Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 444
Filter
1.
J Mol Biol ; 434(18): 167667, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35667470

ABSTRACT

The type III secretion system (T3SS) is indispensable for successful host cell infection by many Gram-negative pathogens. The molecular syringe delivers effector proteins that suppress the host immune response. Synthesis of T3SS components in Yersinia pseudotuberculosis relies on host body temperature, which induces the RNA thermometer (RNAT)-controlled translation of lcrF coding for a virulence master regulator that activates transcription of the T3SS regulon. The assembly of the secretion machinery follows a strict coordinated succession referred to as outside-in assembly, in which the membrane ring complex and the export apparatus represent the nucleation points. Two components essential for the initial assembly are YscJ and YscT. While YscJ connects the membrane ring complex with the export apparatus in the inner membrane, YscT is required for a functional export apparatus. Previous transcriptome-wide RNA structuromics data suggested the presence of unique intercistronic RNATs upstream of yscJ and yscT. Here, we show by reporter gene fusions that both upstream regions confer translational control. Moreover, we demonstrate the temperature-induced opening of the Shine-Dalgarno region, which facilitates ribosome binding, by in vitro structure probing and toeprinting methods. Rationally designed thermostable RNAT variants of the yscJ and yscT thermometers confirmed their physiological relevance with respect to T3SS assembly and host infection. Since we have shown in a recent study that YopN, the gatekeeper of type III secretion, also is under RNAT control, it appears that the synthesis, assembly and functionality of the Yersinia T3S machinery is coordinated by RNA-based temperature sensors at multiple levels.


Subject(s)
Body Temperature , Host-Pathogen Interactions , RNA, Bacterial , Type III Secretion Systems , Yersinia pseudotuberculosis Infections , Yersinia pseudotuberculosis , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Humans , RNA, Bacterial/chemistry , Trans-Activators/genetics , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis/pathogenicity , Yersinia pseudotuberculosis Infections/microbiology
2.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Article in English | MEDLINE | ID: mdl-34625471

ABSTRACT

Cellular ionic concentrations are a central factor orchestrating host innate immunity, but no pathogenic mechanism that perturbs host innate immunity by directly targeting metal ions has yet been described. Here, we report a unique virulence strategy of Yersinia pseudotuberculosis (Yptb) involving modulation of the availability of Mn2+, an immunostimulatory metal ion in host cells. We showed that the Yptb type VI secretion system (T6SS) delivered a micropeptide, TssS, into host cells to enhance its virulence. The mutant strain lacking TssS (ΔtssS) showed substantially reduced virulence but induced a significantly stronger host innate immune response, indicating an antagonistic role of this effector in host antimicrobial immunity. Subsequent studies revealed that TssS is a Mn2+-chelating protein and that its Mn2+-chelating ability is essential for the disruption of host innate immunity. Moreover, we showed that Mn2+ enhances the host innate immune response to Yptb infection by activating the stimulator of interferon genes (STING)-mediated immune response. Furthermore, we demonstrated that TssS counteracted the cytoplasmic Mn2+ increase to inhibit the STING-mediated innate immune response by sequestering Mn2+ Finally, TssS-mediated STING inhibition sabotaged bacterial clearance in vivo. These results reveal a previously unrecognized bacterial immune evasion strategy involving modulation of the bioavailability of intracellular metal ions and provide a perspective on the role of the T6SS in pathogenesis.


Subject(s)
Immunity, Innate , Manganese/metabolism , Membrane Proteins/metabolism , Type VI Secretion Systems , Animals , Mice , Mice, Inbred C57BL , Protein Binding , Protein Transport , Yersinia pseudotuberculosis/metabolism , Yersinia pseudotuberculosis/pathogenicity
3.
Biomolecules ; 11(10)2021 09 26.
Article in English | MEDLINE | ID: mdl-34680043

ABSTRACT

Lipopolysaccharide (LPS), localized in the outer leaflet of the outer membrane, serves as the major surface component of the Gram-negative bacterial cell envelope responsible for the activation of the host's innate immune system. Variations of the LPS structure utilized by Gram-negative bacteria promote survival by providing resistance to components of the innate immune system and preventing recognition by TLR4. This review summarizes studies of the biosynthesis of Yersinia pseudotuberculosis complex LPSs, and the roles of their structural components in molecular mechanisms of yersiniae pathogenesis and immunogenesis.


Subject(s)
Host-Pathogen Interactions/immunology , Immunity, Innate/genetics , Lipopolysaccharides/chemistry , Yersinia pseudotuberculosis/chemistry , Host-Pathogen Interactions/genetics , Humans , Lipid A/genetics , Lipid A/immunology , Lipopolysaccharides/genetics , Lipopolysaccharides/immunology , Molecular Structure , Structure-Activity Relationship , Yersinia pseudotuberculosis/immunology , Yersinia pseudotuberculosis/pathogenicity
4.
mBio ; 12(3): e0063321, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34060331

ABSTRACT

The iron-sulfur cluster coordinating transcription factor IscR is important for the virulence of Yersinia pseudotuberculosis and a number of other bacterial pathogens. However, the IscR regulon has not yet been defined in any organism. To determine the Yersinia IscR regulon and identify IscR-dependent functions important for virulence, we employed chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) of Y. pseudotuberculosis expressing or lacking iscR following iron starvation conditions, such as those encountered during infection. We found that IscR binds to the promoters of genes involved in iron homeostasis, reactive oxygen species metabolism, and cell envelope remodeling and regulates expression of these genes in response to iron depletion. Consistent with our previous work, we also found that IscR binds in vivo to the promoter of the Ysc type III secretion system (T3SS) master regulator LcrF, leading to regulation of T3SS genes. Interestingly, comparative genomic analysis suggested over 93% of IscR binding sites were conserved between Y. pseudotuberculosis and the related plague agent Yersinia pestis. Surprisingly, we found that the IscR positively regulated sufABCDSE Fe-S cluster biogenesis pathway was required for T3SS activity. These data suggest that IscR regulates the T3SS in Yersinia through maturation of an Fe-S cluster protein critical for type III secretion, in addition to its known role in activating T3SS genes through LcrF. Altogether, our study shows that iron starvation triggers IscR to coregulate multiple, distinct pathways relevant to promoting bacterial survival during infection. IMPORTANCE How bacteria adapt to the changing environment within the host is critical for their ability to survive and cause disease. For example, the mammalian host severely restricts iron availability to limit bacterial growth, referred to as nutritional immunity. Here, we show that pathogenic Yersinia use the iron-sulfur (Fe-S) cluster regulator IscR, a factor critical for pathogenesis, to sense iron availability and regulate multiple pathways known or predicted to contribute to virulence. Under low iron conditions that mimic those Yersinia encounter during infection, IscR levels increase, leading to modulation of genes involved in iron metabolism, stress resistance, cell envelope remodeling, and subversion of host defenses. These data suggest that IscR senses nutritional immunity to coordinate processes important for bacterial survival within the mammalian host.


Subject(s)
Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial/genetics , Genome, Bacterial , Genomics/methods , Virulence Factors/genetics , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis/pathogenicity , Bacterial Proteins/metabolism , Binding Sites , Humans , Iron/metabolism , Promoter Regions, Genetic , Virulence , Yersinia pestis/genetics , Yersinia pseudotuberculosis/metabolism , Yersinia pseudotuberculosis Infections/microbiology
5.
Virulence ; 12(1): 638-653, 2021 12.
Article in English | MEDLINE | ID: mdl-33550901

ABSTRACT

Adhesins facilitate bacterial colonization and invasion of host tissues and are considered virulence factors, but their impact on immune-mediated damage as a driver of pathogenesis remains unclear. Yersinia pseudotuberculosis encodes for a multivalent adhesion molecule (MAM), a mammalian cell entry (MCE) family protein and adhesin. MAMs are widespread in Gram-negative bacteria and enable enteric bacteria to colonize epithelial tissues. Their role in bacterial interactions with the host innate immune system and contribution to pathogenicity remains unclear. Here, we investigated howY. pseudotuberculosis MAM contributes to pathogenesis during infection of the Galleria mellonella insect model. We show that Y. pseudotuberculosis MAM is required for efficient bacterial binding and uptake by hemocytes, the host phagocytes. Y. pseudotuberculosis interactions with insect and mammalian phagocytes are determined by bacterial and host factors. Loss of MAM, and deficient microbe-phagocyte interaction, increased pathogenesis in G. mellonella. Diminished phagocyte association also led to increased bacterial clearance. Furthermore, Y. pseudotuberculosis that failed to engage phagocytes hyperactivated humoral immune responses, most notably melanin production. Despite clearing the pathogen, excessive melanization also increased phagocyte death and host mortality. Our findings provide a basis for further studies investigating how microbe- and host-factors integrate to drive pathogenesis in a tractable experimental system.


Subject(s)
Host-Pathogen Interactions , Larva/microbiology , Moths/microbiology , Phagocytes/microbiology , Phagocytes/pathology , Yersinia pseudotuberculosis/metabolism , Adhesins, Bacterial , Animals , Hemocytes , Moths/cytology , Phagocytes/immunology , Virulence Factors , Yersinia pseudotuberculosis/immunology , Yersinia pseudotuberculosis/pathogenicity , Yersinia pseudotuberculosis Infections/microbiology
6.
Nat Commun ; 12(1): 423, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33462232

ABSTRACT

Bacterial type VI secretion systems (T6SSs) inject toxic effectors into adjacent eukaryotic and prokaryotic cells. It is generally thought that this process requires physical contact between the two cells. Here, we provide evidence of contact-independent killing by a T6SS-secreted effector. We show that the pathogen Yersinia pseudotuberculosis uses a T6SS (T6SS-3) to secrete a nuclease effector that kills other bacteria in vitro and facilitates gut colonization in mice. The effector (Tce1) is a small protein that acts as a Ca2+- and Mg2+-dependent DNase, and its toxicity is inhibited by a cognate immunity protein, Tci1. As expected, T6SS-3 mediates canonical, contact-dependent killing by directly injecting Tce1 into adjacent cells. In addition, T6SS-3 also mediates killing of neighboring cells in the absence of cell-to-cell contact, by secreting Tce1 into the extracellular milieu. Efficient contact-independent entry of Tce1 into target cells requires proteins OmpF and BtuB in the outer membrane of target cells. The discovery of a contact-independent, long-range T6SS toxin delivery provides a new perspective for understanding the physiological roles of T6SS in competition. However, the mechanisms mediating contact-independent uptake of Tce1 by target cells remain unclear.


Subject(s)
Bacterial Toxins/metabolism , Deoxyribonucleases/metabolism , Type VI Secretion Systems/metabolism , Yersinia pseudotuberculosis Infections/pathology , Yersinia pseudotuberculosis/pathogenicity , Animals , Bacterial Outer Membrane Proteins/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/isolation & purification , Bacterial Toxins/toxicity , Deoxyribonucleases/genetics , Deoxyribonucleases/isolation & purification , Deoxyribonucleases/toxicity , Disease Models, Animal , Female , Humans , Mice , Mutagenesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/toxicity , Yersinia pseudotuberculosis/metabolism , Yersinia pseudotuberculosis Infections/microbiology
7.
Science ; 372(6549)2021 06 25.
Article in English | MEDLINE | ID: mdl-35058659

ABSTRACT

Host cells initiate cell death programs to limit pathogen infection. Inhibition of transforming growth factor-ß-activated kinase 1 (TAK1) by pathogenic Yersinia in macrophages triggers receptor-interacting serine/threonine-protein kinase 1 (RIPK1)-dependent caspase-8 cleavage of gasdermin D (GSDMD) and inflammatory cell death (pyroptosis). A genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screen to uncover mediators of caspase-8-dependent pyroptosis identified an unexpected role of the lysosomal FLCN-FNIP2-Rag-Ragulator supercomplex, which regulates metabolic signalling and the mechanistic target of rapamycin complex 1 (mTORC1). In response to Yersinia infection, FADD, RIPK1 and caspase-8 were recruited to Rag-Ragulator, causing RIPK1 phosphorylation and caspase-8 activation. Pyroptosis activation depended on Rag GTPase activity and lysosomal tethering of Rag-Ragulator, but not mTORC1. Thus, the lysosomal metabolic regulator Rag-Ragulator instructs the inflammatory response to Yersinia.


Subject(s)
Caspase 8/metabolism , Lysosomes/metabolism , Macrophages/metabolism , Macrophages/microbiology , Pyroptosis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Yersinia pseudotuberculosis/physiology , Animals , CRISPR-Cas Systems , Cells, Cultured , HEK293 Cells , Humans , Inflammasomes/metabolism , Intracellular Membranes/metabolism , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/metabolism , Mice , Monomeric GTP-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , Signal Transduction , Yersinia pseudotuberculosis/pathogenicity
8.
Immunohorizons ; 4(12): 789-796, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33310881

ABSTRACT

Bacterial pathogens from the genus Yersinia cause fatal sepsis and gastritis in humans. Innate immune signaling and inflammatory cell death (pyroptosis, apoptosis, and necroptosis [PANoptosis]) serve as a first line of antimicrobial host defense. The receptor-interacting protein kinase 1 (RIPK1) is essential for Yersinia-induced pyroptosis and apoptosis and an effective host response. However, it is not clear whether RIPK1 assembles a multifaceted cell death complex capable of regulating caspase-dependent pyroptosis and apoptosis or whether there is cross-talk with necroptosis under these conditions. In this study, we report that Yersinia activates PANoptosis, as evidenced by the concerted activation of proteins involved in PANoptosis. Genetic deletion of RIPK1 abrogated the Yersinia-induced activation of the inflammasome/pyroptosis and apoptosis but enhanced necroptosis. We also found that Yersinia induced assembly of a RIPK1 PANoptosome complex capable of regulating all three branches of PANoptosis. Overall, our results demonstrate a role for the RIPK1 PANoptosome in Yersinia-induced inflammatory cell death and host defense.


Subject(s)
Inflammation/pathology , Necroptosis , Pyroptosis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Yersinia pseudotuberculosis/pathogenicity , Animals , Inflammasomes , Inflammation/etiology , Inflammation/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Inbred C57BL , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Signal Transduction
9.
Bull Exp Biol Med ; 170(2): 223-225, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33263854

ABSTRACT

Electron microscopy study revealed changes in the ultrastructure of bacteria of Yersinia pseudotuberculosis strains characterized by significantly reduced reproductive ability and virulence potential after long-term storage at low temperature of 4-8°C. Most bacterial cells contained dark cytosol with reduced cellular material or empty cytosol, while the cell wall was preserved. The revealed ultrastructural changes in the bacterial cells of the static culture of Y. pseudotuberculosis suggest that storage of strains under low positive temperatures could induce the transition of the majority of bacterial cell population to a dormant, non-cultivated state with a decrease in their virulence. This fact is of great scientific and applied importance in studies of causative agents of saprozoonoses, including pseudotuberculosis, which has the etiopathogenetic background of persistent infection.


Subject(s)
Yersinia pseudotuberculosis Infections/microbiology , Yersinia pseudotuberculosis/pathogenicity , Yersinia pseudotuberculosis/ultrastructure , Anti-Bacterial Agents/pharmacology , Cell Wall/metabolism , Chromatin/chemistry , Cold Temperature , Cytosol/metabolism , Humans , Microbial Sensitivity Tests , Microbiological Techniques , Microscopy, Electron, Transmission , Specimen Handling , Virulence
10.
Curr Protoc Microbiol ; 59(1): e122, 2020 12.
Article in English | MEDLINE | ID: mdl-33079471

ABSTRACT

Yersinia pseudotuberculosis has been studied for many decades, and research on this microbe has taught us a great deal about host-pathogen interactions, bacterial manipulation of host cells, virulence factors, and the evolution of pathogens. This microbe should not be cultivated at 37°C because this is a trigger that the bacterium uses to sense its presence within a mammalian host and results in expression of genes necessary to colonize a mammalian host. Prolonged growth at this temperature can result in accumulation of mutations that reduce the virulence of the strain, so all protocols need to be modified for growth at room temperature, or 26°C. This article describes protocols for cultivating this microbe and for its long-term storage and its genetic manipulation by transformation and conjugation. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Growth of Y. pseudotuberculosis from a stock Basic Protocol 2: Growth of Y. pseudotuberculosis in liquid medium from a single colony Basic Protocol 3: Freezing Y. pseudotuberculosis in glycerol for long-term storage Basic Protocol 4: Transformation of Y. pseudotuberculosis by electroporation Basic Protocol 5: Tri-parental mating/conjugation.


Subject(s)
Microbiological Techniques/methods , Yersinia pseudotuberculosis/growth & development , Yersinia pseudotuberculosis/genetics , Animals , Culture Media , DNA, Bacterial , Host-Pathogen Interactions , Plasmids , Temperature , Transformation, Genetic , Virulence , Yersinia pseudotuberculosis/pathogenicity , Yersinia pseudotuberculosis Infections/microbiology
11.
PLoS Pathog ; 16(5): e1008576, 2020 05.
Article in English | MEDLINE | ID: mdl-32392230

ABSTRACT

Yersinia suppress neutrophil responses by using a type 3 secretion system (T3SS) to inject 6-7 Yersinia effector proteins (Yops) effectors into their cytoplasm. YopH is a tyrosine phosphatase that causes dephosphorylation of the adaptor protein SKAP2, among other targets in neutrophils. SKAP2 functions in reactive oxygen species (ROS) production, phagocytosis, and integrin-mediated migration by neutrophils. Here we identify essential neutrophil functions targeted by YopH, and investigate how the interaction between YopH and SKAP2 influence Yersinia pseudotuberculosis (Yptb) survival in tissues. The growth defect of a ΔyopH mutant was restored in mice defective in the NADPH oxidase complex, demonstrating that YopH is critical for protecting Yptb from ROS during infection. The growth of a ΔyopH mutant was partially restored in Skap2-deficient (Skap2KO) mice compared to wild-type (WT) mice, while induction of neutropenia further enhanced the growth of the ΔyopH mutant in both WT and Skap2KO mice. YopH inhibited both ROS production and degranulation triggered via integrin receptor, G-protein coupled receptor (GPCR), and Fcγ receptor (FcγR) stimulation. SKAP2 was required for integrin receptor and GPCR-mediated ROS production, but dispensable for degranulation under all conditions tested. YopH blocked SKAP2-independent FcγR-stimulated phosphorylation of the proximal signaling proteins Syk, SLP-76, and PLCγ2, and the more distal signaling protein ERK1/2, while only ERK1/2 phosphorylation was dependent on SKAP2 following integrin receptor activation. These findings reveal that YopH prevents activation of both SKAP2-dependent and -independent neutrophilic defenses, uncouple integrin- and GPCR-dependent ROS production from FcγR responses based on their SKAP2 dependency, and show that SKAP2 is not required for degranulation.


Subject(s)
Bacterial Outer Membrane Proteins/immunology , Intracellular Signaling Peptides and Proteins/immunology , Neutrophils/immunology , Protein Tyrosine Phosphatases/immunology , Signal Transduction/immunology , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis/immunology , Animals , Intracellular Signaling Peptides and Proteins/genetics , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Neutrophils/pathology , Reactive Oxygen Species/immunology , Signal Transduction/genetics , Yersinia pseudotuberculosis/pathogenicity , Yersinia pseudotuberculosis Infections/genetics , Yersinia pseudotuberculosis Infections/pathology
12.
BMJ Case Rep ; 13(2)2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32060113

ABSTRACT

Yersinia pseudotuberculosis is a Gram-negative zoonosis which occasionally infects humans via ingestion of contaminated food and water, and typically causes a self-limiting gastrointestinal tract infection. Patients who are immunocompromised, have haemochromatosis or liver cirrhosis are more likely to develop serious complications such as bacteraemia. We present the case of a 76-year-old man with fever and an acutely tender, swollen right knee. Blood cultures were positive for Y. pseudotuberculosis, and 16s ribosomal PCR analysis of his knee aspirate confirmed septic arthritis. He was treated with intravenous ceftriaxone and made an excellent recovery following knee washout. Interestingly, our patient did not have any of the classic risk factors described in the literature, or history of exposure to the pathogen to explain his diagnosis. To our knowledge, this is only the second confirmed case of Y. pseudotuberculosis bacteraemia with septic arthritis, and the first to involve the knee joint.


Subject(s)
Arthritis, Infectious/etiology , Bacteremia/complications , Knee Joint/pathology , Yersinia pseudotuberculosis Infections/complications , Aged , Fever/etiology , Humans , Male , Risk Factors , Yersinia pseudotuberculosis/pathogenicity
13.
Sci Rep ; 10(1): 2103, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034212

ABSTRACT

Bacterial infections continue to threaten humankind and the rapid spread of antibiotic resistant bacteria is alarming. Current antibiotics target essential bacterial processes and thereby apply a strong selective pressure on pathogenic and non-pathogenic bacteria alike. One alternative strategy is to block bacterial virulence systems that are essential for the ability to cause disease but not for general bacterial viability. We have previously show that the plant natural product (-)-hopeaphenol blocks the type III secretion system (T3SS) in the Gram-negative pathogens Yersinia pseudotuberculosis and Pseudomonas aeruginosa. (-)-Hopeaphenol is a resveratrol tetramer and in the present study we explore various resveratrol dimers, including partial structures of (-)-hopeaphenol, as T3SS inhibitors. To allow rapid and efficient assessment of T3SS inhibition in P. aeruginosa, we developed a new screening method by using a green fluorescent protein reporter under the control of the ExoS promoter. Using a panel of assays we showed that compounds with a benzofuran core structure i.e. viniferifuran, dehydroampelopsin B, anigopreissin A, dehydro-δ-viniferin and resveratrol-piceatannol hybrid displayed significant to moderate activities towards the T3SS in Y. pseudotuberculosis and P. aeruginosa.


Subject(s)
Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/drug effects , Resveratrol/pharmacology , Type III Secretion Systems/antagonists & inhibitors , Yersinia pseudotuberculosis/drug effects , Benzofurans/pharmacology , Drug Discovery , Flavonoids/pharmacology , Genes, Reporter/genetics , Green Fluorescent Proteins/genetics , Phenols , Pseudomonas aeruginosa/pathogenicity , Resveratrol/analogs & derivatives , Stilbenes/pharmacology , Virulence/drug effects , Yersinia pseudotuberculosis/pathogenicity
14.
PLoS Pathog ; 16(1): e1008184, 2020 01.
Article in English | MEDLINE | ID: mdl-31951643

ABSTRACT

Frequent transitions of bacterial pathogens between their warm-blooded host and external reservoirs are accompanied by abrupt temperature shifts. A temperature of 37°C serves as reliable signal for ingestion by a mammalian host, which induces a major reprogramming of bacterial gene expression and metabolism. Enteric Yersiniae are Gram-negative pathogens accountable for self-limiting gastrointestinal infections. Among the temperature-regulated virulence genes of Yersinia pseudotuberculosis is cnfY coding for the cytotoxic necrotizing factor (CNFY), a multifunctional secreted toxin that modulates the host's innate immune system and contributes to the decision between acute infection and persistence. We report that the major determinant of temperature-regulated cnfY expression is a thermo-labile RNA structure in the 5'-untranslated region (5'-UTR). Various translational gene fusions demonstrated that this region faithfully regulates translation initiation regardless of the transcription start site, promoter or reporter strain. RNA structure probing revealed a labile stem-loop structure, in which the ribosome binding site is partially occluded at 25°C but liberated at 37°C. Consistent with translational control in bacteria, toeprinting (primer extension inhibition) experiments in vitro showed increased ribosome binding at elevated temperature. Point mutations locking the 5'-UTR in its 25°C structure impaired opening of the stem loop, ribosome access and translation initiation at 37°C. To assess the in vivo relevance of temperature control, we used a mouse infection model. Y. pseudotuberculosis strains carrying stabilized RNA thermometer variants upstream of cnfY were avirulent and attenuated in their ability to disseminate into mesenteric lymph nodes and spleen. We conclude with a model, in which the RNA thermometer acts as translational roadblock in a two-layered regulatory cascade that tightly controls provision of the CNFY toxin during acute infection. Similar RNA structures upstream of various cnfY homologs suggest that RNA thermosensors dictate the production of secreted toxins in a wide range of pathogens.


Subject(s)
Bacterial Toxins/biosynthesis , Bacterial Toxins/genetics , Gene Expression Regulation, Bacterial , RNA, Bacterial/metabolism , Yersinia pseudotuberculosis Infections/microbiology , Yersinia pseudotuberculosis/metabolism , 5' Untranslated Regions , Animals , Bacterial Toxins/chemistry , Female , Humans , Inverted Repeat Sequences , Mice , Mice, Inbred BALB C , Nucleic Acid Conformation , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , Temperature , Virulence , Yersinia pseudotuberculosis/chemistry , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis/pathogenicity
15.
PLoS Pathog ; 15(12): e1008001, 2019 12.
Article in English | MEDLINE | ID: mdl-31869388

ABSTRACT

The enteropathogen Yersinia pseudotuberculosis and the related plague agent Y. pestis require the Ysc type III secretion system (T3SS) to subvert phagocyte defense mechanisms and cause disease. Yet type III secretion (T3S) in Yersinia induces growth arrest and innate immune recognition, necessitating tight regulation of the T3SS. Here we show that Y. pseudotuberculosis T3SS expression is kept low under anaerobic, iron-rich conditions, such as those found in the intestinal lumen where the Yersinia T3SS is not required for growth. In contrast, the Yersinia T3SS is expressed under aerobic or anaerobic, iron-poor conditions, such as those encountered by Yersinia once they cross the epithelial barrier and encounter phagocytic cells. We further show that the [2Fe-2S] containing transcription factor, IscR, mediates this oxygen and iron regulation of the T3SS by controlling transcription of the T3SS master regulator LcrF. IscR binds directly to the lcrF promoter and, importantly, a mutation that prevents this binding leads to decreased disseminated infection of Y. pseudotuberculosis but does not perturb intestinal colonization. Similar to E. coli, Y. pseudotuberculosis uses the Fe-S cluster occupancy of IscR as a readout of oxygen and iron conditions that impact cellular Fe-S cluster homeostasis. We propose that Y. pseudotuberculosis has coopted this system to sense entry into deeper tissues and induce T3S where it is required for virulence. The IscR binding site in the lcrF promoter is completely conserved between Y. pseudotuberculosis and Y. pestis. Deletion of iscR in Y. pestis leads to drastic disruption of T3S, suggesting that IscR control of the T3SS evolved before Y. pestis split from Y. pseudotuberculosis.


Subject(s)
Iron/metabolism , Oxygen/metabolism , Type III Secretion Systems/metabolism , Yersinia pseudotuberculosis Infections/immunology , Animals , Bacterial Proteins/metabolism , Bacterial Secretion Systems/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial/genetics , Promoter Regions, Genetic/genetics , Transcription, Genetic , Yersinia/metabolism , Yersinia pseudotuberculosis/pathogenicity , Yersinia pseudotuberculosis Infections/metabolism
16.
Infect Immun ; 87(10)2019 10.
Article in English | MEDLINE | ID: mdl-31331960

ABSTRACT

In this study, a novel recombinant attenuated Yersinia pseudotuberculosis PB1+ strain (χ10069) engineered with ΔyopK ΔyopJ Δasd triple mutations was used to deliver a Y. pestis fusion protein, YopE amino acid 1 to 138-LcrV (YopENt138-LcrV), to Swiss Webster mice as a protective antigen against infections by yersiniae. χ10069 bacteria harboring the pYA5199 plasmid constitutively synthesized the YopENt138-LcrV fusion protein and secreted it via the type 3 secretion system (T3SS) at 37°C under calcium-deprived conditions. The attenuated strain χ10069(pYA5199) was manifested by the establishment of controlled infection in different tissues without developing conspicuous signs of disease in histopathological analysis of microtome sections. A single-dose oral immunization of χ10069(pYA5199) induced strong serum antibody titers (log10 mean value, 4.2), secretory IgA in bronchoalveolar lavage (BAL) fluid from immunized mice, and Yersinia-specific CD4+ and CD8+ T cells producing high levels of tumor necrosis factor alpha (TNF-α), gamma interferon (IFN-γ), and interleukin 2 (IL-2), as well as IL-17, in both lungs and spleens of immunized mice, conferring comprehensive Th1- and Th2-mediated immune responses and protection against bubonic and pneumonic plague challenges, with 80% and 90% survival, respectively. Mice immunized with χ10069(pYA5199) also exhibited complete protection against lethal oral infections by Yersinia enterocolitica WA and Y. pseudotuberculosis PB1+. These findings indicated that χ10069(pYA5199) as an oral vaccine induces protective immunity to prevent bubonic and pneumonic plague, as well as yersiniosis, in mice and would be a promising oral vaccine candidate for protection against plague and yersiniosis for human and veterinary applications.


Subject(s)
Antibodies, Bacterial/biosynthesis , Immunoglobulin A/biosynthesis , Plague Vaccine/administration & dosage , Plague/prevention & control , Recombinant Fusion Proteins/administration & dosage , Yersinia pestis/drug effects , Yersinia pseudotuberculosis Infections/prevention & control , Yersinia pseudotuberculosis/drug effects , Administration, Oral , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/microbiology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/microbiology , Cross Protection , Female , Gene Expression , Humans , Immunization , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Lung/drug effects , Lung/immunology , Lung/microbiology , Male , Mice , Plague/immunology , Plague/microbiology , Plague/mortality , Plague Vaccine/biosynthesis , Plague Vaccine/genetics , Plague Vaccine/immunology , Plasmids/chemistry , Plasmids/metabolism , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Survival Analysis , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Vaccines, Synthetic , Yersinia pestis/immunology , Yersinia pestis/pathogenicity , Yersinia pseudotuberculosis/immunology , Yersinia pseudotuberculosis/pathogenicity , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis Infections/microbiology , Yersinia pseudotuberculosis Infections/mortality
18.
Infect Immun ; 87(1)2019 01.
Article in English | MEDLINE | ID: mdl-30348825

ABSTRACT

Yersinia pseudotuberculosis is a Gram-negative enteropathogen and causes gastrointestinal infections. It disseminates from gut to mesenteric lymph nodes (MLNs), spleen, and liver of infected humans and animals. Although the molecular mechanisms for dissemination and infection are unclear, many Gram-negative enteropathogens presumably invade the small intestine via Peyer's patches to initiate dissemination. In this study, we demonstrate that Y. pseudotuberculosis utilizes its lipopolysaccharide (LPS) core to interact with CD209 receptors, leading to invasion of human dendritic cells (DCs) and murine macrophages. These Y. pseudotuberculosis-CD209 interactions result in bacterial dissemination to MLNs, spleens, and livers of both wild-type and Peyer's patch-deficient mice. The blocking of the Y. pseudotuberculosis-CD209 interactions by expression of O-antigen and with oligosaccharides reduces infectivity. Based on the well-documented studies in which HIV-CD209 interaction leads to viral dissemination, we therefore propose an infection route for Y. pseudotuberculosis where this pathogen, after penetrating the intestinal mucosal membrane, hijacks the Y. pseudotuberculosis-CD209 interaction antigen-presenting cells to reach their target destinations, MLNs, spleens, and livers.


Subject(s)
Cell Adhesion Molecules/metabolism , Dendritic Cells/microbiology , Endocytosis , Host-Pathogen Interactions , Lectins, C-Type/metabolism , Lipopolysaccharides/metabolism , Macrophages/microbiology , Receptors, Cell Surface/metabolism , Yersinia pseudotuberculosis/pathogenicity , Animals , Bacterial Adhesion , Cells, Cultured , Disease Models, Animal , Humans , Mice, Inbred BALB C , Mice, Inbred C57BL , Protein Binding , Yersinia Infections/microbiology , Yersinia Infections/pathology , Yersinia Infections/physiopathology
19.
Article in English | MEDLINE | ID: mdl-30460205

ABSTRACT

The genus Yersinia includes three human pathogenic species, Yersinia pestis, the causative agent of the bubonic and pneumonic plague, and enteric pathogens Y. enterocolitica and Y. pseudotuberculosis that cause a number of gut-associated diseases. Over the past years a large repertoire of RNA-based regulatory systems has been discovered in these pathogens using different RNA-seq based approaches. Among them are several conserved or species-specific RNA-binding proteins, regulatory and sensory RNAs as well as various RNA-degrading enzymes. Many of them were shown to control the expression of important virulence-relevant factors and have a very strong impact on Yersinia virulence. The precise targets, the molecular mechanism and their role for Yersinia pathogenicity is only known for a small subset of identified genus- or species-specific RNA-based control elements. However, the ongoing development of new RNA-seq based methods and data analysis methods to investigate the synthesis, composition, translation, decay, and modification of RNAs in the bacterial cell will help us to generate a more comprehensive view of Yersinia RNA biology in the near future.


Subject(s)
Gene Expression Regulation, Bacterial , RNA, Bacterial/metabolism , Virulence Factors/biosynthesis , Yersinia enterocolitica/pathogenicity , Yersinia pestis/pathogenicity , Yersinia pseudotuberculosis/pathogenicity , Animals , Gene Expression Profiling , Gene Regulatory Networks , Humans , RNA, Bacterial/genetics , Sequence Analysis, RNA , Yersinia enterocolitica/genetics , Yersinia pestis/genetics , Yersinia pseudotuberculosis/genetics
20.
Sci Rep ; 8(1): 14186, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30242257

ABSTRACT

In this study we show Yersinia pseudotuberculosis secretes membrane vesicles (MVs) that contain different proteins and virulence factors depending on the strain. Although MVs from Y. pseudotuberculosis YPIII and ATCC 29833 had many proteins in common (68.8% of all the proteins identified), those located in the outer membrane fraction differed significantly. For instance, the MVs from Y. pseudotuberculosis YPIII harbored numerous Yersinia outer proteins (Yops) while they were absent in the ATCC 29833 MVs. Another virulence factor found solely in the YPIII MVs was the cytotoxic necrotizing factor (CNFy), a toxin that leads to multinucleation of host cells. The ability of YPIII MVs to transport this toxin and its activity to host cells was verified using HeLa cells, which responded in a dose-dependent manner; nearly 70% of the culture was multinucleated after addition of 5 µg/ml of the purified YPIII MVs. In contrast, less than 10% were multinucleated when the ATCC 29833 MVs were added. Semi-quantification of CNFy within the YPIII MVs found this toxin is present at concentrations of 5 ~ 10 ng per µg of total MV protein, a concentration that accounts for the cellular responses seen.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Extracellular Vesicles/metabolism , Virulence Factors/metabolism , Yersinia pseudotuberculosis Infections/metabolism , Yersinia pseudotuberculosis Infections/microbiology , Yersinia pseudotuberculosis/pathogenicity , Biological Transport/physiology , Cell Line, Tumor , HeLa Cells , Humans , Virulence/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...