Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
1.
World J Microbiol Biotechnol ; 40(6): 197, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722384

ABSTRACT

Physiological and environmental cues prompt microbes to synthesize diverse carotenoids, including dihydroxy xanthophylls, facilitating their adaptation and survival. Lutein and its isomeric counterpart, zeaxanthin, are notable dihydroxy xanthophylls with bioactive properties such as antioxidative, anti-inflammatory, anticancer, and neuroprotective effects, particularly beneficial for human ocular health. However, global natural resources for co-producing lutein and zeaxanthin are scarce, with zeaxanthin lacking commercial sources, unlike lutein sourced from marigold plants and microalgae. Traditionally, dihydroxy xanthophyll production primarily relies on petrochemical synthetic routes, with limited biological sourcing reported. Nonetheless, microbiological synthesis presents promising avenues as a commercial source, albeit challenged by low dihydroxy xanthophyll yield at high cell density. Strategies involving optimization of physical and chemical parameters are essential to achieve high-quality dihydroxy xanthophyll products. This overview briefly discusses dihydroxy xanthophyll biosynthesis and highlights recent advancements, discoveries, and industrial benefits of lutein and zeaxanthin production from microorganisms as alternative biofactories.


Subject(s)
Lutein , Xanthophylls , Zeaxanthins , Lutein/biosynthesis , Lutein/metabolism , Zeaxanthins/metabolism , Xanthophylls/metabolism , Metabolic Engineering/methods , Carotenoids/metabolism , Bacteria/metabolism , Humans , Biosynthetic Pathways
2.
Physiol Plant ; 176(3): e14327, 2024.
Article in English | MEDLINE | ID: mdl-38716559

ABSTRACT

Our goal was to determine whether anthocyanin-producing species (red) use different photoprotective strategies to cope with excess light during fall senescence compared with non-anthocyanin-producing species (yellow). In a previous study, we found that a yellow species retained the photoprotective PsbS protein in late autumn, while a red species did not. Specifically, we tested the hypothesis that red species make less use of zeaxanthin and PsbS-mediated thermal dissipation, as they rely on anthocyanins for photoprotection. We monitored four red (Acer ginnala, Rhus typhnia, Parenthocissus quinquefolia, Viburnum dentatum) and four yellow species (Acer negundo, Ostrya virginiana, Vitis riparia, Zanthoxylum americanum) throughout autumn senescence and analyzed pigments, protein content, and chlorophyll fluorescence. We found yellow species retained the PsbS protein at higher levels, and had higher dark retention of zeaxanthin in late autumn relative to red species. All species retained lutein and the pool of xanthophyll cycle pigments in higher amounts than other carotenoids in late autumn. Our data support the hypothesis that red species use anthocyanins as a photoprotective strategy during autumn senescence, and therefore make less use of PsbS and zeaxanthin-mediated thermal dissipation. We also found species-specific variation in the particular combination of photoprotective strategies used.


Subject(s)
Anthocyanins , Chlorophyll , Plant Leaves , Seasons , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Leaves/physiology , Anthocyanins/metabolism , Chlorophyll/metabolism , Plant Senescence , Zeaxanthins/metabolism , Carotenoids/metabolism , Light , Plant Proteins/metabolism , Xanthophylls/metabolism
3.
Bioresour Technol ; 401: 130714, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641299

ABSTRACT

This study established and investigated continuous macular pigment (MP) production with a lutein (L):zeaxanthin (Z) ratio of 4-5:1 by an MP-rich Chlorella sp. CN6 mutant strain in a continuous microalgal culture module. Chlorella sp. CN6 was cultured in a four-stage module for 10 days. The microalgal culture volume increased to 200 L in the first stage (6 days). Biomass productivity increased to 0.931 g/L/day with continuous indoor white light irradiation during the second stage (3 days). MP content effectively increased to 8.29 mg/g upon continuous, indoor white light and blue light-emitting diode irradiation in the third stage (1 day), and the microalgal biomass and MP concentrations were 8.88 g/L and 73.6 mg/L in the fourth stage, respectively. Using a two-step MP extraction process, 80 % of the MP was recovered with a high purity of 93 %, and its L:Z ratio was 4-5:1.


Subject(s)
Biomass , Chlorella , Macular Pigment , Microalgae , Microalgae/metabolism , Chlorella/metabolism , Chlorella/growth & development , Macular Pigment/metabolism , Lutein/metabolism , Light , Cell Culture Techniques/methods , Zeaxanthins/metabolism , Xanthophylls/metabolism
4.
J Agric Food Chem ; 72(18): 10459-10468, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38666490

ABSTRACT

Violaxanthin is a plant-derived orange xanthophyll with remarkable antioxidant activity that has wide applications in various industries, such as food, agriculture, and cosmetics. In addition, it is the key precursor of important substances such as abscisic acid and fucoxanthin. Saccharomyces cerevisiae, as a GRAS (generally regarded as safe) chassis, provides a good platform for producing violaxanthin production with a yield of 7.3 mg/g DCW, which is far away from commercialization. Herein, an integrated strategy involving zeaxanthin epoxidase (ZEP) source screening, cytosol redox state engineering, and nicotinamide adenine dinucleotide phosphate (NADPH) regeneration was implemented to enhance violaxanthin production in S. cerevisiae. 58aa-truncated ZEP from Vitis vinifera exhibited optimal efficiency in an efficient zeaxanthin-producing strain. The titer of violaxanthin gradually increased by 17.9-fold (up to 119.2 mg/L, 15.19 mg/g DCW) via cytosol redox state engineering and NADPH supplementation. Furthermore, balancing redox homeostasis considerably improved the zeaxanthin concentration by 139.3% (up to 143.9 mg/L, 22.06 mg/g DCW). Thus, the highest reported titers of violaxanthin and zeaxanthin in S. cerevisiae were eventually achieved. This study not only builds an efficient platform for violaxanthin biosynthesis but also serves as a useful reference for the microbial production of xanthophylls.


Subject(s)
Metabolic Engineering , Saccharomyces cerevisiae , Vitis , Xanthophylls , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Xanthophylls/metabolism , Vitis/metabolism , Vitis/microbiology , Vitis/chemistry , Oxidation-Reduction , Zeaxanthins/metabolism , Zeaxanthins/biosynthesis , NADP/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Oxidoreductases/metabolism , Oxidoreductases/genetics
5.
Plant J ; 118(2): 469-487, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38180307

ABSTRACT

Fruit color is one of the most important traits in peppers due to its esthetic value and nutritional benefits and is determined by carotenoid composition, resulting from diverse mutations of carotenoid biosynthetic genes. The EMS204 line, derived from an EMS mutant population, presents bright-red color, compared with the wild type Yuwolcho cultivar. HPLC analysis indicates that EMS204 fruit contains more zeaxanthin and less capsanthin and capsorubin than Yuwolcho. MutMap was used to reveal the color variation of EMS204 using an F3 population derived from a cross of EMS204 and Yuwolcho, and the locus was mapped to a 2.5-Mbp region on chromosome 2. Among the genes in the region, a missense mutation was found in ZEP (zeaxanthin epoxidase) that results in an amino acid sequence alteration (V291 → I). A color complementation experiment with Escherichia coli and ZEP in vitro assay using thylakoid membranes revealed decreased enzymatic activity of EMS204 ZEP. Analysis of endogenous plant hormones revealed a significant reduction in abscisic acid content in EMS204. Germination assays and salinity stress experiments corroborated the lower ABA levels in the seeds. Virus-induced gene silencing showed that ZEP silencing also results in bright-red fruit containing less capsanthin but more zeaxanthin than control. A germplasm survey of red color accessions revealed no similar carotenoid profiles to EMS204. However, a breeding line containing a ZEP mutation showed a very similar carotenoid profile to EMS204. Our results provide a novel breeding strategy to develop red pepper cultivars containing high zeaxanthin contents using ZEP mutations.


Subject(s)
Capsicum , Oxidoreductases , Capsicum/genetics , Capsicum/metabolism , Zeaxanthins/metabolism , Fruit/metabolism , Loss of Function Mutation , Plant Breeding , Carotenoids/metabolism , Xanthophylls
6.
Food Res Int ; 177: 113909, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225147

ABSTRACT

Carotenoids in maize grain degrade during storage, but the relationship between their stability and the physicochemical properties of the grain is unclear. Therefore, the carotenoid degradation rate in milled grain of three dent hybrids differing in grain hardness was evaluated at various temperatures (-20, 4 and 22 °C). The carotenoid degradation rate was calculated using first-order kinetics based on the content in the samples after 7, 14, 21, 28, 42, 56, 70 and 90 days of storage and related to the physicochemical properties of the grain. The highest grain hardness was found in the hybrid with the highest zein and endosperm lipid concentration, while the lowest grain hardness was found in the hybrid with the highest amylose content and the specific surface area of starch granule (SSA). As expected, carotenoids in milled maize grain were most stable at -20 °C, followed by storage at 4 and 22 °C. Tested hybrids differed in the degradation rate of zeaxanthin, α-cryptoxanthin and ß-carotene, and these responses were also temperature-dependent. In contrast, all hybrids showed similar degradation rate for lutein and ß-cryptoxanthin regardless of the storage temperature. Averaged over the hybrids, the degradation rate for individual carotenoids ranked as follows: lutein < zeaxanthin < α-cryptoxanthin < ß-cryptoxanthin < ß-carotene. The lower degradation rate for most carotenoids was mainly associated with a higher content of zein and specific endosperm lipids, with the exception of zeaxanthin, which showed an opposite pattern of response. Degradation rate for lutein and zeaxanthin negatively correlated with SSA, but interestingly, small starch granules were positively associated with higher degradation rate for mostcarotenoids. Dent-type hybrids may differ significantly in carotenoid degradation rate, which was associated with specific physicochemical properties of the maize grain.


Subject(s)
Cryptoxanthins , Lutein , Zein , Lutein/analysis , beta Carotene/chemistry , Zea mays/chemistry , Zeaxanthins/metabolism , Beta-Cryptoxanthin , Carotenoids/analysis , Edible Grain/chemistry , Starch
7.
Plant Physiol Biochem ; 206: 108232, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38091932

ABSTRACT

Carotenoids and their derivates play critical physiologic roles in plants. However, these substrates and their metabolism have not been elucidated in fruit of blueberry (Vaccinium corymbosum). In this study, carotenoids and ABA were investigated by LC-MS and their biosynthesis were subject to proteomic analysis during fruit ripening. Activity of CCD1 and NCED1/3 were studied in vivo or in vitro. Also, effects of ethephon and 1-MCP on biosynthesis of carotenoid and ABA were investigated through the expression of corresponding genes using qPCR. As a result, carotenoid biosynthesis was prominently mitigated whereas its metabolism was enhanced during fruit ripening, which resulted in a decrease in the carotenoids. VcCCD1 could both cleave ß-carotene, zeaxanthin and lutein at positions of 9, 10 (9', 10'), which was mainly responsible for the degradation of these carotenoids. Interestingly, in the situation of mitigation of carotenoid biosynthesis, ABA still rapidly accumulated, which was mainly attributed to the upregulated expression of VcNCED1/3. Notably, VcNCED1/3 also showed a cleavage activity of all-trans-zeaxanthin and a stereospecific cleavage activity of 9-cis-carotene to generate C15-carotenal. The C15-carotenal could be potentially converted to ABA through ZEP-independent ABA biosynthetic pathway during blueberry fruit ripening. Similar to a nature natural maturation, ethylene accelerated the carotenoid degradation and ABA biosynthesis trough downregulating the expression of genes in carotenoid biosynthesis and upregulating the expression of genes in ABA biosynthesis. These information help understand the regulation of carotenoids and ABA, and effects of ethylene on the regulation during blueberry fruit ripening.


Subject(s)
Blueberry Plants , Blueberry Plants/genetics , Blueberry Plants/metabolism , Fruit/metabolism , Proteomics , Zeaxanthins/metabolism , Carotenoids/metabolism , Ethylenes/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
8.
J Sci Food Agric ; 104(5): 3147-3155, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38072645

ABSTRACT

BACKGROUND: Carotenoids play key roles in photosynthesis and are widely used in foods as natural pigments, antioxidants, and health-promoting compounds. Enhancing carotenoid production in microalgae via biotechnology has become an important area of research. RESULTS: We knocked out the Na+ /Ca2+ antiporter gene slr0681 in Synechocystis sp. PCC 6803 via homologous recombination and evaluated the effects on carotenoid production under normal (NL) and high-light (HL) conditions. On day 7 of NL treatment in calcium ion (Ca2+ )-free medium, the cell density of Δslr0681 decreased by 29% compared to the wild type (WT). After 8 days of HL treatment, the total carotenoid contents decreased by 35% in Δslr0681, and the contents of individual carotenoids were altered: myxoxanthophyll, echinenone, and ß-carotene contents increased by 10%, 50%, and 40%, respectively, while zeaxanthin contents decreased by ~40% in Δslr0681 versus the WT. The expression patterns of carotenoid metabolic pathway genes also differed: ipi expression increased by 1.2- to 8.5-fold, whereas crtO and crtR expression decreased by ~90% and 60%, respectively, in ∆slr0681 versus the WT. In addition, in ∆slr0681, the expression level of psaB (encoding a photosystem I structural protein) doubled, whereas the expression levels of the photosystem II genes psbA2 and psbD decreased by ~53% and 84%, respectively, compared to the WT. CONCLUSION: These findings suggest that slr0681 plays important roles in regulating carotenoid biosynthesis and structuring of the photosystems in Synechocystis sp. This study provides a theoretical basis for the genetic engineering of microalgae photosystems to increase their economic benefits and lays the foundation for developing microalgae germplasm resources with high carotenoid contents. © 2023 Society of Chemical Industry.


Subject(s)
Synechocystis , Synechocystis/genetics , Synechocystis/metabolism , Bacterial Proteins/metabolism , Carotenoids/metabolism , beta Carotene/metabolism , Zeaxanthins/metabolism
9.
Microb Biotechnol ; 17(1): e14312, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37435812

ABSTRACT

Pseudomonas species have become promising cell factories for the production of natural products due to their inherent robustness. Although these bacteria have naturally evolved strategies to cope with different kinds of stress, many biotechnological applications benefit from engineering of optimised chassis strains with specially adapted tolerance traits. Here, we explored the formation of outer membrane vesicles (OMV) of Pseudomonas putida KT2440. We found OMV production to correlate with the recombinant production of a natural compound with versatile beneficial properties, the tripyrrole prodigiosin. Further, several P. putida genes were identified, whose up- or down-regulated expression allowed controlling OMV formation. Finally, genetically triggering vesiculation in production strains of the different alkaloids prodigiosin, violacein, and phenazine-1-carboxylic acid, as well as the carotenoid zeaxanthin, resulted in up to three-fold increased product yields. Consequently, our findings suggest that the construction of robust strains by genetic manipulation of OMV formation might be developed into a useful tool which may contribute to improving limited biotechnological applications.


Subject(s)
Biological Products , Pseudomonas putida , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Prodigiosin/metabolism , Biological Products/metabolism , Biotechnology , Zeaxanthins/metabolism
10.
J Clin Lipidol ; 18(1): e105-e115, 2024.
Article in English | MEDLINE | ID: mdl-37989694

ABSTRACT

BACKGROUND: Familial hypobetalipoproteinemias (FHBL) are rare genetic diseases characterized by lipid malabsorption. We focused on abetalipoproteinemia (FHBL-SD1) and chylomicron retention disease (FHBL-SD3), caused by mutations in microsomal triglyceride transfer protein (MTTP) and SAR1B genes, respectively. Treatments include a low-fat diet and high-dose fat-soluble vitamin supplementations. However, patients are not supplemented in carotenoids, a group of lipid-soluble pigments essential for eye health. OBJECTIVE: Our aim was to evaluate carotenoid absorption and status in the context of hypobetalipoproteinemia. METHODS: We first used knock-out Caco-2/TC7 cell models of FHBL-SD1 and FHBL-SD3 to evaluate carotenoid absorption. We then characterized FHBL-SD1 and FHBL-SD3 patient status in the main dietary carotenoids and compared it to that of control subjects. RESULTS: In vitro results showed a significant decrease in basolateral secretion of α- and ß-carotene, lutein, and zeaxanthin (-88.8 ± 2.2 % to -95.3 ± 5.8 %, -79.2 ± 4.4 % to -96.1 ± 2.6 %, -91.0 ± 4.5 % to -96.7 ± 0.3 % and -65.4 ± 3.6 % to -96.6 ± 1.9 %, respectively). Carotenoids plasma levels in patients confirmed significant deficiencies, with decreases ranging from -89 % for zeaxanthin to -98 % for α-carotene, compared to control subjects. CONCLUSION: Given the continuous loss in visual function despite fat-soluble vitamin treatment in some patients, carotenoid supplementation may be of clinical utility. Future studies should assess the correlation between carotenoid status and visual function in aging patients and investigate whether carotenoid supplementation could prevent their visual impairment.


Subject(s)
Hypobetalipoproteinemias , Monomeric GTP-Binding Proteins , Syndactyly , Humans , Caco-2 Cells , Zeaxanthins/metabolism , Hypobetalipoproteinemias/genetics , Carotenoids/metabolism , Vitamins , Lipids , Monomeric GTP-Binding Proteins/genetics
11.
Poult Sci ; 103(2): 103286, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38100949

ABSTRACT

In this study, we evaluated the enrichment efficiency of lutein in eggs and its function in preventing fatty liver hemorrhagic syndrome (FLHS) in aged laying hens. Five groups of laying hens (65 wk old) were fed basal diets supplemented with 0, 30, 60, 90, or 120 mg/kg of lutein. The supplementation period lasted 12 wk followed by 2 wk of lutein depletion in feed. The results revealed that lutein efficiently enriched the egg yolks and improved their color with a significant increase in relative redness (P < 0.001). Lutein accumulation increased in the egg yolk until day 10, then depletion reached a minimum level after 14 d. Overall, zeaxanthin content in all the groups was similar throughout the experimental period. However, triglycerides and total cholesterol were significantly decreased in the liver (P < 0.05) but not significantly different in the serum (P > 0.05). In the serum, the lipid metabolism enzyme acetyl-CoA synthetase was significantly reduced (P < 0.05), whereas dipeptidyl-peptidase 4 was not significantly different (P > 0.05), and there was no statistical difference of either enzyme in the liver (P > 0.05). Regarding oxidation and inflammation-related indexes, malondialdehyde, tumor necrosis factors alpha, interleukin-6, and interleukin-1 beta were decreased, whereas superoxide dismutase and total antioxidant capacity increased in the liver (P < 0.001). The function of lutein for the same indexes in serum was limited. It was concluded that lutein efficiently enriched the egg yolk of old laying hens to improve their color and reached the highest level on day 10 without being subject to a significant conversion into zeaxanthin. At the same time, lutein prevented liver steatosis in aged laying hens by exerting strong antioxidant and anti-inflammatory functions, but also through the modulation of lipid metabolism, which may contribute to reducing the incidence of FLHS in poultry.


Subject(s)
Abnormalities, Multiple , Craniofacial Abnormalities , Fatty Liver , Growth Disorders , Heart Septal Defects, Ventricular , Lutein , Female , Animals , Lutein/metabolism , Antioxidants/metabolism , Chickens/metabolism , Zeaxanthins/metabolism , Dietary Supplements/analysis , Diet/veterinary , Egg Yolk/metabolism , Fatty Liver/prevention & control , Fatty Liver/veterinary , Animal Feed/analysis
12.
Physiol Plant ; 175(6): e14102, 2023.
Article in English | MEDLINE | ID: mdl-38148246

ABSTRACT

Drought hampers global rice production. Abscisic acid (ABA) plays versatile roles under different environmental stresses. While the link between drought and ABA is known, its effect on ABA biosynthesis genes and metabolites is unclear. This study explored the impact of drought on various metabolites, namely beta-carotene, zeaxanthin, antheraxanthin, violaxanthin, neoxanthin, and candidate genes viz. zeaxanthin epoxidase (ZEP) and 9-cis epoxycarotenoid dioxygenase (NCED) of ABA biosynthesis pathway in rice cultivars (N22 and IR64) at anthesis {65 DAT (Days after transplanting)} with different stress levels. In stressed plants, zeaxanthin significantly increased (92%), while the concentration of beta-carotene, antheraxanthin, violaxanthin and neoxanthin decreased as drought stress progressed. The concentration of metabolites in roots was notably lower than in leaves in both genotypes. The ZEP expression was upregulated in roots (8.24-fold) under drought stress. Among five NCED isoforms, NCED3 showed significant upregulation (7.29-fold) in leaf and root tissue. NCED1 was significantly downregulated as stress progressed and was negatively correlated with ABA accumulation. NCED2, NCED4 and NCED5 showed no significant change in their expression. Drying and rolling of rice leaves was observed after imparting drought stress. The findings revealed that drought stress significantly influenced the expression of candidate genes and the concentration of metabolites of the ABA biosynthesis pathway. There was a significantly higher accumulation of ABA in N22 leaves (47%) and roots (30%) compared to IR64. The N22, a drought-tolerant genotype, exhibited significantly higher concentrations of intermediates and demonstrated increased expression of ZEP and NCED3, potentially contributing to its resilience against drought.


Subject(s)
Abscisic Acid , Oryza , Abscisic Acid/metabolism , Oryza/genetics , Oryza/metabolism , beta Carotene/metabolism , Zeaxanthins/metabolism , Droughts , Biosynthetic Pathways/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Stress, Physiological
13.
Int J Mol Sci ; 24(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37894770

ABSTRACT

Crocins are important natural products predominantly obtained from the stigma of saffron, and that can be utilized as a medicinal compound, spice, and colorant with significant promise in the pharmaceutical, food, and cosmetic industries. Carotenoid cleavage dioxygenase 2 (CsCCD2) is a crucial limiting enzyme that has been reported to be responsible for the cleavage of zeaxanthin in the crocin biosynthetic pathway. However, the catalytic activity of CsCCD2 on ß-carotene/lycopene remains elusive, and the soluble expression of CsCCD2 remains a big challenge. In this study, we reported the functional characteristics of CsCCD2, that can catalyze not only zeaxanthin cleavage but also ß-carotene and lycopene cleavage. The molecular basis of the divergent functionality of CsCCD2 was elucidated using bioinformatic analysis and truncation studies. The protein expression optimization results demonstrated that the use of a maltose-binding protein (MBP) tag and the optimization of the induction conditions resulted in the production of more soluble protein. Correspondingly, the catalytic efficiency of soluble CsCCD2 was higher than that of the insoluble one, and the results further validated its functional verification. This study not only broadened the substrate profile of CsCCD2, but also achieved the soluble expression of CsCCD2. It provides a firm platform for CsCCD2 crystal structure resolution and facilitates the synthesis of crocetin and crocins.


Subject(s)
Crocus , Crocus/chemistry , beta Carotene/metabolism , Lycopene/metabolism , Zeaxanthins/metabolism , Vitamin A/metabolism
14.
Physiol Plant ; 175(5): e13998, 2023.
Article in English | MEDLINE | ID: mdl-37882279

ABSTRACT

Proper short- and long-term acclimation to different growth light intensities is essential for the survival and competitiveness of plants in the field. High light exposure is known to induce the down-regulation and photoinhibition of photosystem II (PSII) activity to reduce photo-oxidative stress. The xanthophyll zeaxanthin (Zx) serves central photoprotective functions in these processes. We have shown in recent work with different plant species (Arabidopsis, tobacco, spinach and pea) that photoinhibition of PSII and degradation of the PSII reaction center protein D1 is accompanied by the inactivation and degradation of zeaxanthin epoxidase (ZEP), which catalyzes the reconversion of Zx to violaxanthin. Different high light sensitivity of the above-mentioned species correlated with differential down-regulation of both PSII and ZEP activity. Applying light and electron microscopy, chlorophyll fluorescence, and protein and pigment analyses, we investigated the acclimation properties of these species to different growth light intensities with respect to the ability to adjust their photoprotective strategies. We show that the species differ in phenotypic plasticity in response to short- and long-term high light conditions at different morphological and physiological levels. However, the close co-regulation of PSII and ZEP activity remains a common feature in all species and under all conditions. This work supports species-specific acclimation strategies and properties in response to high light stress and underlines the central role of the xanthophyll Zx in photoprotection.


Subject(s)
Arabidopsis , Light , Oxidoreductases/metabolism , Xanthophylls/metabolism , Zeaxanthins/metabolism , Photosystem II Protein Complex/metabolism , Lutein/metabolism , Arabidopsis/metabolism , Acclimatization , Chlorophyll/metabolism , Photosynthesis
15.
Plant Cell Physiol ; 64(10): 1220-1230, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37556318

ABSTRACT

The generation of violaxanthin (Vx) de-epoxidase (VDE), photosystem II subunit S (PsbS) and zeaxanthin (Zx) epoxidase (ZEP) (VPZ) lines, which simultaneously overexpress VDE, PsbS and ZEP, has been successfully used to accelerate the kinetics of the induction and relaxation of non-photochemical quenching (NPQ). Here, we studied the impact of the overexpression of VDE and ZEP on the conversion of the xanthophyll cycle pigments in VPZ lines of Arabidopsis thaliana and Nicotiana tabacum. The protein amount of both VDE and ZEP was determined to be increased to about 3- to 5-fold levels of wild-type (WT) plants for both species. Compared to WT plants, the conversion of Vx to Zx, and hence VDE activity, was only marginally accelerated in VPZ lines, whereas the conversion of Zx to Vx, and thus ZEP activity, was strongly increased in VPZ lines. This indicates that the amount of ZEP but not the amount of VDE is a critical determinant of the equilibrium of the de-epoxidation state of xanthophyll cycle pigments under saturating light conditions. Comparing the two steps of epoxidation, particularly the second step (antheraxanthin to Vx) was found to be accelerated in VPZ lines, implying that the intermediate Ax is released into the membrane during epoxidation by ZEP.


Subject(s)
Arabidopsis , Zeaxanthins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Xanthophylls/metabolism , Photosystem II Protein Complex/metabolism , Light
16.
Int J Mol Sci ; 24(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37298323

ABSTRACT

In the antioxidant system in cyanobacteria, non-enzymatic antioxidants, such as carotenoids, are considered good candidates for coping with oxidative stress, particularly light stress, and pharmaceutical therapeutic applications. A significant amount of carotenoid accumulation has been recently improved by genetic engineering. In this study, to achieve higher carotenoid production with higher antioxidant activity, we successfully constructed five Synechocystis sp. PCC 6803 strains overexpressing (OX) native genes related to the carotenoids biosynthetic pathway, including OX_CrtB, OX_CrtP, OX_CrtQ, OX_CrtO, and OX_CrtR. All of the engineered strains maintained a significant quantity of myxoxanthophyll, while increasing zeaxanthin and echinenone accumulation. In addition, higher components of zeaxanthin and echinenone were noted in all OX strains, ranging from 14 to 19% and from 17 to 22%, respectively. It is worth noting that the enhanced echinenone component responded to low light conditions, while the increased ß-carotene component contributed to a high light stress response. According to the higher antioxidant activity of all OX strains, the carotenoid extracts presented lower IC50 in lung cancer cell lines H460 and A549, with values less than 157 and 139 µg/mL, respectively, when compared with those of WTc, particularly OX_CrtR and OX_CrtQ. A higher proportion of zeaxanthin and ß-carotene in OX_CrtR and OX_CrtQ, respectively, may considerably contribute to the ability to treat lung cancer cells with antiproliferative and cytotoxic effects.


Subject(s)
Lung Neoplasms , Synechocystis , Humans , beta Carotene/metabolism , Synechocystis/genetics , Synechocystis/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Zeaxanthins/pharmacology , Zeaxanthins/metabolism , Carotenoids/pharmacology , Carotenoids/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Cell Proliferation
17.
Food Res Int ; 169: 112839, 2023 07.
Article in English | MEDLINE | ID: mdl-37254414

ABSTRACT

Carotenoid-derived volatiles are important contributors to tea aroma quality. However, the profile of the carotenoid pathway and carotenoid-derived volatiles (CDVs) artificial regulation in oolong tea processing has yet to be investigated. In the present work, the content and varieties of carotenoid-derived volatiles, the genome-wide identification of carotenoid cleavage dioxygenase (CsCCD) gene family, the expression level of CsCCD and other key genes in the carotenoid pathway, and the profile of carotenoid substances were analyzed by multi-omics and bioinformatics methods with innovative postharvest supplementary LED light during oolong tea processing. The results showed that during oolong tea processing, a total of 17 CDVs were identified. The content of ß-ionone increased up to 26.07 times that of fresh leaves and its formation was significantly promoted with supplementary LED light from 0.54 µg/g to 0.83 µg/g in the third turning over treatment. A total of 11 CsCCD gene family members were identified and 119 light response cis-acting regulatory elements of CsCCD were found. However, the expression level of most genes in the carotenoid pathway including CsCCD were reduced due to mechanical stress. 'Huangdan' fresh tea leaves had a total of 1 430.46 µg/g 22 varieties of carotenoids, which mainly composed of lutein(78.10%), ß-carotene(8.24%) and zeaxanthin(8.18%). With supplementary LED light, the content of antherxanthin and zeaxanthin in xanthophyll cycle was regulated and CDVs such as α-ionone, ß-ionone, pseudoionone, damascenone, 6,10-dimethyl-5,9-undecadien-2-one, citral, geranyl acetate and α-farnesene were promoted significantly in different phases during oolong tea processing. Our results revealed the profile of the carotenoid metabolism pathway in oolong tea processing from the perspective of precursors, gene expression and products, and put forward an innovative way to improve CDVs by postharvest supplementary LED light.


Subject(s)
Carotenoids , Metabolic Networks and Pathways , Zeaxanthins/metabolism , Carotenoids/metabolism , Tea
18.
Int J Biol Macromol ; 242(Pt 3): 124928, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37224896

ABSTRACT

Fruits provide abundant carotenoid nutrients for humans, whereas the understanding of the transcriptional regulatory mechanisms of carotenoids in fruits is still limited. Here, we identified a transcription factor AcMADS32 in kiwifruit, which was highly expressed in the fruit, correlated with carotenoid content and localized in the nucleus. The silencing expression of AcMADS32 significantly reduced the content of ß-carotene and zeaxanthin and expression of ß-carotene hydroxylase gene AcBCH1/2 in kiwifruit, while transient overexpression increased the accumulation of zeaxanthin, suggesting that AcMADS32 was an activator involved in the transcriptional regulation of carotenoid in fruit. When AcMADS32 was further stably transformed into kiwifruit, the content of total carotenoid and components in the leaves of transgenic lines significantly increased, and the expression level of carotenogenic genes was up-regulated. Moreover, Y1H and dual luciferase reporter experiments confirmed that AcMADS32 directly bound the AcBCH1/2 promoter and activated its expression. Through Y2H assays, AcMADS32 can interact with other MADS transcription factor AcMADS30, AcMADS64 and AcMADS70. These findings will contribute to our understanding of the transcriptional regulation mechanisms underlying carotenoid biosynthesis in plants.


Subject(s)
Carotenoids , Fruit , Humans , Fruit/genetics , Fruit/metabolism , Zeaxanthins/metabolism , Carotenoids/metabolism , beta Carotene/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
19.
Mol Metab ; 73: 101742, 2023 07.
Article in English | MEDLINE | ID: mdl-37225015

ABSTRACT

OBJECTIVE: Low plasma levels of carotenoids are associated with mortality and chronic disease states. Genetic studies in animals revealed that the tissue accumulation of these dietary pigments is associated with the genes encoding ß-carotene oxygenase 2 (BCO2) and the scavenger receptor class B type 1 (SR-B1). Here we examined in mice how BCO2 and SR-B1 affect the metabolism of the model carotenoid zeaxanthin that serves as a macular pigment in the human retina. METHODS: We used mice with a lacZ reporter gene knock-in to determine Bco2 expression patterns in the small intestine. By genetic dissection, we studied the contribution of BCO2 and SR-B1 to zeaxanthin uptake homeostasis and tissue accumulation under different supply conditions (50 mg/kg and 250 mg/kg). We determined the metabolic profiles of zeaxanthin and its metabolites in different tissues by LC-MS using standard and chiral columns. An albino Isx-/-/Bco2-/- mouse homozygous for Tyrc-2J was generated to study the effect of light on ocular zeaxanthin metabolites. RESULTS: We demonstrate that BCO2 is highly expressed in enterocytes of the small intestine. Genetic deletion of Bco2 led to enhanced accumulation of zeaxanthin, indicating that the enzyme serves as a gatekeeper of zeaxanthin bioavailability. Relaxing the regulation of SR-B1 expression in enterocytes by genetic deletion of the transcription factor ISX further enhanced zeaxanthin accumulation in tissues. We observed that the absorption of zeaxanthin was dose-dependent and identified the jejunum as the major zeaxanthin-absorbing intestinal region. We further showed that zeaxanthin underwent oxidation to ε,ε-3,3'-carotene-dione in mouse tissues. We detected all three enantiomers of the zeaxanthin oxidation product whereas the parent zeaxanthin only existed as (3R, 3'R)-enantiomer in the diet. The ratio of oxidized to parent zeaxanthin varied between tissues and was dependent on the supplementation dose. We further showed in an albino Isx-/-/Bco2-/- mouse that supra-physiological supplementation doses (250 mg/kg) with zeaxanthin rapidly induced hypercarotenemia with a golden skin phenotype and that light stress increased the concentration of oxidized zeaxanthin in the eyes. CONCLUSIONS: We established the biochemical basis of zeaxanthin metabolism in mice and showed that tissue factors and abiotic stress affect the metabolism and homeostasis of this dietary lipid.


Subject(s)
Carotenoids , Dioxygenases , Transcription Factors , Animals , Humans , Mice , Carotenoids/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Disease Models, Animal , Intestines , Retina/metabolism , Zeaxanthins/metabolism , Transcription Factors/genetics
20.
J Lipid Res ; 64(5): 100369, 2023 05.
Article in English | MEDLINE | ID: mdl-37030626

ABSTRACT

The scavenger receptor class B type 1 (SR-B1) facilitates uptake of cholesterol and carotenoids into the plasma membrane (PM) of mammalian cells. Downstream of SR-B1, ASTER-B protein mediates the nonvesicular transport of cholesterol to mitochondria for steroidogenesis. Mitochondria also are the place for the processing of carotenoids into diapocarotenoids by ß-carotene oxygenase-2. However, the role of these lipid transport proteins in carotenoid metabolism has not yet been established. Herein, we showed that the recombinant StART-like lipid-binding domain of ASTER-A and B preferentially binds oxygenated carotenoids such as zeaxanthin. We established a novel carotenoid uptake assay and demonstrated that ASTER-B expressing A549 cells transport zeaxanthin to mitochondria. In contrast, the pure hydrocarbon ß-carotene is not transported to the organelles, consistent with its metabolic processing to vitamin A in the cytosol by ß-carotene oxygenase-1. Depletion of the PM from cholesterol by methyl-ß-cyclodextrin treatment enhanced zeaxanthin but not ß-carotene transport to mitochondria. Loss-of-function assays by siRNA in A549 cells and the absence of zeaxanthin accumulation in mitochondria of ARPE19 cells confirmed the pivotal role of ASTER-B in this process. Together, our study in human cell lines established ASTER-B protein as key player in nonvesicular transport of zeaxanthin to mitochondria and elucidated the molecular basis of compartmentalization of the metabolism of nonprovitamin A and provitamin A carotenoids in mammalian cells.


Subject(s)
Carotenoids , beta Carotene , Animals , Humans , Zeaxanthins/metabolism , Carotenoids/metabolism , beta Carotene/metabolism , Cholesterol , Mitochondria/metabolism , Homeostasis , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...