lineages of ray and fusiform cells in stem-differentiating xylem across four divergent woody angiosperms. Based on cross-species analyses of single-cell clusters and overlapping trajectories, we reveal highly conserved ray, yet variable fusiform, lineages across angiosperms. Core eudicots Populus trichocarpa and Eucalyptus grandis share nearly identical fusiform lineages, whereas the more basal angiosperm Liriodendron chinense has a fusiform lineage distinct from that in core eudicots. The tracheids in the basal eudicot Trochodendron aralioides, an evolutionarily reversed trait, exhibit strong transcriptomic similarity to vessel elements rather than libriform fibers. CONCLUSIONS: This evo-devo framework provides a comprehensive understanding of the formation of xylem cell lineages across multiple plant species spanning over a hundred million years of evolutionary history.


Subject(s)
Transcriptome , Xylem , Xylem/genetics , Wood , Gene Expression Profiling , Plants
20.
PLoS Pathog ; 19(1): e1011100, 2023 01.
Article in English | MEDLINE | ID: mdl-36716333

ABSTRACT

Verticillium transcription activator of adhesion 3 (Vta3) is required for plant root colonization and pathogenicity of the soil-borne vascular fungus Verticillium dahliae. RNA sequencing identified Vta3-dependent genetic networks required for growth in tomato xylem sap. Vta3 affects the expression of more than 1,000 transcripts, including candidates with predicted functions in virulence and morphogenesis such as Egh16-like virulence factor 1 (Elv1) and Master transcription factor 1 (Mtf1). The genes encoding Elv1 and Mtf1 were deleted and their functions in V. dahliae growth and virulence on tomato (Solanum lycopersicum) plants were investigated using genetics, plant infection experiments, gene expression studies and phytohormone analyses. Vta3 contributes to virulence by promoting ELV1 expression, which is dispensable for vegetative growth and conidiation. Vta3 decreases disease symptoms mediated by Mtf1 in advanced stages of tomato plant colonization, while Mtf1 induces the expression of fungal effector genes and tomato pathogenesis-related protein genes. The levels of pipecolic and salicylic acids functioning in tomato defense signaling against (hemi-) biotrophic pathogens depend on the presence of MTF1, which promotes the formation of resting structures at the end of the infection cycle. In summary, the presence of VTA3 alters gene expression of virulence factors and tames the Mtf1 genetic subnetwork for late stages of plant disease progression and subsequent survival of the fungus in the soil.


Subject(s)
Ascomycota , Verticillium , Virulence Factors/genetics , Virulence Factors/metabolism , Fungal Proteins/metabolism , Verticillium/genetics , Ascomycota/genetics , Xylem/genetics , Xylem/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression , Plant Diseases/genetics , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...