Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39.422
Filter
1.
Sci Rep ; 14(1): 10687, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724570

ABSTRACT

This paper investigates the complexity of DNA sequences in maize and soybean using the multifractal detrended fluctuation analysis (MF-DFA) method, chaos game representation (CGR), and the complexity-entropy plane approach. The study aims to understand the patterns and structures of these DNA sequences, which can provide insights into their genetic makeup and improve crop yield and quality. The results show that maize and soybean DNA sequences exhibit fractal properties, indicating a complex and self-organizing structure. We observe the persistence trend between sequences of base pairs, which indicates long-range correlations between base pairs. We also identified the stochastic nature of the DNA sequences of both species.


Subject(s)
DNA, Plant , Glycine max , Zea mays , Zea mays/genetics , Zea mays/growth & development , Glycine max/genetics , Glycine max/growth & development , DNA, Plant/genetics , Fractals , Sequence Analysis, DNA/methods
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731804

ABSTRACT

The mesocotyl is of great significance in seedling emergence and in responding to biotic and abiotic stress in maize. The NAM, ATAF, and CUC2 (NAC) transcription factor family plays an important role in maize growth and development; however, its function in the elongation of the maize mesocotyl is still unclear. In this study, we found that the mesocotyl length in zmnac17 loss-of-function mutants was lower than that in the B73 wild type. By using transcriptomic sequencing technology, we identified 444 differentially expressed genes (DEGs) between zmnac17-1 and B73, which were mainly enriched in the "tryptophan metabolism" and "antioxidant activity" pathways. Compared with the control, the zmnac17-1 mutants exhibited a decrease in the content of indole acetic acid (IAA) and an increase in the content of reactive oxygen species (ROS). Our results provide preliminary evidence that ZmNAC17 regulates the elongation of the maize mesocotyl.


Subject(s)
Gene Expression Regulation, Plant , Indoleacetic Acids , Plant Proteins , Reactive Oxygen Species , Zea mays , Zea mays/genetics , Zea mays/metabolism , Zea mays/growth & development , Indoleacetic Acids/metabolism , Reactive Oxygen Species/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Biosynthetic Pathways , Gene Expression Profiling , Mutation , Transcriptome
3.
J Hazard Mater ; 471: 134467, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38691930

ABSTRACT

The beneficial roles of hydrochar in carbon sequestration and soil improvement are widely accepted. Despite few available reports regarding polycyclic aromatic hydrocarbons (PAHs) generated during preparation, their potential negative impacts on ecosystems remain a concern. A heating treatment method was employed in this study for rapidly removing PAHs and reducing the toxicity of corn stover-based hydrochar (CHC). The result showed total PAHs content (∑PAH) decreased and then sharply increased within the temperature range from 150 °C to 400 °C. The ∑PAH and related toxicity in CHC decreased by more than 80% under 200 °C heating temperature, compared with those in the untreated sample, representing the lowest microbial toxicity. Benzo(a)pyrene produced a significant influence on the ecological toxicity of the hydrochar among the 16 types of PAHs. The impact of thermal treatment on the composition, content, and toxicity of PAHs was significantly influenced by the adsorption, migration, and desorption of PAHs within hydrochar pores, as well as the disintegration and aggregation of large molecular polymers. The combination of hydrochar with carbonized waste heat and exhaust gas collection could be a promising method to efficiently and affordably reduce hydrochar ecological toxicity.


Subject(s)
Hot Temperature , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/chemistry , Soil Pollutants/toxicity , Soil Pollutants/chemistry , Charcoal/chemistry , Zea mays , Soil/chemistry , Adsorption , Heating
4.
Sci Rep ; 14(1): 10426, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714752

ABSTRACT

Discriminating different cultivars of maca powder (MP) and detecting their authenticity after adulteration with potent adulterants such as maize and soy flour is a challenge that has not been studied with non-invasive techniques such as near infrared spectroscopy (NIRS). This study developed models to rapidly classify and predict 0, 10, 20, 30, 40, and 50% w/w of soybean and maize flour in red, black and yellow maca cultivars using a handheld spectrophotometer and chemometrics. Soy and maize adulteration of yellow MP was classified with better accuracy than in red MP, suggesting that red MP may be a more susceptible target for adulteration. Soy flour was discovered to be a more potent adulterant compared to maize flour. Using 18 different pretreatments, MP could be authenticated with R2CV in the range 0.91-0.95, RMSECV 6.81-9.16 g/,100 g and RPD 3.45-4.60. The results show the potential of NIRS for monitoring Maca quality.


Subject(s)
Machine Learning , Powders , Spectroscopy, Near-Infrared , Zea mays , Spectroscopy, Near-Infrared/methods , Zea mays/chemistry , Spectrophotometry/methods , Macau , Food Contamination/analysis , Glycine max/chemistry , Flour/analysis
5.
Mol Plant Pathol ; 25(5): e13462, 2024 May.
Article in English | MEDLINE | ID: mdl-38695630

ABSTRACT

MicroRNAs (miRNAs) are widely involved in various biological processes of plants and contribute to plant resistance against various pathogens. In this study, upon sugarcane mosaic virus (SCMV) infection, the accumulation of maize (Zea mays) miR398b (ZmmiR398b) was significantly reduced in resistant inbred line Chang7-2, while it was increased in susceptible inbred line Mo17. Degradome sequencing analysis coupled with transient co-expression assays revealed that ZmmiR398b can target Cu/Zn-superoxidase dismutase2 (ZmCSD2), ZmCSD4, and ZmCSD9 in vivo, of which the expression levels were all upregulated by SCMV infection in Chang7-2 and Mo17. Moreover, overexpressing ZmmiR398b (OE398b) exhibited increased susceptibility to SCMV infection, probably by increasing reactive oxygen species (ROS) accumulation, which were consistent with ZmCSD2/4/9-silenced maize plants. By contrast, silencing ZmmiR398b (STTM398b) through short tandem target mimic (STTM) technology enhanced maize resistance to SCMV infection and decreased ROS levels. Interestingly, copper (Cu)-gradient hydroponic experiments demonstrated that Cu deficiency promoted SCMV infection while Cu sufficiency inhibited SCMV infection by regulating accumulations of ZmmiR398b and ZmCSD2/4/9 in maize. These results revealed that manipulating the ZmmiR398b-ZmCSD2/4/9-ROS module provides a prospective strategy for developing SCMV-tolerant maize varieties.


Subject(s)
Disease Resistance , MicroRNAs , Plant Diseases , Potyvirus , Zea mays , Zea mays/virology , Zea mays/genetics , Potyvirus/physiology , Potyvirus/pathogenicity , Plant Diseases/virology , Plant Diseases/genetics , Disease Resistance/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Reactive Oxygen Species/metabolism
6.
PLoS One ; 19(5): e0300427, 2024.
Article in English | MEDLINE | ID: mdl-38696409

ABSTRACT

Climate change and inter-annual variability cause variation in rainfall commencement and cessation which has consequences for the maize growing season length and thus impact yields. This study therefore sought to determine the spatially explicit optimum maize sowing dates to enable site specific recommendations in Nigeria. Gridded weather and soil data, crop management and cultivar were used to simulate maize yield from 1981-2019 at a scale of 0.5°. A total of 37 potential sowing dates between 1 March and 7 November at an interval of 7 days for each year were evaluated. The optimum sowing date was the date which maximizes yield at harvest, keeping all other management factors constant. The results show that optimum sowing dates significantly vary across the country with northern Nigeria having notably delayed sowing dates compared to southern Nigeria which has earlier planting dates. The long-term optimal sowing dates significantly (p<0.05), shifted between the 1980s (1981-1990), and current (2011-2019), for most of the country. The most optimum planting dates of southern Nigeria shifted to later sowing dates while most optimum sowing dates of central and northern Nigeria shifted to earlier sowing dates. There was more variation in optimum sowing dates in the wetter than the drier agro-ecologies. Changes in climate explain changes in sowing dates in wetter agro-ecologies compared to drier agro-ecologies. The study concludes that the optimum sowing dates derived from this study and the corresponding methodology used to generate them can be used to improve cropping calendars in maize farming in Nigeria.


Subject(s)
Zea mays , Zea mays/growth & development , Nigeria , Seasons , Climate Change , Crops, Agricultural/growth & development , Spatio-Temporal Analysis , Crop Production/methods , Agriculture/methods , Soil/chemistry
7.
Appl Microbiol Biotechnol ; 108(1): 335, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747981

ABSTRACT

Glucuronoyl esterases (GEs) are serine-type hydrolase enzymes belonging to carbohydrate esterase family 15 (CE15), and they play a central role in the reduction of recalcitrance in plant cell walls by cleaving ester linkages between glucuronoxylan and lignin in lignocellulose. Recent studies have suggested that bacterial CE15 enzymes are more heterogeneous in terms of sequence, structure, and substrate preferences than their fungal counterparts. However, the sequence space of bacterial GEs has still not been fully explored, and further studies on diverse enzymes could provide novel insights into new catalysts of biotechnological interest. To expand our knowledge on this family of enzymes, we investigated three unique CE15 members encoded by Dyadobacter fermentans NS114T, a Gram-negative bacterium found endophytically in maize/corn (Zea mays). The enzymes are dissimilar, sharing ≤ 39% sequence identity to each other' and were considerably different in their activities towards synthetic substrates. Combined analysis of their primary sequences and structural predictions aided in establishing hypotheses regarding specificity determinants within CE15, and these were tested using enzyme variants attempting to shift the activity profiles. Together, the results expand our existing knowledge of CE15, shed light into the molecular determinants defining specificity, and support the recent thesis that diverse GEs encoded by a single microorganism may have evolved to fulfil different physiological functions. KEY POINTS: • D. fermentans encodes three CE15 enzymes with diverse sequences and specificities • The Region 2 inserts in bacterial GEs may directly influence enzyme activity • Rational amino acid substitutions improved the poor activity of the DfCE15A enzyme.


Subject(s)
Zea mays , Substrate Specificity , Esterases/genetics , Esterases/metabolism , Esterases/chemistry , Lignin/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Phylogeny
8.
BMC Genomics ; 25(1): 476, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745122

ABSTRACT

BACKGROUND: Heterosis has successfully enhanced maize productivity and quality. Although significant progress has been made in delineating the genetic basis of heterosis, the molecular mechanisms underlying its genetic components remain less explored. Allele-specific expression (ASE), the imbalanced expression between two parental alleles in hybrids, is increasingly being recognized as a factor contributing to heterosis. ASE is a complex process regulated by both epigenetic and genetic variations in response to developmental and environmental conditions. RESULTS: In this study, we explored the differential characteristics of ASE by analyzing the transcriptome data of two maize hybrids and their parents under four light conditions. On the basis of allele expression patterns in different hybrids under various conditions, ASE genes were divided into three categories: bias-consistent genes involved in basal metabolic processes in a functionally complementary manner, bias-reversal genes adapting to the light environment, and bias-specific genes maintaining cell homeostasis. We observed that 758 ASE genes (ASEGs) were significantly overlapped with heterosis quantitative trait loci (QTLs), and high-frequency variations in the promoter regions of heterosis-related ASEGs were identified between parents. In addition, 10 heterosis-related ASEGs participating in yield heterosis were selected during domestication. CONCLUSIONS: The comprehensive analysis of ASEGs offers a distinctive perspective on how light quality influences gene expression patterns and gene-environment interactions, with implications for the identification of heterosis-related ASEGs to enhance maize yield.


Subject(s)
Alleles , Gene Expression Regulation, Plant , Hybrid Vigor , Promoter Regions, Genetic , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Zea mays/metabolism , Hybrid Vigor/genetics , Gene Expression Profiling , Genetic Variation , Transcriptome
9.
J Agric Food Chem ; 72(19): 10794-10804, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38711396

ABSTRACT

Chitin-degrading enzymes are critical components in regulating the molting process of the Asian corn borer and serve as potential targets for controlling this destructive pest of maize. Here, we used a scaffold-hopping strategy to design a series of efficient naphthylimide insecticides. Among them, compound 8c exhibited potent inhibition of chitinase from OfChi-h and OfChtI at low nanomolar concentrations (IC50 = 1.51 and 9.21 nM, respectively). Molecular docking simulations suggested that 8c binds to chitinase by mimicking the interaction of chitin oligosaccharide substrates with chitinase. At low ppm concentrations, compound 8c performed comparably to commercial insecticides in controlling the highly destructive plant pest, the Asian corn borer. Tests on a wide range of nontarget organisms indicate that compound 8c has very low toxicity. In addition, the effect of inhibitor treatment on the expression of genes associated with the Asian corn borer chitin-degrading enzymes was further investigated by quantitative real-time polymerase chain reaction. In conclusion, our study highlights the potential of 8c as a novel chitinase-targeting insecticide for effective control of the Asian corn borer, providing a promising solution in the quest for sustainable pest management.


Subject(s)
Chitin , Chitinases , Insect Proteins , Insecticides , Molecular Docking Simulation , Moths , Zea mays , Animals , Chitinases/chemistry , Chitinases/genetics , Chitinases/metabolism , Moths/enzymology , Moths/drug effects , Moths/genetics , Chitin/chemistry , Chitin/metabolism , Insecticides/chemistry , Insecticides/pharmacology , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Insect Proteins/antagonists & inhibitors , Zea mays/chemistry , Zea mays/parasitology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Drug Design , Insect Control , Larva/growth & development , Larva/drug effects , Structure-Activity Relationship
10.
BMC Genomics ; 25(1): 465, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741087

ABSTRACT

BACKGROUND: The early 2 factor (E2F) family is characterized as a kind of transcription factor that plays an important role in cell division, DNA damage repair, and cell size regulation. However, its stress response has not been well revealed. RESULTS: In this study, ZmE2F members were comprehensively identified in the maize genome, and 21 ZmE2F genes were identified, including eight E2F subclade members, seven DEL subfamily genes, and six DP genes. All ZmE2F proteins possessed the DNA-binding domain (DBD) characterized by conserved motif 1 with the RRIYD sequence. The ZmE2F genes were unevenly distributed on eight maize chromosomes, showed diversity in gene structure, expanded by gene duplication, and contained abundant stress-responsive elements in their promoter regions. Subsequently, the ZmE2F6 gene was cloned and functionally verified in drought response. The results showed that the ZmE2F6 protein interacted with ZmPP2C26, localized in the nucleus, and responded to drought treatment. The overexpression of ZmE2F6 enhanced drought tolerance in transgenic Arabidopsis with longer root length, higher survival rate, and biomass by upregulating stress-related gene transcription. CONCLUSIONS: This study provides novel insights into a greater understanding and functional study of the E2F family in the stress response.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Proteins , Stress, Physiological , Transcription Factors , Zea mays , Zea mays/genetics , Zea mays/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Phylogeny , Plants, Genetically Modified , Arabidopsis/genetics , Promoter Regions, Genetic , Chromosomes, Plant/genetics
11.
Carbohydr Polym ; 337: 122118, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710546

ABSTRACT

Chrysin and rutin are natural polyphenols with multifaceted biological activities but their applications face challenges in bioavailability. Encapsulation using starch nanoparticles (SNPs) presents a promising approach to overcome the limitations. In this study, chrysin and rutin were encapsulated into self-assembled SNPs derived from quinoa (Q), maize (M), and waxy maize (WM) starches using enzyme-hydrolysis. Encapsulation efficiencies ranged from 74.3 % to 79.1 %, with QSNPs showing superior performance. Simulated in vitro digestion revealed sustained release and higher antioxidant activity in QSNPs compared to MSNPs and WMSNPs. Variations in encapsulation properties among SNPs from different sources were attributed to the differences in the structural properties of the starches. The encapsulated SNPs exhibited excellent stability, retaining over 90 % of chrysin and 85 % of rutin after 15 days of storage. These findings underscore the potential of SNP encapsulation to enhance the functionalities of chrysin and rutin, facilitating the development of fortified functional foods with enhanced bioavailability and health benefits.


Subject(s)
Antioxidants , Chenopodium quinoa , Flavonoids , Nanoparticles , Rutin , Starch , Zea mays , Flavonoids/chemistry , Rutin/chemistry , Zea mays/chemistry , Nanoparticles/chemistry , Chenopodium quinoa/chemistry , Starch/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Biological Availability , Hydrolysis
12.
Glob Chang Biol ; 30(5): e17298, 2024 May.
Article in English | MEDLINE | ID: mdl-38712640

ABSTRACT

Diversified crop rotations have been suggested to reduce grain yield losses from the adverse climatic conditions increasingly common under climate change. Nevertheless, the potential for climate change adaptation of different crop rotational diversity (CRD) remains undetermined. We quantified how climatic conditions affect small grain and maize yields under different CRDs in 32 long-term (10-63 years) field experiments across Europe and North America. Species-diverse and functionally rich rotations more than compensated yield losses from anomalous warm conditions, long and warm dry spells, as well as from anomalous wet (for small grains) or dry (for maize) conditions. Adding a single functional group or crop species to monocultures counteracted yield losses from substantial changes in climatic conditions. The benefits of a further increase in CRD are comparable with those of improved climatic conditions. For instance, the maize yield benefits of adding three crop species to monocultures under detrimental climatic conditions exceeded the average yield of monocultures by up to 553 kg/ha under non-detrimental climatic conditions. Increased crop functional richness improved yields under high temperature, irrespective of precipitation. Conversely, yield benefits peaked at between two and four crop species in the rotation, depending on climatic conditions and crop, and declined at higher species diversity. Thus, crop species diversity could be adjusted to maximize yield benefits. Diversifying rotations with functionally distinct crops is an adaptation of cropping systems to global warming and changes in precipitation.


Subject(s)
Climate Change , Crops, Agricultural , Zea mays , Crops, Agricultural/growth & development , Zea mays/growth & development , North America , Europe , Edible Grain/growth & development , Agriculture/methods , Biodiversity , Crop Production/methods
13.
Planta ; 259(6): 146, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713242

ABSTRACT

MAIN CONCLUSION: The combined transcriptome outcome provides an important clue to the regulatory cascade centering on lncRNA GARR2 and CPS2 gene in GA response. Long non-coding RNAs (lncRNAs) serve as regulatory components in transcriptional hierarchy governing multiple aspects of biological processes. Dissecting regulatory mechanisms underpinning tetracyclic diterpenoid gibberellin (GA) cascade holds both theoretical and applied significance. However, roles of lncRNAs in transcriptional modulation of GA pathway remain largely elusive. Gypsy retrotransposon-derived GIBBERELLIN RESPONSIVE lncRNA2 (GARR2) has been reported as GA-responsive maize lncRNA. Here a novel GARR2-edited line garr2-1 was identified, characteristic of GA-induced phenotype of increased seedling height and elongated leaf sheath. Transcriptome analysis indicated that transcriptional abundance of five genes [ent-copalyl diphosphate synthase2 (CPS2), ent-kaurene synthase4 (KS4), ent-kaurene synthase6 (KS6), ent-kaurene oxidase2 (KO2), and ent-kaurenoic acid oxidase1/Dwarf3 (KAO1/D3)] was elevated in garr2-1 for early steps of GA biosynthesis. Five GA biosynthetic genes as hub regulators were interlaced to shape regulatory network of GA response. Different transcriptome resources were integrated to discover common differentially expressed genes (DEGs) in the independent GARR2-edited lines GARR2KO and garr2-1. A total of 320 common DEGs were retrieved. These common DEGs were enriched in diterpenoid biosynthetic pathway. Integrative transcriptome analysis revealed the common CPS2 encoding the CPS enzyme that catalyzes the conversion of the precursor trans-geranylgeranyl diphosphate to ent-copalyl diphosphate. The up-regulated CPS2 supported the GA-induced phenotype of slender seedlings observed in the independent GARR2-edited lines GARR2KO and garr2-1. Our integrative transcriptome analysis uncovers common components of the GA pathway regulated by lncRNA GARR2. These common components, especially for the GA biosynthetic gene CPS2, provide a valuable resource for further delineating the underlying mechanisms of lncRNA GARR2 in GA response.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Gibberellins , RNA, Long Noncoding , Zea mays , Zea mays/genetics , Zea mays/metabolism , Gibberellins/metabolism , RNA, Long Noncoding/genetics , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome , Plant Growth Regulators/metabolism
14.
PLoS One ; 19(5): e0302139, 2024.
Article in English | MEDLINE | ID: mdl-38717995

ABSTRACT

Cover crops have the potential to mitigate climate change by reducing negative impacts of agriculture on ecosystems. This study is first to quantify the net climate change mitigation impact of cover crops including land-use effects. A systematic literature and data review was conducted to identify major drivers for climate benefits and costs of cover crops in maize (Zea maize L.) production systems. The results indicate that cover crops lead to a net climate change mitigation impact (NCCMI) of 3.30 Mg CO2e ha-1 a-1. We created four scenarios with different impact weights of the drivers and all of them showing a positive NCCMI. Carbon land benefit, the carbon opportunity costs based on maize yield gains following cover crops, is the major contributor to the NCCMI (34.5% of all benefits). Carbon sequestration is the second largest contributor (33.8%). The climate costs of cover crops are mainly dominated by emissions from their seed production and foregone benefits due to land use for cover crops seeds. However, these two costs account for only 15.8% of the benefits. Extrapolating these results, planting cover crops before all maize acreage in the EU results in a climate change mitigation of 49.80 million Mg CO2e a-1, which is equivalent to 13.0% of the EU's agricultural emissions. This study highlights the importance of incorporating cover crops into sustainable cropping systems to minimize the agricultural impact to climate change.


Subject(s)
Agriculture , Carbon Sequestration , Climate Change , Crops, Agricultural , Ecosystem , Zea mays , Crops, Agricultural/growth & development , Zea mays/growth & development , Agriculture/methods , Agriculture/economics , Carbon Dioxide/analysis , Carbon Dioxide/metabolism
15.
PLoS One ; 19(5): e0293786, 2024.
Article in English | MEDLINE | ID: mdl-38718010

ABSTRACT

α-zeins are amphiphilic maize seed storage proteins with material properties suitable for a multitude of applications e.g., in renewable plastics, foods, therapeutics and additive manufacturing (3D-printing). To exploit their full potential, molecular-level insights are essential. The difficulties in experimental atomic-resolution characterization of α-zeins have resulted in a diversity of published molecular models. However, deep-learning α-zein models are largely unexplored. Therefore, this work studies an AlphaFold2 (AF2) model of a highly expressed α-zein using molecular dynamics (MD) simulations. The sequence of the α-zein cZ19C2 gave a loosely packed AF2 model with 7 α-helical segments connected by turns/loops. Compact tertiary structure was limited to a C-terminal bundle of three α-helices, each showing notable agreement with a published consensus sequence. Aiming to chart possible α-zein conformations in practically relevant solvents, rather than the native solid-state, the AF2 model was subjected to MD simulations in water/ethanol mixtures with varying ethanol concentrations. Despite giving structurally diverse endpoints, the simulations showed several patterns: In water and low ethanol concentrations, the model rapidly formed compact globular structures, largely preserving the C-terminal bundle. At ≥ 50 mol% ethanol, extended conformations prevailed, consistent with previous SAXS studies. Tertiary structure was partially stabilized in water and low ethanol concentrations, but was disrupted in ≥ 50 mol% ethanol. Aggregated results indicated minor increases in helicity with ethanol concentration. ß-sheet content was consistently low (∼1%) across all conditions. Beyond structural dynamics, the rapid formation of branched α-zein aggregates in aqueous environments was highlighted. Furthermore, aqueous simulations revealed favorable interactions between the protein and the crosslinking agent glycidyl methacrylate (GMA). The proximity of GMA epoxide carbons and side chain hydroxyl oxygens simultaneously suggested accessible reactive sites in compact α-zein conformations and pre-reaction geometries for methacrylation. The findings may assist in expanding the applications of these technologically significant proteins, e.g., by guiding chemical modifications.


Subject(s)
Molecular Dynamics Simulation , Zein , Zein/chemistry , Protein Conformation , Zea mays/chemistry , Zea mays/metabolism , Amino Acid Sequence , Water/chemistry
16.
J Mass Spectrom ; 59(6): e5035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38726730

ABSTRACT

Bupleuri Radix is an important medicinal plant, which has been used in China and other Asian countries for thousands of years. Cultivated Bupleurum chinense DC. (B. chinense) is the main commodity of Bupleuri Radix. The benefits of intercropping with various crops for B. chinense have been recognized; however, the influence of intercropping on the chemical composition of B. chinense is still unclear yet. In this study, intercropping with sorghum and maize exhibited little effect on the root length, root diameter, and single root mass of B. chinense. Only the intercropping with sorghum increased the root length of B. chinense slightly compared to the monocropping. In addition, 200 compounds were identified by UHPLC-Q-TOF-MS, and metabolomic combined with the Venn diagram and heatmap analysis showed apparent separation between the intercropped and monocropped B. chinense samples. Intercropping with sorghum and maize could both increase the saikosaponins, fatty acyls, and organic acids in B. chinense while decreasing the phospholipids. The influence of intercropping on the saikosaponin biosynthesis was probably related with the light intensity and hormone levels in B. chinense. Moreover, we found intercropping increased the anti-inflammatory activity of B. chinense. This study provides a scientific reference for the beneficial effect of intercropping mode of B. chinense.


Subject(s)
Bupleurum , Metabolomics , Oleanolic Acid , Plant Roots , Saponins , Sorghum , Zea mays , Sorghum/metabolism , Sorghum/chemistry , Bupleurum/chemistry , Bupleurum/metabolism , Zea mays/metabolism , Zea mays/chemistry , Saponins/analysis , Saponins/metabolism , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/analysis , Oleanolic Acid/metabolism , Metabolomics/methods , Chromatography, High Pressure Liquid/methods , Plant Roots/metabolism , Plant Roots/chemistry , Mass Spectrometry/methods , Agriculture/methods , Liquid Chromatography-Mass Spectrometry
17.
Plant Cell Rep ; 43(5): 134, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702564

ABSTRACT

KEY MESSAGE: 'Sikkim Primitive' maize landrace, unique for prolificacy (7-9 ears per plant) possesses unique genomic architecture in branching and inflorescence-related gene(s), and locus Zm00001eb365210 encoding glycosyltransferases was identified as the putative candidate gene underlying QTL (qProl-SP-8.05) for prolificacy. The genotype possesses immense usage in breeding high-yielding baby-corn genotypes. 'Sikkim Primitive' is a native landrace of North Eastern Himalayas, and is characterized by having 7-9 ears per plant compared to 1-2 ears in normal maize. Though 'Sikkim Primitive' was identified in the 1960s, it has not been characterized at a whole-genome scale. Here, we sequenced the entire genome of an inbred (MGUSP101) derived from 'Sikkim Primitive' along with three non-prolific (HKI1128, UMI1200, and HKI1105) and three prolific (CM150Q, CM151Q and HKI323) inbreds. A total of 942,417 SNPs, 24,160 insertions, and 27,600 deletions were identified in 'Sikkim Primitive'. The gene-specific functional mutations in 'Sikkim Primitive' were classified as 10,847 missense (54.36%), 402 non-sense (2.015%), and 8,705 silent (43.625%) mutations. The number of transitions and transversions specific to 'Sikkim Primitive' were 666,021 and 279,950, respectively. Among all base changes, (G to A) was the most frequent (215,772), while (C to G) was the rarest (22,520). Polygalacturonate 4-α-galacturonosyltransferase enzyme involved in pectin biosynthesis, cell-wall organization, nucleotide sugar, and amino-sugar metabolism was found to have unique alleles in 'Sikkim Primitive'. The analysis further revealed the Zm00001eb365210 gene encoding glycosyltransferases as the putative candidate underlying QTL (qProl-SP-8.05) for prolificacy in 'Sikkim Primitive'. High-impact nucleotide variations were found in ramosa3 (Zm00001eb327910) and zeaxanthin epoxidase1 (Zm00001eb081460) genes having a role in branching and inflorescence development in 'Sikkim Primitive'. The information generated unraveled the genetic architecture and identified key genes/alleles unique to the 'Sikkim Primitive' genome. This is the first report of whole-genome characterization of the 'Sikkim Primitive' landrace unique for its high prolificacy.


Subject(s)
Genome, Plant , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Genome, Plant/genetics , Whole Genome Sequencing , Genotype , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Breeding , Phenotype
18.
Sci Rep ; 14(1): 10219, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702373

ABSTRACT

The difficulty of collecting maize leaf lesion characteristics in an environment that undergoes frequent changes, suffers varying illumination from lighting sources, and is influenced by a variety of other factors makes detecting diseases in maize leaves difficult. It is critical to monitor and identify plant leaf diseases during the initial growing period to take suitable preventative measures. In this work, we propose an automated maize leaf disease recognition system constructed using the PRF-SVM model. The PRFSVM model was constructed by combining three powerful components: PSPNet, ResNet50, and Fuzzy Support Vector Machine (Fuzzy SVM). The combination of PSPNet and ResNet50 not only assures that the model can capture delicate visual features but also allows for end-to-end training for smooth integration. Fuzzy SVM is included as a final classification layer to accommodate the inherent fuzziness and uncertainty in real-world image data. Five different maize crop diseases (common rust, southern rust, grey leaf spot, maydis leaf blight, and turcicum leaf blight along with healthy leaves) are selected from the Plant Village dataset for the algorithm's evaluation. The average accuracy achieved using the proposed method is approximately 96.67%. The PRFSVM model achieves an average accuracy rating of 96.67% and a mAP value of 0.81, demonstrating the efficacy of our approach for detecting and classifying various forms of maize leaf diseases.


Subject(s)
Plant Diseases , Plant Leaves , Support Vector Machine , Zea mays , Zea mays/microbiology , Zea mays/growth & development , Plant Diseases/microbiology , Plant Leaves/microbiology , Algorithms , Fuzzy Logic
19.
BMC Plant Biol ; 24(1): 354, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693487

ABSTRACT

BACKGROUND: Aspergillus flavus is an important agricultural and food safety threat due to its production of carcinogenic aflatoxins. It has high level of genetic diversity that is adapted to various environments. Recently, we reported two reference genomes of A. flavus isolates, AF13 (MAT1-2 and highly aflatoxigenic isolate) and NRRL3357 (MAT1-1 and moderate aflatoxin producer). Where, an insertion of 310 kb in AF13 included an aflatoxin producing gene bZIP transcription factor, named atfC. Observations of significant genomic variants between these isolates of contrasting phenotypes prompted an investigation into variation among other agricultural isolates of A. flavus with the goal of discovering novel genes potentially associated with aflatoxin production regulation. Present study was designed with three main objectives: (1) collection of large number of A. flavus isolates from diverse sources including maize plants and field soils; (2) whole genome sequencing of collected isolates and development of a pangenome; and (3) pangenome-wide association study (Pan-GWAS) to identify novel secondary metabolite cluster genes. RESULTS: Pangenome analysis of 346 A. flavus isolates identified a total of 17,855 unique orthologous gene clusters, with mere 41% (7,315) core genes and 59% (10,540) accessory genes indicating accumulation of high genomic diversity during domestication. 5,994 orthologous gene clusters in accessory genome not annotated in either the A. flavus AF13 or NRRL3357 reference genomes. Pan-genome wide association analysis of the genomic variations identified 391 significant associated pan-genes associated with aflatoxin production. Interestingly, most of the significantly associated pan-genes (94%; 369 associations) belonged to accessory genome indicating that genome expansion has resulted in the incorporation of new genes associated with aflatoxin and other secondary metabolites. CONCLUSION: In summary, this study provides complete pangenome framework for the species of Aspergillus flavus along with associated genes for pathogen survival and aflatoxin production. The large accessory genome indicated large genome diversity in the species A. flavus, however AflaPan is a closed pangenome represents optimum diversity of species A. flavus. Most importantly, the newly identified aflatoxin producing gene clusters will be a new source for seeking aflatoxin mitigation strategies and needs new attention in research.


Subject(s)
Aflatoxins , Aspergillus flavus , Genome, Fungal , Multigene Family , Secondary Metabolism , Aspergillus flavus/genetics , Aspergillus flavus/metabolism , Aflatoxins/genetics , Aflatoxins/metabolism , Secondary Metabolism/genetics , Zea mays/microbiology , Zea mays/genetics , Genome-Wide Association Study , Genes, Fungal , Whole Genome Sequencing , Genetic Variation
20.
Funct Plant Biol ; 512024 May.
Article in English | MEDLINE | ID: mdl-38701238

ABSTRACT

Climate change significantly affects crop production and is a threat to global food security. Conventional tillage (CT) is the primary tillage practice in rain-fed areas to conserve soil moisture. Despite previous research on the effect of tillage methods on different cropping systems, a comparison of tillage methods on soil water storage, crop yield and crop water use in wheat (Triticum aestivum ) and maize (Zea mays ) under different soil textures, precipitation and temperature patterns is needed. We reviewed 119 published articles and used meta-analysis to assess the effects of three conservation tillage practices (NT, no-tillage; RT, reduced tillage; ST, subsoil tillage), on precipitation storage efficiency (PSE), soil water storage at crop planting (SWSp), grain yield, evapotranspiration (ET) and water use efficiency (WUE) under varying precipitation and temperature patterns and soil textures in dryland wheat and maize, with CT as the control treatment. Conservation tillage methods increased PSE, SWSp, grain yield, ET and WUE in both winter wheat-fallow and spring maize cropping systems. More precipitation water was conserved in fine-textured soils than in medium-textured and coarse-textured soils, which improved ET. Conservation tillage increased soil water conservation and yield under high mean annual precipitation (MAP) and moderate mean annual temperature (MAT) conditions in winter wheat. However, soil water conservation and yield were greater under MAP <400mm and moderate MAT. We conclude that conservation tillage could be promising for increasing precipitation storage, soil water conservation and crop yield in regions with medium to low MAPs and medium to high MATs.


Subject(s)
Agriculture , Soil , Triticum , Water , Zea mays , Zea mays/growth & development , Triticum/growth & development , Soil/chemistry , Water/metabolism , Agriculture/methods , Crop Production/methods , Edible Grain/growth & development , Crops, Agricultural/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...