Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Wei Sheng Yan Jiu ; 53(2): 275-281, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38604964

ABSTRACT

OBJECTIVE: To investigate the content of rare earth elements(REs)in blood and hair of residents in a RE mining area in Northwest Hubei, and evaluate the impact of REs on the health status of local residents. METHODS: A total of 191 residents from the core area of RE mining areas and 186 residents from non RE mining areas, aged 20-69, were selected. The content of REs in the blood and hair of the survey subjects was measured using inductively coupled plasma mass spectrometry, and compared with existing literature values. At the same time, blood tests and questionnaire surveys will be conducted on the health status of residents to examine whether human RE enrichment can lead to endemic diseases. RESULTS: The average total content of REs in the blood of residents in the mining area was 60.22 ng/mL, which was 3.35 times that of the control area; The average total content of REs in hair was 1197.91 ng/g, which was 6.32 times higher than the control area. As age increasing, the abundance of REs in the blood and hair of both men and women in mining areas increased. The proportion of Yttrium and Scandium in the blood and hair were much higher than that in the soil. Compared to hair, Yttrium and Scandium were more easily enriched in the blood. There was no significant difference in the probability of fatty liver, hepatitis B, hypoglycemia, hypotension, hypertension and heart disease and the average life span between residents in RE mining areas and those in the control area. CONCLUSION: The high daily average dietary intake of REs in residents leads to a relatively large accumulation of REs in human blood and hair, but no significant and substantial human health damage has been found at present.


Subject(s)
Hypertension , Metals, Rare Earth , Male , Humans , Female , Scandium/analysis , Metals, Rare Earth/analysis , Hair/chemistry , Yttrium/analysis , China , Environmental Monitoring
2.
J Mech Behav Biomed Mater ; 138: 105654, 2023 02.
Article in English | MEDLINE | ID: mdl-36634437

ABSTRACT

The present systematic review and meta-analysis aimed to assess the characteristics and consequences of post-processing methods after grinding procedures in YSZ ceramics on its surface roughness and flexural strength. The protocol of this review was made prospectively and is available online in the PROSPERO database (link). Literature searches on PubMed/MEDLINE, EMBASE, Lilacs, Web of Science and Scopus were conducted on December 2022 to select in vitro studies written in English, without publishing-date restrictions, that considered surface characteristics and mechanical properties of YSZ ceramics submitted to grinding and subsequent post-processing surface treatments as an attempt to revert the effect induced by grinding. Two authors independently selected the studies, extracted the data and assessed the risk of bias. Mean differences (Rev-Man 5.1, random effects model, α= 0.05) were obtained by comparing flexural strength and surface roughness values of ground surfaces with at least one post-processing surface treatment (global analysis). Subgroup analyses were performed considering the most prevalent categories of post-processing methods. A total of 33 (out of 4032) studies were eligible and included in the analysis. In the global analysis, ground surfaces showed higher flexural strength than when post-processing methodologies were employed (p< 0.0001). The subgroup analysis showed that only polishing was able to enhance the flexural strength after grinding (p= 0.001); however, when other protocols were used, the ground surface was always superior in terms of flexural strength (p< 0.0001). Post-processing techniques in both the global and sub-group analyses were able to reduce the surface roughness after grinding in YSZ ceramics (p< 0.00001). High heterogeneity was found in all the meta-analyses. Concerning the risk of bias analysis, the included studies had mixed scores for the considered factors. In conclusion, in terms of improving flexural strength and restoring surface roughness after grinding, polishing protocols can be considered the best indication as post-processing treatment after YSZ ceramics adjustments/grinding.


Subject(s)
Yttrium , Zirconium , Humans , Materials Testing , Surface Properties , Zirconium/analysis , Yttrium/analysis , Ceramics , Dental Polishing , Dental Porcelain
3.
Article in English | MEDLINE | ID: mdl-36673722

ABSTRACT

Farmland heavy metal pollution-caused by both human activity and natural processes-is a major global issue. In the current study, principal component analysis (PCA), cluster analysis (CA), rare earth elements and yttrium (REY) analysis, and isotope fingerprinting were combined to identify sources of heavy metal pollution in soil from different farmland types in the upper-middle area of the Yangtze River. The concentrations of Zn and Cu were found to be higher in the vegetable base and tea plantation soil compared with their concentrations in the orangery soil. On the other hand, greater accumulation of Cd and Pb was observed in the orangery soil versus the vegetable base and tea plantation soils. Influenced by the type of bedrock, REY was significantly enriched in the orangery soil and depleted in the vegetable base soil, as compared with the tea plantation soil. The Pb isotopic compositions of the tea plantation (1.173-1.193 for 206Pb/207Pb and 2.070-2.110 for 208Pb/206Pb) and vegetable base (1.181-1.217 for 206Pb/207Pb and 2.052-2.116 for 208Pb/206Pb) soils were comparable to those of coal combustion soil. The compositions of 206Pb/207Pb (1.149-1.170) and 208Pb/206Pb (2.121-2.143) in the orangery soil fell between those observed in soils obtained from coal combustion and ore smelting sites. Using the IsoSource model, the atmospheric Pb contributions of the vegetable base, tea plantation, and orangery soils were calculated to be 66.6%, 90.1%, and 82.0%, respectively, and the bedrock contributions of Pb were calculated to be 33.3%, 9.90%, and 18.1%, respectively. Based on the PCA, CA, and REY results, as well as the Pb isotope model, it appears that heavy metals in the orangery soil may be derived from atmospheric deposition and bedrock weathering, while heavy metals in the vegetable base and tea plantation soils may be derived from mining and the use of fertilizer.


Subject(s)
Metals, Heavy , Metals, Rare Earth , Soil Pollutants , Humans , Soil , Farms , Yttrium/analysis , Lead/analysis , Rivers , Environmental Monitoring/methods , Soil Pollutants/analysis , Metals, Heavy/analysis , Metals, Rare Earth/analysis , Vegetables , Isotopes/analysis , Coal/analysis , Tea , China , Risk Assessment
4.
Lasers Med Sci ; 38(1): 32, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36595096

ABSTRACT

At present, lasers are increasingly used in the oral clinical field, and research and applications in dental hard tissue treatment are also increasing. The effect of laser etching dentin on the bonding strength of composite resin reported in the literature is still inconclusive. The purpose of this review was to evaluate whether laser etching can improve the immediate and long-term bonding strength of dentin and investigate the effect of different types of adhesives on the bonding strength of dentin. Two reviewers performed a literature search up from January 2012 to November 2021 in four databases: MEDLINE (PubMed), Web of Science, EMBASE, and the Cochrane Library. A total of 25 studies were included in the meta-analysis. The Cochrane Collaboration Bias Risk Assessment tool was used to evaluate the quality of the included literature, and an analysis was carried out using Review Manager Software version 5.3. The aging bond strength of dentin after erbium (Er): yttrium aluminum garnet (YAG) laser treatment was significantly lower than that of dentin in the bur group (P < 0.00001). At the same time, the bond strength of dentin immediately and aging after (Er), chromium-doped (Cr): yttrium scandium gallium garnet (YSGG) laser treatment was lower than that of dentin in the bur group (P < 0.05). There was no significant difference in the immediate and aging bonding strength among samples in the Er: YAG laser, Er, Cr: YSGG laser, and blank control groups (no laser or bur). The aging bond strength of samples after neodymium-doped (Nd): YAG laser treatment was higher than that of samples in the blank control group (P < 0.05); in addition, the performance of self-etching adhesive was slightly better than that of acid etching adhesive. Regardless of the applied surface treatment and the adhesive employed, dentin after aging showed significant bond degradation (P < 0.05). There was high heterogeneity of bond strength between different groups, and the small number of studies and the contradictory results may be the main reasons for this outcome.


Subject(s)
Dental Bonding , Lasers, Solid-State , Lasers, Solid-State/therapeutic use , Adhesives , Erbium , Neodymium , Scandium/analysis , Yttrium/analysis , Dentin/radiation effects
5.
Chemosphere ; 307(Pt 2): 135907, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35932924

ABSTRACT

Previous studies have addressed the occurrence of Acid Rock Drainage (ARD) affecting La Silva stream due to the generation of large dumps of Middle Ordovician black shales during the construction of a highway close to El Bierzo (León, Spain). This ARD was characterized by sulphated acid waters with high concentration of heavy metals and anomalies in dissolved thorium (Th) and uranium (U). In the present study, we analyse in depth black shales and water, streambed sediments and precipitates of La Silva stream and its tributaries using different petrographic, mineralogical and geochemical approaches. Black shales, with average Th and U contents of 20 and 3 µg/g respectively contain disseminated detritic micro-grains of high weathering-resistant minerals, such as monazite and xenotime, that present smaller amounts of yttrium and rare earth elements (REY) and other elements as Ca, U, Th, Si and F. Results of the affected waters by ARD show an enrichment in dissolved Th, U and REY of several orders of magnitude with respect to natural waters. Sampled precipitates were mainly schwertmannite (Fe8O8(OH)8-2x (SO4)xO16•nH2O) and goethite (α-Fe3+O(OH)) that showed an enrichment of Th (up to 798 µg/g) and REY, due to the presence of dissolved anionic species (e.g. [Formula: see text] , [Formula: see text] ) that enables their adsorption. Furthermore, these black shales show a clear enrichment in REE (Rare Earth Elements) with respect to NASC (North American Shales Composite) normalized REE patterns. Likewise, normalized REE patterns of stream waters and precipitates clearly show convex curvatures in middle-REE (MREE) with respect to light- and something less than heavy-REE, indicating the trend towards MREE enrichment. These findings are essential to evaluate the impact of ARD of Mid Ordovician shales in the surrounding environment, and to start considering these site as potential source of REE and critical raw materials, activating a Circular Economy.


Subject(s)
Metals, Rare Earth , Uranium , Water Pollutants, Chemical , Acids/chemistry , Environmental Monitoring/methods , Iron Compounds , Metals, Rare Earth/analysis , Minerals/analysis , Thorium/analysis , Uranium/analysis , Water/analysis , Water Pollutants, Chemical/analysis , Yttrium/analysis
6.
Chemosphere ; 307(Pt 1): 135688, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35843430

ABSTRACT

High-technology rare earth elements (REEs) as emerging contaminants have potentially hazardous risks for human health and the environment. Investigating the sorption of REEs on soils is crucial for understanding their migration and transformation. This study evaluated the sorption mechanisms and influencing factors of the rare earth element yttrium (Y) on paddy soil via integrated batch sorption experiments and theoretical modeling analysis. Site energy distribution theory (SEDT) combined with kinetics, thermodynamics, and isotherm sorption models were applied to illustrate the sorption mechanism. In addition, the effects of phosphorus (P), solution pH, particle size of soil microaggregates, and initial Y content on the sorption processes were evaluated by self-organizing map (SOM) and Boruta algorithm. The sorption kinetic behavior of Y on paddy soil was more consistent with the pseudo-second-order model. Thermodynamic results showed that the Y sorption was a spontaneous endothermic reaction. The generalized Langmuir model well described the isotherm data of Y sorption on heterogeneous paddy soil and soil microaggregates surface. The maximum sorption capacity of Y decreased with increasing soil particle size, which may be related to the number of sorption sites for Y on paddy soil and soil microaggregates, as confirmed by SEDT. The heterogeneity of sorption site energy for Y was the highest in the original paddy soil compared with the separated soil microaggregates. The SOM technique and Boruta algorithm highlighted that the initial concentration of Y and coexisting phosphorus played essential roles in the sorption process of Y, indicating that the addition of phosphate fertilizer may be an effective way to reduce the Y bioavailability in paddy soil in practice. These results can provide a scientific basis for the sustainable management of soil REEs and a theoretical foundation for the remediation of REEs-contaminated soils.


Subject(s)
Metals, Rare Earth , Soil Pollutants , Adsorption , Fertilizers/analysis , Humans , Metals, Rare Earth/analysis , Phosphates/analysis , Phosphorus , Soil/chemistry , Soil Pollutants/analysis , Yttrium/analysis
7.
Chem Commun (Camb) ; 57(27): 3351-3354, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33661250

ABSTRACT

We report here a near-infrared (NIR) emitting lanthanide-based metal-organic framework (MOF) in which Yb3+ are sensitized by fluorescein (FL) as a low energy absorbing chromophore (FL@CD-MOF-161). The unique design of CD-MOF-161 allows for the entrapment of FL molecules in its pores during the synthesis and crystal growth, ensuring the efficient loading and spreading of chromophores within the crystal volume.


Subject(s)
Fluorescein/chemistry , Fluorescent Dyes/chemistry , Metal-Organic Frameworks/chemistry , Yttrium/analysis , Capsules/chemistry , Crystallography, X-Ray , Infrared Rays , Models, Molecular , Optical Imaging
8.
Biomed Res Int ; 2021: 8875023, 2021.
Article in English | MEDLINE | ID: mdl-33575352

ABSTRACT

BACKGROUND: Monolithic restorations made of translucent yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) have become popular over the past few decades. However, whether aging affects the color and translucency of monolithic translucent Y-TZP is unclear. OBJECTIVE: The aim of this systematic review and meta-analysis of in vitro studies was to evaluate the effects of aging on the color and translucency of monolithic translucent Y-TZP ceramics. MATERIALS AND METHODS: This systematic review/meta-analysis was reported according to the PRISMA statement and registered in the OSF registries (https://osf.io/5qjmu). Four databases including Medline via the PubMed, Embase, and Web of Science databases and the Cochrane Library were searched using no publication year and language limits. The last search was executed on November 20, 2020. In vitro studies comparing the translucency and/or color of monolithic translucent Y-TZP ceramics before and after simulated aging were selected. Meta-analyses were performed using Review Manager software (version 5.3, Cochrane Collaboration, Oxford, UK) with random-effects models at a significance level of 0.05. A risk-of-bias assessment was also performed for the included studies. RESULTS: Of the 188 potentially relevant studies, 13 were included in the systematic review. The hydrothermal aging duration ranged from 1 to 100 h at relatively similar temperatures (~134°C). In the general meta-analyses, the aged Y-TZP ceramics exhibited similar translucency parameter (TP), L∗, and b∗ values compared with the nonaged controls (P = .73, P = .49, and P = .62, respectively). Moreover, there was a significant difference between the aged and nonaged Y-TZP ceramics in the a∗ value (P = .03; MD = -0.26; 95% CI = -0.51 to - 0.02), favoring the nonaged Y-TZP ceramics. The subgroup analyses showed that the duration of aging contributed to changes in the translucency and color of the Y-TZP ceramics. CONCLUSIONS: The optical properties of monolithic translucent Y-TZP ceramics were stable after hydrothermal aging at 134°C and 0.2 MPa for ≤20 h. Moreover, clinically unacceptable changes in the translucency and color of monolithic translucent Y-TZP ceramics were found after hydrothermal aging for >20 h.


Subject(s)
Ceramics , Yttrium , Zirconium , Ceramics/analysis , Ceramics/chemistry , Color , Materials Testing , Surface Properties , Temperature , Time Factors , Yttrium/analysis , Yttrium/chemistry , Zirconium/analysis , Zirconium/chemistry
9.
PLoS One ; 15(8): e0235421, 2020.
Article in English | MEDLINE | ID: mdl-32756552

ABSTRACT

We investigated rock varnish, a thin, manganese- and iron-rich, dark surface crust, on basaltic lava flows and petroglyphs in the Owens and Rose Valleys (California) by portable X-ray fluorescence (pXRF) and femtosecond laser-ablation inductively-coupled-plasma mass spectrometry (fs-LA-ICPMS). The major element composition of the varnish was consistent with a mixture of Mn-Fe oxyhydroxides and clay minerals. As expected, it contained elevated concentrations of elements that are typically enriched in rock varnish, e.g., Mn, Pb, Ba, Ce, and Co, but also showed unusually high enrichments in U, Cu, and Th. The rare earth and yttrium (REY) enrichment pattern revealed a very strong positive cerium (Ce) anomaly and distinct negative europium (Eu) and Y anomalies. The light rare earth elements (REE) were much more strongly enriched than the heavy REY. These enrichment patterns are consistent with a formation mechanism by leaching of Mn and trace elements from aeolian dust, reprecipitation of Mn and Fe as oxyhydroxides, and scavenging of trace elements by these oxyhydroxides. We inferred accumulation rates of Mn and Fe in the varnish from their areal densities measured by pXRF and the known ages of some of the lava flow surfaces. The areal densities of Mn and Fe, as well as their accumulation rates, were comparable to our previous results from the desert of Saudi Arabia. There was a moderate dependence of the Mn areal density on the inclination of the rock surfaces, but no relationship to its cardinal orientation. We attempted to use the degree of varnish regrowth on the rock art surfaces as an estimate of their age. While an absolute dating of the petroglyphs was not possible because of the lack of suitable calibration surfaces and a considerable amount of variability, the measured degree of varnish regrowth on the various petroglyphs was consistent with chronologies based on archeological and other archaeometric techniques. In particular, our results suggest that rock art creation in the study area continued over an extended period of time, possibly starting around the Pleistocene/Holocene transition and extending into the last few centuries.


Subject(s)
Clay/chemistry , Hydroxides/analysis , Iron/analysis , Manganese/analysis , California , Environment , Environmental Monitoring , Mass Spectrometry , Metals, Rare Earth/analysis , Spectrometry, X-Ray Emission , Surface Properties , Volcanic Eruptions , Yttrium/analysis
10.
Chemosphere ; 248: 126112, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32069698

ABSTRACT

Coal fly ash (CFA) is one of the most promising secondary sources of rare earth elements and yttrium (REY). This research first studied the modes of occurrence of REY in CFA collected from a China's power generation plant which utilizes a coal feedstock with an elevated REY content. The fact that rare earth minerals remain in CFA and REY associate with metal oxides was proved by emission-scanning electron microscope with an energy-dispersive X-ray spectrometer. The technical feasibility of recovery of REY from CFA was then studied through conducting various physical separation methods followed by acid leaching. It was found that REY are concentrated in fine particle size, non-magnetic and middle density fractions. Using combined physical separation processes, the REY of CFA was enriched from 782 µg·g-1to 1025 µg g-1. The acid leaching process was optimized for various parameters via the Taguchi three-level experimental design. Upon optimization, the physical separation product was leached at the optimum condition and 79.85% leaching efficiency was obtained. Based on the obtained results, a conceptual process flowsheet was developed for recovery of REY from CFA. Such recovery maximizes REY resources utilization and enhances sustainability of CFA disposal.


Subject(s)
Coal Ash/chemistry , Metals, Rare Earth/analysis , Minerals/chemistry , Power Plants , Refuse Disposal/methods , Acids/analysis , Chemical Fractionation , China , Magnetic Fields , Solubility , Yttrium/analysis
11.
Environ Res ; 179(Pt A): 108804, 2019 12.
Article in English | MEDLINE | ID: mdl-31622893

ABSTRACT

The critical usage of rare earth elements (REEs) in a variety of industrial applications has increased their release to the environment as emerging contaminants, while little is known about the fate and transport of REEs in coastal aquatic biota. In the present study, seven common species were collected and the concentrations of 15 naturally occurring REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y) were determined. Significant differences in total REEs concentrations were found among species even in the same taxa or phylum, suggesting that REEs bioaccumulation patterns appeared to be species- and element-dependent even in the same taxa or phylum, but with limited potential for bio-magnification based on the nitrogen isotope signatures (δ15N). Except for occasional anomalies for redox-sensitive elements of Ce and Eu, the abundance patterns of REEs normalized to chondrite revealed similar REE distribution trends, indicating a common source of REEs in all samples. Additionally, the abundances of light REEs (from La to Eu) were much higher than those of heavy REEs (from Gd to Lu and Y), demonstrating the fractionation between the light and heavy REEs. Furthermore, REEs concentrations in molluscs were notably higher than other species, implying their potential as bio-indicators of REEs due to the habitat and specific feeding behavior. Overall, this is not only the first study to focus on distribution levels, accumulation characteristics, geochemical and fractionation patterns of REEs in coastal species from identical area, but quantifying and tracing REE behavior will contribute to better evaluating the possible environmental impacts of REEs enrichment for future biomonitoring research.


Subject(s)
Biological Monitoring , Metals, Rare Earth/analysis , Water Pollutants, Chemical/analysis , Yttrium/analysis , Animals , Bays , China
12.
Bull Environ Contam Toxicol ; 103(4): 565-570, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31410500

ABSTRACT

Nowadays rare earth elements (REEs) are widely applied in high-technology and clean energy products, but their environmental risks are still largely unknown. To estimate the ecological risk of REEs, soil samples were collected from REE mine tailings with and without phytoremediation. The results showed that the tailings had rather low organic matter and high total REE concentrations, up to 808.5 mg/kg. The 10% effective concentration (EC10) of neodymium (Nd) and yttrium (Y) were calculated based on the toxicity tests of seed germination and root growth. For both wheat and mung bean, the EC10 of Nd and Y in soils were in the range of 1053.1-1300.1 mg/kg. The average hazard quotient of mine tailing soil without phytoremediation was higher than that with phytoremediation. All the hazard quotient of Nd and Y were less than 1, indicating that Nd or Y alone was unlikely to cause adverse ecological effects. Given to the coexistence of REEs on mine sites, the ecological risk of REE mixture could be potentially high towards local soil environments, even for soils with phytoremdiation.


Subject(s)
Mining , Neodymium/analysis , Soil Pollutants/analysis , Soil/chemistry , Yttrium/analysis , Biodegradation, Environmental , China , Risk Assessment , Triticum/chemistry , Triticum/growth & development , Vigna/chemistry , Vigna/growth & development
13.
Colloids Surf B Biointerfaces ; 183: 110436, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31421402

ABSTRACT

The presence of hazardous, radioactive, and rare earth metal such as yttrium (Y3+) in water poses a serious health concern to the public health, thus, exploring novel Y3+-binding molecules and colorimetric indicators are desired. Chlortetracycline (CTC)-functionalized silver nanoparticles (AgNPs-CTC) were synthesized, purified by centrifugation and then characterized by UV-vis spectroscopy, XPS, XRD, and HR-TEM. Functionalization of AgNPs with CTC molecules enabled the rapid and sensitive detection of trivalent yttrium ion (Y3+). A decrease in the intensity of the original surface plasmon resonance peak at 420 nm was observed within the fraction of a min, with the simultaneous appearance of a new peak at a longer wavelength (540 nm); thus, a novel colorimetric and ratiometric absorbance probe was achieved. The free-O-containing moieties of CTC on the AgNPs surface coordinate with Y3+. Thus, CTC molecules led to the bridging of the AgNPs and subsequent aggregation. A good linear relationship (R2 = 0.933) in the range of 18 to 243 nM for Y3+ was observed, and the limit of detection (LOD) for ratiometric results was approximately 57.7 nM. The AgNPs-CTC sensor exhibited better colorimetric performance in terms of excellent sensitivity, LOD, and rapid formation of the AgNPs-CTC complex towards Y3+. The Y3+ spiked water samples from different sources and fetal bovine serum suggest that the developed method is practically useful and essentially portable for on-site monitoring. The AgNPs-CTC sensor can be also applied as a common colorimetric indicator for the detection of trace levels of Y3+ and lanthanides.


Subject(s)
Chlortetracycline/chemistry , Colorimetry/methods , Metal Nanoparticles/chemistry , Silver/chemistry , Spectrophotometry, Ultraviolet/methods , Yttrium/chemistry , Lanthanoid Series Elements/analysis , Lanthanoid Series Elements/chemistry , Mechanical Phenomena , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , Reproducibility of Results , Surface Plasmon Resonance , X-Ray Diffraction , Yttrium/analysis
14.
Environ Monit Assess ; 191(8): 488, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31292792

ABSTRACT

This paper presents the adsorption capacity of a biosorbent derived from the inner part of durian (Durio zibethinus) rinds, which are a low-cost and abundant agro-waste material. The durian rind sorbent has been successfully utilized to remove lanthanum (La) and yttrium (Y) ions from their binary aqueous solution. The effects of several adsorption parameters including contact time, pH, concentrations of La and Y, and temperature on the removal of La and Y ions were investigated. The adsorption isotherm and kinetics of the metal ions were also evaluated in detail. Both La and Y ions were efficiently adsorbed by the biosorbent with optimum adsorption capacity as high as 71 mg La and 35 mg Y per gram biosorbent, respectively. The simultaneous adsorption of La and Y ions follows Langmuir isotherm model, due to the favorable chelation and strong chemical interactions between the functional groups on the surface of the biosorbent and the metal ions. The addition of oxygen content after adsorption offers an interpretation that the rare-earth metal ions are chelated and incorporated most probably in the form of metal oxides. With such high adsorption capacity of La and Y ions, the durian rind sorbent could potentially be used to treat contaminated wastewater containing La and Y metal ions, as well as for separating and extracting rare-earth metal ions from crude minerals.


Subject(s)
Lanthanum/chemistry , Water Pollutants, Chemical/chemistry , Yttrium/chemistry , Adsorption , Bombacaceae , Hydrogen-Ion Concentration , Ions/chemistry , Kinetics , Lanthanum/analysis , Metals , Temperature , Water/chemistry , Water Pollutants, Chemical/analysis , Yttrium/analysis
15.
Mar Pollut Bull ; 144: 79-91, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31180009

ABSTRACT

To exploit the resolving ability of rare earth element and yttrium (REY) in resuspension binary mixing model, and discover potential new REY-related resuspension proxy, this preliminary research studied the geochemical signature of REY in different Jiaozhou Bay samples including surficial/core sediments and settling trap-collected particles. Close quantitative relation for bulk concentration in particles, sediments and fine-grained fraction of major river sediments around the Yellow Sea, approved the priority contribution of catchment detrital materials. Moreover, common characteristics occurred for compartment-specific partitioning REY signatures in six operated-defined fractions, and multiple REY normalization pattern indexes (i.e. Y/Ho divergence, and Ce/Eu anomalies). All constrain the application of REY in resuspension discrimination of marginal shallow seas. However, linearity with different slopes and intercepts were plotted for the MREE bulge index versus HREE/LREE figure in reducible amorphous Fe-oxides fraction, which could provide new discrimination perceptions.


Subject(s)
Bays/chemistry , Environmental Monitoring/methods , Metals, Rare Earth/analysis , Water Pollutants, Chemical/analysis , Yttrium/analysis , China , Geologic Sediments , Oceans and Seas , Rivers/chemistry
16.
Environ Sci Pollut Res Int ; 26(6): 5422-5434, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30604363

ABSTRACT

The mobility (fractionation) of rare earth elements (REEs) and their possible impacts on ecosystems are still relatively unknown. Soil samples were collected from two sites in central Serbia, an unpolluted mountain region (site 1) and a forest near a city (site 2). In order to investigate REE fractions (acid-soluble/exchangeable, reducible, oxidizable, and residual) in soils, BCR sequential extraction was performed. Additionally, the content of REEs was also determined in stipes and caps of the mushroom Macrolepiota procera, growing in the observed sites. Sc, Y, and lanthanide contents were determined by inductively coupled plasma mass spectrometry (ICP-MS), and results were subjected to multivariate data analysis. Application of pattern recognition technique revealed the existence of two distinguished clusters belonging to different geographical sites and determined by greater levels of Sc, Y, and lanthanides in Goc soil compared to Trstenik soil. Additionally, PCA analysis showed that REEs in soil were concentrated in two groups: the first consisted of elements belonging to light REEs and the second contained heavy REEs. These results suggest that the distribution of REEs in soils could indicate the geographical origin and type of soil. The bioconcentration factors and translocation factors for each REE were also calculated. This study provides baseline data on the rare earth element levels in the wild edible mushroom M. procera, growing in Serbia. In terms of bioconcentration and bioexclusion concept, Sc, Y, and REEs were bioexcluded in M. procera for both studied sites.


Subject(s)
Agaricales/chemistry , Lanthanoid Series Elements/analysis , Scandium/analysis , Soil Pollutants/analysis , Yttrium/analysis , Forests , Lanthanoid Series Elements/pharmacokinetics , Multivariate Analysis , Principal Component Analysis , Scandium/pharmacokinetics , Serbia , Soil/chemistry , Tissue Distribution , Yttrium/pharmacokinetics
17.
Medicine (Baltimore) ; 97(40): e12717, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30290677

ABSTRACT

To compare the contents of rare earth elements in urine and drinking water of children in the mining and control areas and evaluate the health risk of children in the mining area.Urine and drinking water of 128 children in the mining area and 125 children in the control area were collected from June to July 2015. The contents of rare earth elements were determined using inductively coupled plasma mass spectrometry.The detection rates of rare earth elements, including yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), and samarium (Sm), in the urine of children in the exposed group were all 100%, except for samarium (98%); the rates in the control group were 85.7%, 100%, 100%, 98%, 98%, and 59.2%, respectively, and the remaining elements were not detectable. The concentrations of Y, La, Ce, Pr, Nd, and Sm in the urine of children in the exposed group were significantly higher than that in the control group (P < .01). In addition, the composition ratio of lanthanum was higher than that in the control group. The detection rates of lanthanum and Ce in the drinking water of children in the exposed group were 1.44% and 0.72%, respectively. The others were not detectable; the rates in the control group were all 0%.The pollution caused by the presence of Y, La, Ce, Pr, Nd, and Sm in the mining area might affect the health of children in the area, but drinking water might not be the cause.


Subject(s)
Drinking Water/chemistry , Environmental Exposure/analysis , Metals, Rare Earth/analysis , Mining , Adolescent , Cerium/analysis , Cerium/urine , Child , Female , Humans , Lanthanum/analysis , Lanthanum/urine , Male , Metals, Rare Earth/urine , Mongolia , Neodymium/analysis , Neodymium/urine , Praseodymium/analysis , Praseodymium/urine , Samarium/analysis , Samarium/urine , Yttrium/analysis , Yttrium/urine
18.
Molecules ; 23(2)2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29473856

ABSTRACT

A method for daily monitoring of yttrium and rare earth elements (YREEs) in seawater using a cheap flow injection system online coupled to inductively coupled plasma-mass spectrometry is reported. Toyopearl AF Chelate 650M® resin permits separation and concentration of YREEs using a simple external calibration. A running cycle consumed 6 mL sample and took 5.3 min, providing a throughput of 11 samples per hour. Linear ranges were up to 200 ng kg-1 except Tm (100 ng kg-1). The precision of the method was <6% (RSDs, n = 5), and recoveries ranged from 93% to 106%. Limits of detection (LODs) were in the range 0.002 ng kg-1 (Tm) to 0.078 ng kg-1 (Ce). Good agreement between YREEs concentrations in CASS-4 and SLEW-3 obtained in this work and results from other studies was observed. The proposed method was applied to the determination of YREEs in seawater from the Jiulong River Estuary and the Taiwan Strait.


Subject(s)
Mass Spectrometry , Metals, Rare Earth/analysis , Metals, Rare Earth/chemistry , Seawater/analysis , Seawater/chemistry , Yttrium/analysis , Yttrium/chemistry , Mass Spectrometry/methods , Salinity
19.
Environ Geochem Health ; 40(1): 295-301, 2018 Feb.
Article in English | MEDLINE | ID: mdl-27995354

ABSTRACT

A total of 60 children (31 males and 29 females) between the ages of 3 and 12 years were randomly selected from Lanzhou City in Gansu Province, northwest China. Hand (soil/dust) SD samples from these children were collected using hand wipes. We determined the approximate amounts of hand SD and the concentrations of three tracer soil elements (Ce, Y, and V) in these samples. The approximate amounts of hand SD ranged from 42.28 to 173.76 mg, with a median value of 85.42 mg. In addition, the mean amounts of hand SD estimated using the concentrations of Ce, Y, and V in the samples were 4.63, 3.43, and 3.42 mg, respectively. The amount of hand SD varied greatly among the age groups: primary school children had more hand SD than kindergarten children, males had more hand SD than females, and children from rural areas had more hand SD than those from urban areas. The rates of daily ingestion of hand SD for kindergarten and primary school children were estimated to be 7.73 and 6.61 mg/day, respectively.


Subject(s)
Cerium/analysis , Dust , Eating , Hand , Mouth , Soil , Vanadium/analysis , Yttrium/analysis , Child , Child, Preschool , China , Dust/analysis , Female , Humans , Male , Mass Spectrometry/methods , Sex Factors , Soil/chemistry
20.
J Mech Behav Biomed Mater ; 75: 512-520, 2017 11.
Article in English | MEDLINE | ID: mdl-28843883

ABSTRACT

This study aimed to evaluate and compare the effect of different surface post-processing treatments (polishing, heat treatment, glazing, polishing + heat treatment and polishing + glazing) on the superficial characteristics (micromorphology and roughness), phase transformation and fatigue strength of a Y-TZP ceramic ground with diamond bur. Discs of Y-TZP ceramic were manufactured (ISO:6872-2015; final dimensions of 15mm in diameter and 1.2 ± 0.2mm in thickness) and randomly allocated according to the surface condition: Ctrl - as-sintered; Gr - ground with coarse diamond bur; Gr+HT - ground and subjected to the heat treatment; Gr+Pol - ground and polished; Gr+Pol+HT - ground, polished and heat treated; Gr+Gl - ground and glazed; Gr+Pol+Gl - ground, polished and glazed. The following analyses were performed: roughness (n = 25), surface topography (n = 2), phase transformation (n = 2) and fatigue strength by staircase method (n = 20). All treatments influenced to some extent the surface characteristics of Y-TZP, being that polishing reduced the surface roughness, the m-phase content and improved the fatigue strength; glazing led to the lowest roughness values (Ra and Rz), although it showed the worst fatigue strength; heat treatment showed limited effect on surface roughness, led to complete reversion of the existing m-phase content to t-phase, without enhancing fatigue performance. Thus, a polishing protocol after clinic adjustment (grinding) of monolithic restorations based on polycrystalline zirconia material is mandatory for surface characteristics and fatigue performance improvements.


Subject(s)
Dental Polishing , Materials Testing , Yttrium/analysis , Zirconium/analysis , Dental Porcelain , Diamond , Hot Temperature , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...