Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.706
Filter
1.
Sci Rep ; 14(1): 10687, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724570

ABSTRACT

This paper investigates the complexity of DNA sequences in maize and soybean using the multifractal detrended fluctuation analysis (MF-DFA) method, chaos game representation (CGR), and the complexity-entropy plane approach. The study aims to understand the patterns and structures of these DNA sequences, which can provide insights into their genetic makeup and improve crop yield and quality. The results show that maize and soybean DNA sequences exhibit fractal properties, indicating a complex and self-organizing structure. We observe the persistence trend between sequences of base pairs, which indicates long-range correlations between base pairs. We also identified the stochastic nature of the DNA sequences of both species.


Subject(s)
DNA, Plant , Glycine max , Zea mays , Zea mays/genetics , Zea mays/growth & development , Glycine max/genetics , Glycine max/growth & development , DNA, Plant/genetics , Fractals , Sequence Analysis, DNA/methods
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731804

ABSTRACT

The mesocotyl is of great significance in seedling emergence and in responding to biotic and abiotic stress in maize. The NAM, ATAF, and CUC2 (NAC) transcription factor family plays an important role in maize growth and development; however, its function in the elongation of the maize mesocotyl is still unclear. In this study, we found that the mesocotyl length in zmnac17 loss-of-function mutants was lower than that in the B73 wild type. By using transcriptomic sequencing technology, we identified 444 differentially expressed genes (DEGs) between zmnac17-1 and B73, which were mainly enriched in the "tryptophan metabolism" and "antioxidant activity" pathways. Compared with the control, the zmnac17-1 mutants exhibited a decrease in the content of indole acetic acid (IAA) and an increase in the content of reactive oxygen species (ROS). Our results provide preliminary evidence that ZmNAC17 regulates the elongation of the maize mesocotyl.


Subject(s)
Gene Expression Regulation, Plant , Indoleacetic Acids , Plant Proteins , Reactive Oxygen Species , Zea mays , Zea mays/genetics , Zea mays/metabolism , Zea mays/growth & development , Indoleacetic Acids/metabolism , Reactive Oxygen Species/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Biosynthetic Pathways , Gene Expression Profiling , Mutation , Transcriptome
3.
Mol Plant Pathol ; 25(5): e13462, 2024 May.
Article in English | MEDLINE | ID: mdl-38695630

ABSTRACT

MicroRNAs (miRNAs) are widely involved in various biological processes of plants and contribute to plant resistance against various pathogens. In this study, upon sugarcane mosaic virus (SCMV) infection, the accumulation of maize (Zea mays) miR398b (ZmmiR398b) was significantly reduced in resistant inbred line Chang7-2, while it was increased in susceptible inbred line Mo17. Degradome sequencing analysis coupled with transient co-expression assays revealed that ZmmiR398b can target Cu/Zn-superoxidase dismutase2 (ZmCSD2), ZmCSD4, and ZmCSD9 in vivo, of which the expression levels were all upregulated by SCMV infection in Chang7-2 and Mo17. Moreover, overexpressing ZmmiR398b (OE398b) exhibited increased susceptibility to SCMV infection, probably by increasing reactive oxygen species (ROS) accumulation, which were consistent with ZmCSD2/4/9-silenced maize plants. By contrast, silencing ZmmiR398b (STTM398b) through short tandem target mimic (STTM) technology enhanced maize resistance to SCMV infection and decreased ROS levels. Interestingly, copper (Cu)-gradient hydroponic experiments demonstrated that Cu deficiency promoted SCMV infection while Cu sufficiency inhibited SCMV infection by regulating accumulations of ZmmiR398b and ZmCSD2/4/9 in maize. These results revealed that manipulating the ZmmiR398b-ZmCSD2/4/9-ROS module provides a prospective strategy for developing SCMV-tolerant maize varieties.


Subject(s)
Disease Resistance , MicroRNAs , Plant Diseases , Potyvirus , Zea mays , Zea mays/virology , Zea mays/genetics , Potyvirus/physiology , Potyvirus/pathogenicity , Plant Diseases/virology , Plant Diseases/genetics , Disease Resistance/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Reactive Oxygen Species/metabolism
4.
BMC Genomics ; 25(1): 476, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745122

ABSTRACT

BACKGROUND: Heterosis has successfully enhanced maize productivity and quality. Although significant progress has been made in delineating the genetic basis of heterosis, the molecular mechanisms underlying its genetic components remain less explored. Allele-specific expression (ASE), the imbalanced expression between two parental alleles in hybrids, is increasingly being recognized as a factor contributing to heterosis. ASE is a complex process regulated by both epigenetic and genetic variations in response to developmental and environmental conditions. RESULTS: In this study, we explored the differential characteristics of ASE by analyzing the transcriptome data of two maize hybrids and their parents under four light conditions. On the basis of allele expression patterns in different hybrids under various conditions, ASE genes were divided into three categories: bias-consistent genes involved in basal metabolic processes in a functionally complementary manner, bias-reversal genes adapting to the light environment, and bias-specific genes maintaining cell homeostasis. We observed that 758 ASE genes (ASEGs) were significantly overlapped with heterosis quantitative trait loci (QTLs), and high-frequency variations in the promoter regions of heterosis-related ASEGs were identified between parents. In addition, 10 heterosis-related ASEGs participating in yield heterosis were selected during domestication. CONCLUSIONS: The comprehensive analysis of ASEGs offers a distinctive perspective on how light quality influences gene expression patterns and gene-environment interactions, with implications for the identification of heterosis-related ASEGs to enhance maize yield.


Subject(s)
Alleles , Gene Expression Regulation, Plant , Hybrid Vigor , Promoter Regions, Genetic , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Zea mays/metabolism , Hybrid Vigor/genetics , Gene Expression Profiling , Genetic Variation , Transcriptome
5.
BMC Genomics ; 25(1): 465, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741087

ABSTRACT

BACKGROUND: The early 2 factor (E2F) family is characterized as a kind of transcription factor that plays an important role in cell division, DNA damage repair, and cell size regulation. However, its stress response has not been well revealed. RESULTS: In this study, ZmE2F members were comprehensively identified in the maize genome, and 21 ZmE2F genes were identified, including eight E2F subclade members, seven DEL subfamily genes, and six DP genes. All ZmE2F proteins possessed the DNA-binding domain (DBD) characterized by conserved motif 1 with the RRIYD sequence. The ZmE2F genes were unevenly distributed on eight maize chromosomes, showed diversity in gene structure, expanded by gene duplication, and contained abundant stress-responsive elements in their promoter regions. Subsequently, the ZmE2F6 gene was cloned and functionally verified in drought response. The results showed that the ZmE2F6 protein interacted with ZmPP2C26, localized in the nucleus, and responded to drought treatment. The overexpression of ZmE2F6 enhanced drought tolerance in transgenic Arabidopsis with longer root length, higher survival rate, and biomass by upregulating stress-related gene transcription. CONCLUSIONS: This study provides novel insights into a greater understanding and functional study of the E2F family in the stress response.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Proteins , Stress, Physiological , Transcription Factors , Zea mays , Zea mays/genetics , Zea mays/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Phylogeny , Plants, Genetically Modified , Arabidopsis/genetics , Promoter Regions, Genetic , Chromosomes, Plant/genetics
6.
Planta ; 259(6): 146, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713242

ABSTRACT

MAIN CONCLUSION: The combined transcriptome outcome provides an important clue to the regulatory cascade centering on lncRNA GARR2 and CPS2 gene in GA response. Long non-coding RNAs (lncRNAs) serve as regulatory components in transcriptional hierarchy governing multiple aspects of biological processes. Dissecting regulatory mechanisms underpinning tetracyclic diterpenoid gibberellin (GA) cascade holds both theoretical and applied significance. However, roles of lncRNAs in transcriptional modulation of GA pathway remain largely elusive. Gypsy retrotransposon-derived GIBBERELLIN RESPONSIVE lncRNA2 (GARR2) has been reported as GA-responsive maize lncRNA. Here a novel GARR2-edited line garr2-1 was identified, characteristic of GA-induced phenotype of increased seedling height and elongated leaf sheath. Transcriptome analysis indicated that transcriptional abundance of five genes [ent-copalyl diphosphate synthase2 (CPS2), ent-kaurene synthase4 (KS4), ent-kaurene synthase6 (KS6), ent-kaurene oxidase2 (KO2), and ent-kaurenoic acid oxidase1/Dwarf3 (KAO1/D3)] was elevated in garr2-1 for early steps of GA biosynthesis. Five GA biosynthetic genes as hub regulators were interlaced to shape regulatory network of GA response. Different transcriptome resources were integrated to discover common differentially expressed genes (DEGs) in the independent GARR2-edited lines GARR2KO and garr2-1. A total of 320 common DEGs were retrieved. These common DEGs were enriched in diterpenoid biosynthetic pathway. Integrative transcriptome analysis revealed the common CPS2 encoding the CPS enzyme that catalyzes the conversion of the precursor trans-geranylgeranyl diphosphate to ent-copalyl diphosphate. The up-regulated CPS2 supported the GA-induced phenotype of slender seedlings observed in the independent GARR2-edited lines GARR2KO and garr2-1. Our integrative transcriptome analysis uncovers common components of the GA pathway regulated by lncRNA GARR2. These common components, especially for the GA biosynthetic gene CPS2, provide a valuable resource for further delineating the underlying mechanisms of lncRNA GARR2 in GA response.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Gibberellins , RNA, Long Noncoding , Zea mays , Zea mays/genetics , Zea mays/metabolism , Gibberellins/metabolism , RNA, Long Noncoding/genetics , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome , Plant Growth Regulators/metabolism
7.
Plant Cell Rep ; 43(5): 134, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702564

ABSTRACT

KEY MESSAGE: 'Sikkim Primitive' maize landrace, unique for prolificacy (7-9 ears per plant) possesses unique genomic architecture in branching and inflorescence-related gene(s), and locus Zm00001eb365210 encoding glycosyltransferases was identified as the putative candidate gene underlying QTL (qProl-SP-8.05) for prolificacy. The genotype possesses immense usage in breeding high-yielding baby-corn genotypes. 'Sikkim Primitive' is a native landrace of North Eastern Himalayas, and is characterized by having 7-9 ears per plant compared to 1-2 ears in normal maize. Though 'Sikkim Primitive' was identified in the 1960s, it has not been characterized at a whole-genome scale. Here, we sequenced the entire genome of an inbred (MGUSP101) derived from 'Sikkim Primitive' along with three non-prolific (HKI1128, UMI1200, and HKI1105) and three prolific (CM150Q, CM151Q and HKI323) inbreds. A total of 942,417 SNPs, 24,160 insertions, and 27,600 deletions were identified in 'Sikkim Primitive'. The gene-specific functional mutations in 'Sikkim Primitive' were classified as 10,847 missense (54.36%), 402 non-sense (2.015%), and 8,705 silent (43.625%) mutations. The number of transitions and transversions specific to 'Sikkim Primitive' were 666,021 and 279,950, respectively. Among all base changes, (G to A) was the most frequent (215,772), while (C to G) was the rarest (22,520). Polygalacturonate 4-α-galacturonosyltransferase enzyme involved in pectin biosynthesis, cell-wall organization, nucleotide sugar, and amino-sugar metabolism was found to have unique alleles in 'Sikkim Primitive'. The analysis further revealed the Zm00001eb365210 gene encoding glycosyltransferases as the putative candidate underlying QTL (qProl-SP-8.05) for prolificacy in 'Sikkim Primitive'. High-impact nucleotide variations were found in ramosa3 (Zm00001eb327910) and zeaxanthin epoxidase1 (Zm00001eb081460) genes having a role in branching and inflorescence development in 'Sikkim Primitive'. The information generated unraveled the genetic architecture and identified key genes/alleles unique to the 'Sikkim Primitive' genome. This is the first report of whole-genome characterization of the 'Sikkim Primitive' landrace unique for its high prolificacy.


Subject(s)
Genome, Plant , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Genome, Plant/genetics , Whole Genome Sequencing , Genotype , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Breeding , Phenotype
8.
BMC Plant Biol ; 24(1): 354, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693487

ABSTRACT

BACKGROUND: Aspergillus flavus is an important agricultural and food safety threat due to its production of carcinogenic aflatoxins. It has high level of genetic diversity that is adapted to various environments. Recently, we reported two reference genomes of A. flavus isolates, AF13 (MAT1-2 and highly aflatoxigenic isolate) and NRRL3357 (MAT1-1 and moderate aflatoxin producer). Where, an insertion of 310 kb in AF13 included an aflatoxin producing gene bZIP transcription factor, named atfC. Observations of significant genomic variants between these isolates of contrasting phenotypes prompted an investigation into variation among other agricultural isolates of A. flavus with the goal of discovering novel genes potentially associated with aflatoxin production regulation. Present study was designed with three main objectives: (1) collection of large number of A. flavus isolates from diverse sources including maize plants and field soils; (2) whole genome sequencing of collected isolates and development of a pangenome; and (3) pangenome-wide association study (Pan-GWAS) to identify novel secondary metabolite cluster genes. RESULTS: Pangenome analysis of 346 A. flavus isolates identified a total of 17,855 unique orthologous gene clusters, with mere 41% (7,315) core genes and 59% (10,540) accessory genes indicating accumulation of high genomic diversity during domestication. 5,994 orthologous gene clusters in accessory genome not annotated in either the A. flavus AF13 or NRRL3357 reference genomes. Pan-genome wide association analysis of the genomic variations identified 391 significant associated pan-genes associated with aflatoxin production. Interestingly, most of the significantly associated pan-genes (94%; 369 associations) belonged to accessory genome indicating that genome expansion has resulted in the incorporation of new genes associated with aflatoxin and other secondary metabolites. CONCLUSION: In summary, this study provides complete pangenome framework for the species of Aspergillus flavus along with associated genes for pathogen survival and aflatoxin production. The large accessory genome indicated large genome diversity in the species A. flavus, however AflaPan is a closed pangenome represents optimum diversity of species A. flavus. Most importantly, the newly identified aflatoxin producing gene clusters will be a new source for seeking aflatoxin mitigation strategies and needs new attention in research.


Subject(s)
Aflatoxins , Aspergillus flavus , Genome, Fungal , Multigene Family , Secondary Metabolism , Aspergillus flavus/genetics , Aspergillus flavus/metabolism , Aflatoxins/genetics , Aflatoxins/metabolism , Secondary Metabolism/genetics , Zea mays/microbiology , Zea mays/genetics , Genome-Wide Association Study , Genes, Fungal , Whole Genome Sequencing , Genetic Variation
9.
Theor Appl Genet ; 137(5): 117, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700534

ABSTRACT

KEY MESSAGE: A large-effect QTL was fine mapped, which revealed 79 gene models, with 10 promising candidate genes, along with a novel inversion. In commercial maize breeding, doubled haploid (DH) technology is arguably the most efficient resource for rapidly developing novel, completely homozygous lines. However, the DH strategy, using in vivo haploid induction, currently requires the use of mutagenic agents which can be not only hazardous, but laborious. This study focuses on an alternative approach to develop DH lines-spontaneous haploid genome duplication (SHGD) via naturally restored haploid male fertility (HMF). Inbred lines A427 and Wf9, the former with high HMF and the latter with low HMF, were selected to fine-map a large-effect QTL associated with SHGD-qshgd1. SHGD alleles were derived from A427, with novel haploid recombinant groups having varying levels of the A427 chromosomal region recovered. The chromosomal region of interest is composed of 45 megabases (Mb) of genetic information on chromosome 5. Significant differences between haploid recombinant groups for HMF were identified, signaling the possibility of mapping the QTL more closely. Due to suppression of recombination from the proximity of the centromere, and a newly discovered inversion region, the associated QTL was only confined to a 25 Mb region, within which only a single recombinant was observed among ca. 9,000 BC1 individuals. Nevertheless, 79 gene models were identified within this 25 Mb region. Additionally, 10 promising candidate genes, based on RNA-seq data, are described for future evaluation, while the narrowed down genome region is accessible for straightforward introgression into elite germplasm by BC methods.


Subject(s)
Chromosome Mapping , Haploidy , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Chromosome Mapping/methods , Plant Breeding , Genome, Plant , Phenotype , Alleles , Chromosomes, Plant/genetics , Genes, Plant
10.
Sci Rep ; 14(1): 10791, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734751

ABSTRACT

Sweet corn is highly susceptible to the deleterious effects of low temperatures during the initial stages of growth and development. Employing a 56K chip, high-throughput single-nucleotide polymorphism (SNP) sequencing was conducted on 100 sweet corn inbred lines. Subsequently, six germination indicators-germination rate, germination index, germination time, relative germination rate, relative germination index, and relative germination time-were utilized for genome-wide association analysis. Candidate genes were identified via comparative analysis of homologous genes in Arabidopsis and rice, and their functions were validated using quantitative real-time polymerase chain reaction (qRT-PCR). The results revealed 35,430 high-quality SNPs, 16 of which were significantly correlated. Within 50 kb upstream and downstream of the identified SNPs, 46 associated genes were identified, of which six were confirmed as candidate genes. Their expression patterns indicated that Zm11ΒHSDL5 and Zm2OGO likely play negative and positive regulatory roles, respectively, in the low-temperature germination of sweet corn. Thus, we determined that these two genes are responsible for regulating the low-temperature germination of sweet corn. This study contributes valuable theoretical support for improving sweet corn breeding and may aid in the creation of specific germplasm resources geared toward enhancing low-temperature tolerance in sweet corn.


Subject(s)
Cold Temperature , Genome-Wide Association Study , Germination , Polymorphism, Single Nucleotide , Zea mays , Germination/genetics , Zea mays/genetics , Zea mays/growth & development , Gene Expression Regulation, Plant , Quantitative Trait Loci
11.
Proc Natl Acad Sci U S A ; 121(21): e2402285121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739785

ABSTRACT

Reproductive phasiRNAs (phased, small interfering RNAs) are broadly present in angiosperms and play crucial roles in sustaining male fertility. While the premeiotic 21-nt (nucleotides) phasiRNAs and meiotic 24-nt phasiRNA pathways have been extensively studied in maize (Zea mays) and rice (Oryza sativa), a third putative category of reproductive phasiRNAs-named premeiotic 24-nt phasiRNAs-have recently been reported in barley (Hordeum vulgare) and wheat (Triticum aestivum). To determine whether premeiotic 24-nt phasiRNAs are also present in maize and related species and begin to characterize their biogenesis and function, we performed a comparative transcriptome and degradome analysis of premeiotic and meiotic anthers from five maize inbred lines and three teosinte species/subspecies. Our data indicate that a substantial subset of the 24-nt phasiRNA loci in maize and teosinte are already highly expressed at the premeiotic phase. The premeiotic 24-nt phasiRNAs are similar to meiotic 24-nt phasiRNAs in genomic origin and dependence on DCL5 (Dicer-like 5) for biogenesis, however, premeiotic 24-nt phasiRNAs are unique in that they are likely i) not triggered by microRNAs, ii) not loaded by AGO18 proteins, and iii) not capable of mediating PHAS precursor cleavage. In addition, we also observed a group of premeiotic 24-nt phasiRNAs in rice using previously published data. Together, our results indicate that the premeiotic 24-nt phasiRNAs constitute a unique class of reproductive phasiRNAs and are present more broadly in the grass family (Poaceae) than previously known.


Subject(s)
Meiosis , RNA, Plant , Zea mays , Zea mays/genetics , Zea mays/metabolism , Meiosis/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Gene Expression Regulation, Plant , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transcriptome , Oryza/genetics , Oryza/metabolism
12.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732175

ABSTRACT

Drought stress globally poses a significant threat to maize (Zea mays L.) productivity and the underlying molecular mechanisms of drought tolerance remain elusive. In this study, we characterized ZmbHLH47, a basic helix-loop-helix (bHLH) transcription factor, as a positive regulator of drought tolerance in maize. ZmbHLH47 expression was notably induced by both drought stress and abscisic acid (ABA). Transgenic plants overexpressing ZmbHLH47 displayed elevated drought tolerance and ABA responsiveness, while the zmbhlh47 mutant exhibited increased drought sensitivity and reduced ABA sensitivity. Mechanistically, it was revealed that ZmbHLH47 could directly bind to the promoter of ZmSnRK2.9 gene, a member of the subgroup III SnRK2 kinases, activating its expression. Furthermore, ZmSnRK2.9-overexpressing plants exhibited enhanced ABA sensitivity and drought tolerance, whereas the zmsnrk2.9 mutant displayed a decreased sensitivity to both. Notably, overexpressing ZmbHLH47 in the zmsnrk2.9 mutant closely resembled the zmsnrk2.9 mutant, indicating the importance of the ZmbHLH47-ZmSnRK2.9 module in ABA response and drought tolerance. These findings provided valuable insights and a potential genetic resource for enhancing the environmental adaptability of maize.


Subject(s)
Abscisic Acid , Droughts , Gene Expression Regulation, Plant , Plant Proteins , Stress, Physiological , Zea mays , Zea mays/genetics , Zea mays/physiology , Zea mays/metabolism , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Plants, Genetically Modified/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Drought Resistance
13.
PLoS One ; 19(4): e0294863, 2024.
Article in English | MEDLINE | ID: mdl-38630672

ABSTRACT

Diversity analysis using molecular markers serves as a powerful tool in unravelling the intricacies of inclusivity within various populations and is an initial step in the assessment of populations and the development of inbred lines for host plant resistance in maize. This study was conducted to assess the genetic diversity and population structure of 242 newly developed S3 inbred lines using 3,305 single nucleotide polymorphism (SNP) markers and to also assess the level of homozygosity achieved in each of the inbred lines. A total of 1,184 SNP markers were found highly informative, with a mean polymorphic information content (PIC) of 0.23. Gene diversity was high among the inbred lines, ranging from 0.04 to 0.50, with an average of 0.27. The residual heterozygosity of the 242 S3 inbred lines averaged 8.8%, indicating moderately low heterozygosity levels among the inbred lines. Eighty-four percent of the 58,322 pairwise kinship coefficients among the inbred lines were near zero (0.00-0.05), with only 0.3% of them above 0.50. These results revealed that many of the inbred lines were distantly related, but none were redundant, suggesting each inbred line had a unique genetic makeup with great potential to provide novel alleles for maize improvement. The admixture-based structure analysis, principal coordinate analysis, and neighbour-joining clustering were concordant in dividing the 242 inbred lines into three subgroups based on the pedigree and selection history of the inbred lines. These findings could guide the effective use of the newly developed inbred lines and their evaluation in quantitative genetics and molecular studies to identify candidate lines for breeding locally adapted fall armyworm tolerant varieties in Ghana and other countries in West and Central Africa.


Subject(s)
Polymorphism, Single Nucleotide , Zea mays , Animals , Zea mays/genetics , Spodoptera , Genotype , Plant Breeding , Genetic Variation
14.
BMC Genomics ; 25(1): 397, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654166

ABSTRACT

BACKGROUND: Jasmonate (JA) is the important phytohormone to regulate plant growth and adaption to stress signals. MYC2, an bHLH transcription factor, is the master regulator of JA signaling. Although MYC2 in maize has been identified, its function remains to be clarified. RESULTS: To understand the function and regulatory mechanism of MYC2 in maize, the joint analysis of DAP-seq and RNA-seq is conducted to identify the binding sites and target genes of ZmMYC2. A total of 3183 genes are detected both in DAP-seq and RNA-seq data, potentially as the directly regulating genes of ZmMYC2. These genes are involved in various biological processes including plant growth and stress response. Besides the classic cis-elements like the G-box and E-box that are bound by MYC2, some new motifs are also revealed to be recognized by ZmMYC2, such as nGCATGCAnn, AAAAAAAA, CACGTGCGTGCG. The binding sites of many ZmMYC2 regulating genes are identified by IGV-sRNA. CONCLUSIONS: All together, abundant target genes of ZmMYC2 are characterized with their binding sites, providing the basis to construct the regulatory network of ZmMYC2 and better understanding for JA signaling in maize.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Zea mays , Zea mays/genetics , Zea mays/metabolism , Binding Sites , Plant Proteins/genetics , Plant Proteins/metabolism , Oxylipins/metabolism , Cyclopentanes/metabolism , Genome, Plant , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics
15.
Genetics ; 227(1)2024 May 07.
Article in English | MEDLINE | ID: mdl-38577974

ABSTRACT

Pan-genomes, encompassing the entirety of genetic sequences found in a collection of genomes within a clade, are more useful than single reference genomes for studying species diversity. This is especially true for a species like Zea mays, which has a particularly diverse and complex genome. Presenting pan-genome data, analyses, and visualization is challenging, especially for a diverse species, but more so when pan-genomic data is linked to extensive gene model and gene data, including classical gene information, markers, insertions, expression and proteomic data, and protein structures as is the case at MaizeGDB. Here, we describe MaizeGDB's expansion to include the genic subset of the Zea pan-genome in a pan-gene data center featuring the maize genomes hosted at MaizeGDB, and the outgroup teosinte Zea genomes from the Pan-Andropoganeae project. The new data center offers a variety of browsing and visualization tools, including sequence alignment visualization, gene trees and other tools, to explore pan-genes in Zea that were calculated by the pipeline Pandagma. Combined, these data will help maize researchers study the complexity and diversity of Zea, and to use the comparative functions to validate pan-gene relationships for a selected gene model.


Subject(s)
Databases, Genetic , Genome, Plant , Genomics , Zea mays , Zea mays/genetics , Genomics/methods , Phylogeny
16.
Plant Physiol Biochem ; 210: 108623, 2024 May.
Article in English | MEDLINE | ID: mdl-38626656

ABSTRACT

Folates are essential to the maintenance of normal life activities in almost all organisms. Proton-coupled folate transporter (PCFT), belonging to the major facilitator superfamily, is one of the three major folate transporter types widely studied in mammals. However, information about plant PCFTs is limited. Here, a genome-wide identification of maize PCFTs was performed, and two PCFTs, ZmMFS_1-62 and ZmMFS_1-73, were functionally investigated. Both proteins contained the typical 12 transmembrane helixes with N- and C-termini located in the cytoplasm, and were localized in the plasma membrane. Molecular docking analysis indicated their binding activity with folates via hydrogen bonding. Interference with ZmMFS_1-62 and ZmMFS_1-73 in maize seedlings through virus-induced gene silencing disrupted folate homeostasis, mainly in the roots, and reduced tolerance to drought and salt stresses. Moreover, a molecular chaperone protein, ZmHSP20, was found to interact with ZmMFS_1-62 and ZmMFS_1-73, and interference with ZmHSP20 in maize seedlings also led to folate disruption and increased sensitivity to drought and salt stresses. Overall, this is the first report of functional identification of maize PCFTs, which play essential roles in salt and drought stress tolerance, thereby linking folate metabolism with abiotic stress responses in maize.


Subject(s)
Droughts , Plant Proteins , Proton-Coupled Folate Transporter , Zea mays , Zea mays/metabolism , Zea mays/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Proton-Coupled Folate Transporter/metabolism , Proton-Coupled Folate Transporter/genetics , Folic Acid/metabolism , Salt Tolerance/genetics , Gene Expression Regulation, Plant , Drought Resistance
17.
Theor Appl Genet ; 137(5): 102, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607439

ABSTRACT

KEY MESSAGE: A total of 389 and 344 QTLs were identified by GWAS and QTL mapping explaining accumulatively 32.2-65.0% and 23.7-63.4% of phenotypic variation for 14 shoot-borne root traits using more than 1300 individuals across multiple field trails. Efficient nutrient and water acquisition from soils depends on the root system architecture (RSA). However, the genetic determinants underlying RSA in maize remain largely unexplored. In this study, we conducted a comprehensive genetic analysis for 14 shoot-borne root traits using 513 inbred lines and 800 individuals from four recombinant inbred line (RIL) populations at the mature stage across multiple field trails. Our analysis revealed substantial phenotypic variation for these 14 root traits, with a total of 389 and 344 QTLs identified through genome-wide association analysis (GWAS) and linkage analysis, respectively. These QTLs collectively explained 32.2-65.0% and 23.7-63.4% of the trait variation within each population. Several a priori candidate genes involved in auxin and cytokinin signaling pathways, such as IAA26, ARF2, LBD37 and CKX3, were found to co-localize with these loci. In addition, a total of 69 transcription factors (TFs) from 27 TF families (MYB, NAC, bZIP, bHLH and WRKY) were found for shoot-borne root traits. A total of 19 genes including PIN3, LBD15, IAA32, IAA38 and ARR12 and 19 GWAS signals were overlapped with selective sweeps. Further, significant additive effects were found for root traits, and pyramiding the favorable alleles could enhance maize root development. These findings could contribute to understand the genetic basis of root development and evolution, and provided an important genetic resource for the genetic improvement of root traits in maize.


Subject(s)
Genome-Wide Association Study , Zea mays , Humans , Zea mays/genetics , Genomics , Chromosome Mapping , Alleles
18.
Sci Rep ; 14(1): 9151, 2024 04 21.
Article in English | MEDLINE | ID: mdl-38644368

ABSTRACT

Limited commercial quality protein maize (QPM) varieties with low grain yield potential are currently grown in Eastern and Southern Africa (ESA). This study was conducted to (i) assess the performance of single-cross QPM hybrids that were developed from elite inbred lines using line-by-tester mating design and (ii) estimate the general (GCA) and specific (SCA) combining ability of the QPM inbred lines for grain yield, agronomic and protein quality traits. One hundred and six testcrosses and four checks were evaluated across six environments in ESA during 2015 and 2016. Significant variations (P ≤ 0.01) were observed among environments, genotypes and genotype by environment interaction (GEI) for most traits evaluated. Hybrids H80 and H104 were the highest-yielding, most desirable, and stable QPM hybrids. Combining ability analysis showed both additive and non-additive gene effects to be important in the inheritance of grain yield. Additive effects were more important for agronomic and protein quality traits. Inbred lines L19 and L20 depicted desirable GCA effects for grain yield. Various other inbred lines with favorable GCA effects for agronomic traits, endosperm modification, and protein quality traits were identified. These inbred lines could be utilized for breeding desirable QPM cultivars. The QPM hybrids identified in this study could be commercialized after on-farm verification to replace the low-yielding QPM hybrids grown in ESA.


Subject(s)
Plant Breeding , Zea mays , Zea mays/genetics , Zea mays/metabolism , Zea mays/growth & development , Plant Breeding/methods , Africa, Southern , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Africa, Eastern , Genotype , Crosses, Genetic , Inbreeding , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism
19.
Nat Commun ; 15(1): 3488, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664394

ABSTRACT

Elucidating the relationship between non-coding regulatory element sequences and gene expression is crucial for understanding gene regulation and genetic variation. We explored this link with the training of interpretable deep learning models predicting gene expression profiles from gene flanking regions of the plant species Arabidopsis thaliana, Solanum lycopersicum, Sorghum bicolor, and Zea mays. With over 80% accuracy, our models enabled predictive feature selection, highlighting e.g. the significant role of UTR regions in determining gene expression levels. The models demonstrated remarkable cross-species performance, effectively identifying both conserved and species-specific regulatory sequence features and their predictive power for gene expression. We illustrated the application of our approach by revealing causal links between genetic variation and gene expression changes across fourteen tomato genomes. Lastly, our models efficiently predicted genotype-specific expression of key functional gene groups, exemplified by underscoring known phenotypic and metabolic differences between Solanum lycopersicum and its wild, drought-resistant relative, Solanum pennellii.


Subject(s)
Arabidopsis , Deep Learning , Gene Expression Regulation, Plant , Solanum lycopersicum , Sorghum , Zea mays , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Sorghum/genetics , Sorghum/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Zea mays/genetics , Regulatory Sequences, Nucleic Acid/genetics , Genome, Plant , Genetic Variation , Species Specificity
20.
BMC Plant Biol ; 24(1): 329, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664610

ABSTRACT

BACKGROUND: Advancement in agricultural biotechnology has resulted in increasing numbers of commercial varieties of genetically modified (GM) crops worldwide. Though several databases on GM crops are available, these databases generally focus on collecting and providing information on transgenic crops rather than on screening strategies. To overcome this, we constructed a novel tool named, Genetically Modified Organisms Identification Tool (GMOIT), designed to integrate basic and genetic information on genetic modification events and detection methods. RESULTS: At present, data for each element from 118 independent genetic modification events in soybean, maize, canola, and rice were included in the database. Particularly, GMOIT allows users to customize assay ranges and thus obtain the corresponding optimized screening strategies using common elements or specific locations as the detection targets with high flexibility. Using the 118 genetic modification events currently included in GMOIT as the range and algorithm selection results, a "6 + 4" protocol (six exogenous elements and four endogenous reference genes as the detection targets) covering 108 events for the four crops was established. Plasmids pGMOIT-1 and pGMOIT-2 were constructed as positive controls or calibrators in qualitative and quantitative transgene detection. CONCLUSIONS: Our study provides a simple, practical tool for selecting, detecting, and screening strategies for a sustainable and efficient application of genetic modification.


Subject(s)
Crops, Agricultural , Glycine max , Oryza , Plants, Genetically Modified , Crops, Agricultural/genetics , Plants, Genetically Modified/genetics , Oryza/genetics , Glycine max/genetics , Zea mays/genetics , Transgenes , Brassica napus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...