Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Int J Mol Sci ; 24(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138961

ABSTRACT

89Zr-iPET has been widely used for preclinical and clinical immunotherapy studies to predict patient stratification or evaluate therapeutic efficacy. In this study, we prepared and evaluated 89Zr-DFO-anti-PD-L1-mAb tracers with varying chelator-to-antibody ratios (CARs), including 89Zr-DFO-anti-PD-L1-mAb_3X (tracer_3X), 89Zr-DFO-anti-PD-L1-mAb_10X (tracer_10X), and 89Zr-DFO-anti-PD-L1-mAb_20X (tracer_20X). The DFO-anti-PD-L1-mAb conjugates with varying CARs were prepared using a random conjugation method and then subjected to quality control. The conjugates were radiolabeled with 89Zr and evaluated in a PD-L1-expressing CT26 tumor-bearing mouse model. Next, iPET imaging, biodistribution, pharmacokinetics, and ex vivo pathological and immunohistochemical examinations were conducted. LC-MS analysis revealed that DFO-anti-PD-L1-mAb conjugates were prepared with CARs ranging from 0.4 to 2.0. Radiochemical purity for all tracer groups was >99% after purification. The specific activity levels of tracer_3X, tracer_10X, and tracer_20X were 2.2 ± 0.6, 8.2 ± 0.6, and 10.5 ± 1.6 µCi/µg, respectively. 89Zr-iPET imaging showed evident tumor uptake in all tracer groups and reached the maximum uptake value at 24 h postinjection (p.i.). Biodistribution data at 168 h p.i. revealed that the tumor-to-liver, tumor-to-muscle, and tumor-to-blood uptake ratios for tracer_3X, tracer_10X, and tracer_20X were 0.46 ± 0.14, 0.58 ± 0.33, and 1.54 ± 0.51; 4.7 ± 1.3, 7.1 ± 3.9, and 14.7 ± 1.1; and 13.1 ± 5.8, 19.4 ± 13.8, and 41.3 ± 10.6, respectively. Significant differences were observed between tracer_3X and tracer_20X in the aforementioned uptake ratios at 168 h p.i. The mean residence time and elimination half-life for tracer_3X, tracer_10X, and tracer_20X were 25.4 ± 4.9, 24.2 ± 6.1, and 25.8 ± 3.3 h and 11.8 ± 0.5, 11.1 ± 0.7, and 11.7 ± 0.6 h, respectively. No statistical differences were found between-tracer in the aforementioned pharmacokinetic parameters. In conclusion, 89Zr-DFO-anti-PD-L1-mAb tracers with a CAR of 1.4-2.0 may be better at imaging PD-L1 expression in tumors than are traditional low-CAR 89Zr-iPET tracers.


Subject(s)
Chelating Agents , Neoplasms , Humans , Mice , Animals , Chelating Agents/therapeutic use , Radioisotopes/therapeutic use , Positron-Emission Tomography/methods , Antibodies, Monoclonal/therapeutic use , Tissue Distribution , B7-H1 Antigen , Deferoxamine/therapeutic use , Neoplasms/drug therapy , Zirconium/pharmacokinetics , Cell Line, Tumor
2.
J Transl Med ; 21(1): 367, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37286997

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy is an exciting cell-based cancer immunotherapy. Unfortunately, CAR-T cell therapy is associated with serious toxicities such as cytokine release syndrome (CRS) and neurotoxicity. The mechanism of these serious adverse events (SAEs) and how homing, distribution and retention of CAR-T cells contribute to toxicities is not fully understood. Enabling in vitro methods to allow meaningful, sensitive in vivo biodistribution studies is needed to better understand CAR-T cell disposition and its relationship to both effectiveness and safety of these products. METHODS: To determine if radiolabelling of CAR-T cells could support positron emission tomography (PET)-based biodistribution studies, we labeled IL-13Rα2 targeting scFv-IL-13Rα2-CAR-T cells (CAR-T cells) with 89Zirconium-oxine (89Zr-oxine) and characterized and compared their product attributes with non-labeled CAR-T cells. The 89Zr-oxine labeling conditions were optimized for incubation time, temperature, and use of serum for labeling. In addition, T cell subtype characterization and product attributes of radiolabeled CAR-T cells were studied to assess their overall quality including cell viability, proliferation, phenotype markers of T-cell activation and exhaustion, cytolytic activity and release of interferon-γ upon co-culture with IL-13Rα2 expressing glioma cells. RESULTS: We observed that radiolabeling of CAR-T cells with 89Zr-oxine is quick, efficient, and radioactivity is retained in the cells for at least 8 days with minimal loss. Also, viability of radiolabeled CAR-T cells and subtypes such as CD4 + , CD8 + and scFV-IL-13Rα2 transgene positive T cell population were characterized and found similar to that of unlabeled cells as determined by TUNEL assay, caspase 3/7 enzyme and granzyme B activity assay. Moreover, there were no significant changes in T cell activation (CD24, CD44, CD69 and IFN-γ) or T cell exhaustion (PD-1, LAG-3 and TIM3) markers expression between radiolabeled and unlabeled CAR-T cells. In chemotaxis assays, migratory capability of radiolabeled CAR-T cells to IL-13Rα2Fc was similar to that of non-labeled cells. CONCLUSIONS: Importantly, radiolabeling has minimal impact on biological product attributes including potency of CAR-T cells towards IL-13Rα2 positive tumor cells but not IL-13Rα2 negative cells as measured by cytolytic activity and release of IFN-γ. Thus, IL-13Rα2 targeting CAR-T cells radiolabeled with 89Zr-oxine retain critical product attributes and suggest 89Zr-oxine radiolabeling of CAR-T cells may facilitate biodistribution and tissue trafficking studies in vivo using PET.


Subject(s)
Immunotherapy, Adoptive , Radioisotopes , T-Lymphocytes , Zirconium , Zirconium/pharmacokinetics , Radioisotopes/pharmacokinetics , Positron-Emission Tomography , Cell Tracking/methods , Single-Chain Antibodies , T-Lymphocytes/cytology , Tissue Distribution , Jurkat Cells , Animals , Mice , Cell Proliferation , Cell Survival
3.
Appl Radiat Isot ; 176: 109841, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34214913

ABSTRACT

OBJECTIVE: In this article, IDAC-Dose2.1 and OLINDA computer codes are compared as they are the most widely used software tools for internal dosimetry assessment at the present time. OLINDA/EXM personal computer code was created as a replacement for the widely used MIRDOSE3.1 code. IDAC-Dose2.1 was developed based on the ICRP specific absorbed fractions and computational framework of internal dose assessment given for reference adults in ICRP Publication 133. IDAC uses cumulated activities per administered activity in hours and calculates the absorbed dose and the effective dose. The program calculates the dose in the Eckerman stylized family phantoms. It is useful in standardizing and automating internal dose calculations, assessing doses in clinical trials with radiopharmaceuticals, making theoretic calculations for existing pharmaceuticals, teaching, and other purposes. METHODS: To produce such a comparison, the results of this work were compared with available published data in the literature on radiopharmaceuticals. Radiopharmaceuticals with 89Zr, 153Sm, 177Lu radionuclides are used as the basis for the comparison. 89Zr, 153Sm, 177Lu radionuclides are regarded as the future of radiopharmaceutical treatment. For 89Zr, two different labelled carriers, Zr-89_cMAb U36 and Zr-89 Panitumumab, were used on patients. RESULTS: The results show a clear difference in terms of absorbed dose of the Zr-89 radiopharmaceuticals for red bone marrow when calculated by IDAC-Dose2.1 (0.76 mGy/MBq), while the estimated absorbed dose in literature results is 0.07 mGy/MBq and 0.14 mGy/MBq when the calculation is done by OLINDA program. In the case of 177Lu-EDTMP, the absorbed dose in red bone marrow is in reasonable agreement (0.63 mGy/MBq and 0.8 mGy/MBq for IDAC-Dose2.1 and OLINDA, respectively). A significant difference was found for the absorbed dose in the bone surface, which was almost twice as high for OLINDA (2.1 mGy/MBq for IDAC-Dose2.1 and 5.4 mGy/MBq for OLINDA). In some direct cases, the calculated absorbed dose in the urinary bladder wall with OLINDA is ten times higher compared to WinAct (which was utilized to calculate the total activity in the organs and tissues) and IDAC 2.1. These results are considered key to greater accuracy in internal dose calculation.


Subject(s)
Lutetium/pharmacokinetics , Radioisotopes/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Radiotherapy Dosage , Samarium/pharmacokinetics , Zirconium/pharmacokinetics , Female , Humans , Male
4.
Adv Sci (Weinh) ; 8(10): 2001879, 2021 05.
Article in English | MEDLINE | ID: mdl-34026426

ABSTRACT

Lymphoma is a heterogeneous disease with varying clinical manifestations and outcomes. Many subtypes of lymphoma, such as Burkitt's lymphoma and diffuse large B cell lymphoma, are highly aggressive with dismal prognosis even after conventional chemotherapy and radiotherapy. As such, exploring specific biomarkers for lymphoma is of high clinical significance. Herein, a potential marker, CD38, is investigated for differentiating lymphoma. A CD38-targeting monoclonal antibody (mAb, daratumumab) is then radiolabeled with Zr-89 and Lu-177 for theranostic applications. As the diagnostic component, the Zr-89-labeled mAb is highly specific in delineating CD38-positive lymphoma via positron emission tomography (PET) imaging, while the Lu-177-labeled mAb serves well as the therapeutic component to suppress tumor growth after a one-time administration. These results strongly suggest that CD38 is a lymphoma-specific marker and prove that 89Zr/177Lu-labeled daratumumab facilitates immunoPET imaging and radioimmunotherapy of lymphoma in preclinical models. Further clinical evaluation and translation of this CD38-targeted theranostics may be of significant help in lymphoma patient stratification and management.


Subject(s)
ADP-ribosyl Cyclase 1/immunology , Antibodies, Monoclonal/pharmacology , Lutetium/pharmacokinetics , Lymphoma, Large B-Cell, Diffuse/drug therapy , Membrane Glycoproteins/immunology , Positron Emission Tomography Computed Tomography/methods , Precision Medicine/methods , Radioisotopes/pharmacokinetics , Zirconium/pharmacokinetics , ADP-ribosyl Cyclase 1/metabolism , Animals , Antibodies, Monoclonal/pharmacokinetics , Cell Line, Tumor , Humans , Immunologic Factors/pharmacokinetics , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/pathology , Membrane Glycoproteins/metabolism , Mice, Inbred BALB C , Mice, SCID , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/pharmacology , Tissue Distribution , Xenograft Model Antitumor Assays
5.
ACS Appl Mater Interfaces ; 13(22): 25599-25610, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34028266

ABSTRACT

Actinium-225 (225Ac) radiolabeled submicrometric core-shell particles (SPs) made of calcium carbonate (CaCO3) coated with biocompatible polymers [tannic acid-human serum albumin (TA/HSA)] have been developed to improve the efficiency of local α-radionuclide therapy in melanoma models (B16-F10 tumor-bearing mice). The developed 225Ac-SPs possess radiochemical stability and demonstrate effective retention of 225Ac and its daughter isotopes. The SPs have been additionally labeled with zirconium-89 (89Zr) to perform the biodistribution studies using positron emission tomography-computerized tomography (PET/CT) imaging for 14 days after intratumoral injection. According to the PET/CT analysis, a significant accumulation of 89Zr-SPs in the tumor area is revealed for the whole investigation period, which correlates with the direct radiometry analysis after intratumoral administration of 225Ac-SPs. The histological analysis has revealed no abnormal changes in healthy tissue organs after treatment with 225Ac-SPs (e.g., no acute pathologic findings are detected in the liver and kidneys). At the same time, the inhibition of tumor growth has been observed as compared with control samples [nonradiolabeled SPs and phosphate-buffered saline (PBS)]. The treatment of mice with 225Ac-SPs has resulted in prolonged survival compared to the control samples. Thus, our study validates the application of 225Ac-doped core-shell submicron CaCO3 particles for local α-radionuclide therapy.


Subject(s)
Actinium/therapeutic use , Calcium Carbonate/chemistry , Melanoma, Experimental/radiotherapy , Radioisotopes/therapeutic use , Radiopharmaceuticals/therapeutic use , Zirconium/therapeutic use , Actinium/pharmacokinetics , Animals , Male , Melanoma, Experimental/diagnostic imaging , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Positron Emission Tomography Computed Tomography/methods , Radioisotopes/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution , Zirconium/pharmacokinetics
6.
MAbs ; 12(1): 1832861, 2020.
Article in English | MEDLINE | ID: mdl-33073698

ABSTRACT

Two-pore physiologically-based pharmacokinetics (PBPK) for biologics describes the tissue distribution and elimination kinetics of soluble proteins as a function of their hydrodynamic radius and the physiological properties of the organs. Whilst many studies have been performed in rodents to parameterize the PBPK framework in terms of organ-specific lymph flow rates, similar validation in humans has been limited. This is mainly due to the paucity of the tissue distribution time course data for biologics that is not distorted by target-related binding. Here, we demonstrate that a PBPK model based on rodent data provided good to satisfactory extrapolation to the tissue distribution time course of 89Zr-labeled albumin-binding domain antibody (AlbudAb™) GSK3128349 in healthy human volunteers, including correct prediction of albumin-like plasma half-life, volume of distribution, and extravasation half-life. The AlbudAb™ used only binds albumin, and hence it also provides information about the tissue distribution kinetics and turnover of that ubiquitous and multifunctional plasma protein.


Subject(s)
Antibodies, Monoclonal , Models, Biological , Radioisotopes , Serum Albumin, Human/immunology , Zirconium , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Humans , Radioisotopes/chemistry , Radioisotopes/pharmacokinetics , Radioisotopes/pharmacology , Tissue Distribution , Zirconium/chemistry , Zirconium/pharmacokinetics , Zirconium/pharmacology
7.
Int J Nanomedicine ; 15: 6137-6152, 2020.
Article in English | MEDLINE | ID: mdl-32884268

ABSTRACT

BACKGROUND: Beyond clinical atherosclerosis imaging of vessel stenosis and plaque morphology, early detection of inflamed atherosclerotic lesions by molecular imaging could improve risk assessment and clinical management in high-risk patients. To identify inflamed atherosclerotic lesions by molecular imaging in vivo, we studied the specificity of our radiotracer based on maleylated (Mal) human serum albumin (HSA), which targets key features of unstable atherosclerotic lesions. MATERIALS AND METHODS: Mal-HSA was radiolabeled with a positron-emitting metal ion, zirconium-89 (89Zr4+). The targeting potential of this probe was compared with unspecific 89Zr-HSA and 18F-FDG in an experimental model of atherosclerosis (Apoe-/- mice, n=22), and compared with wild-type (WT) mice (C57BL/6J, n=21) as controls. RESULTS: PET/MRI, gamma counter measurements, and autoradiography showed the accumulation of 89Zr-Mal-HSA in the atherosclerotic lesions of Apoe-/- mice. The maximum standardized uptake values (SUVmax) for 89Zr-Mal-HSA at 16 and 20 weeks were 26% and 20% higher (P<0.05) in Apoe-/- mice than in control WT mice, whereas no difference in SUVmax was observed for 18F-FDG in the same animals. 89Zr-Mal-HSA uptake in the aorta, as evaluated by a gamma counter 48 h postinjection, was 32% higher (P<0.01) for Apoe-/- mice than in WT mice, and the aorta-to-blood ratio was 8-fold higher (P<0.001) for 89Zr-Mal-HSA compared with unspecific 89Zr-HSA. HSA-based probes were mainly distributed to the liver, spleen, kidneys, bone, and lymph nodes. The phosphor imaging autoradiography (PI-ARG) results corroborated the PET and gamma counter measurements, showing higher accumulation of 89Zr-Mal-HSA in the aortas of Apoe-/- mice than in WT mice (9.4±1.4 vs 0.8±0.3%; P<0.001). CONCLUSION: 89Zr radiolabeling of Mal-HSA probes resulted in detectable activity in atherosclerotic lesions in aortas of Apoe-/- mice, as demonstrated by quantitative in vivo PET/MRI. 89Zr-Mal-HSA appears to be a promising diagnostic tool for the early identification of macrophage-rich areas of inflammation in atherosclerosis.


Subject(s)
Atherosclerosis/diagnostic imaging , Maleates/chemistry , Molecular Imaging/methods , Radioisotopes , Serum Albumin, Human/chemistry , Zirconium , Animals , Aorta/diagnostic imaging , Aorta/pathology , Atherosclerosis/pathology , Autoradiography , Disease Models, Animal , Female , Fluorodeoxyglucose F18 , Humans , Isotope Labeling , Macrophages/pathology , Magnetic Resonance Imaging , Mice, Inbred C57BL , Mice, Knockout, ApoE , Molecular Probes/chemistry , Molecular Probes/pharmacokinetics , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/pathology , Positron-Emission Tomography , Radioisotopes/chemistry , Radioisotopes/pharmacokinetics , Radiopharmaceuticals/chemistry , Tissue Distribution , Zirconium/chemistry , Zirconium/pharmacokinetics
8.
Clin Cancer Res ; 26(18): 4882-4891, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32636317

ABSTRACT

PURPOSE: Metastatic castration-resistant prostate cancer (mCRPC) is a lethal, heterogeneous disease with few therapeutic strategies that significantly prolong survival. Innovative therapies for mCRPC are needed; however, the development of new therapies relies on accurate imaging to assess metastasis and monitor response. Standard imaging modalities for prostate cancer require improvement and there remains a need for selective and sensitive imaging probes that can be widely used in patients with mCRPC. EXPERIMENTAL DESIGN: We evaluated the transmembrane protease fibroblast activation protein alpha (FAP) as a targetable cell surface antigen for mCRPC. Genomic and IHC analyses were performed to investigate FAP expression in prostate cancer. Our FAP-targeted antibody imaging probe, [89Zr]Zr-B12 IgG, was evaluated by PET/CT imaging in preclinical prostate cancer models. RESULTS: Analysis of patient data documented FAP overexpression in metastatic disease across tumor subtypes. PET imaging with [89Zr]Zr-B12 IgG demonstrated high tumor uptake and long-term retention of the probe in the preclinical models examined. FAP-positive stroma tumor uptake of [89Zr]Zr-B12 IgG was 5-fold higher than the isotype control with mean %ID/cc of 34.13 ± 1.99 versus 6.12 ± 2.03 (n = 3/group; P = 0.0006) at 72 hours. Ex vivo biodistribution corroborated these results documenting rapid blood clearance by 24 hours and high tumor uptake of [89Zr]Zr-B12 IgG by 72 hours. CONCLUSIONS: Our study reveals FAP as a target for imaging the tumor microenvironment of prostate cancer. Validation of [89Zr]Zr-B12 IgG as a selective imaging probe for FAP-expressing tumors presents a new approach for noninvasive PET/CT imaging of mCRPC.


Subject(s)
Membrane Proteins/antagonists & inhibitors , Molecular Imaging/methods , Positron Emission Tomography Computed Tomography/methods , Prostate/diagnostic imaging , Prostatic Neoplasms, Castration-Resistant/diagnosis , Animals , Cell Line, Tumor , Endopeptidases/metabolism , HEK293 Cells , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/pharmacokinetics , Male , Membrane Proteins/metabolism , Mice , Prostate/pathology , Prostatic Neoplasms, Castration-Resistant/pathology , RNA-Seq , Radioisotopes/administration & dosage , Radioisotopes/pharmacokinetics , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution , Tumor Microenvironment , X-Ray Microtomography , Zirconium/administration & dosage , Zirconium/pharmacokinetics
9.
Int J Nanomedicine ; 15: 4677-4689, 2020.
Article in English | MEDLINE | ID: mdl-32669844

ABSTRACT

BACKGROUND: Superparamagnetic iron oxide nanoparticles (SPIONs) have displayed multifunctional applications in cancer theranostics following systemic delivery. In an effort to increase the therapeutic potential of local therapies (including focal hyperthermia), nanoparticles can also be administered intratumorally. Therefore, the development of a reliable pharmacokinetic model for the prediction of nanoparticle distribution for both clinically relevant routes of delivery is of high importance. MATERIALS AND METHODS: The biodistribution of SPIONs (of two different sizes - 130 nm and 60 nm) radiolabeled with zirconium-89 or technetium-99m following intratumoral or intravenous injection was investigated in C57/Bl6 mice bearing subcutaneous GL261 glioblastomas. Based on PET/CT biodistribution data, a novel pharmacokinetic model was established for a better understanding of the pharmacokinetics of the SPIONs after both administration routes. RESULTS: The PET image analysis of the nanoparticles (confirmed by histology) demonstrated the presence of radiolabeled nanoparticles within the glioma site (with low amounts in the liver and spleen) at all investigated time points following intratumoral injection. The mathematical model confirmed the dynamic nanoparticle redistribution in the organism over a period of 72 h with an equilibrium reached after 100 h. Intravenous injection of nanoparticles demonstrated a different distribution pattern with a rapid particle retention in all organs (particularly in liver and spleen) and a subsequent slow release rate. CONCLUSION: The mathematical model demonstrated good agreement with experimental data derived from tumor mouse models suggesting the value of this tool to predict the real-time pharmacokinetic features of SPIONs in vivo. In the future, it is planned to adapt our model to other nanoparticle formulations to more precisely describe their biodistribution in in vivo model systems.


Subject(s)
Ferric Compounds/administration & dosage , Ferric Compounds/pharmacokinetics , Glioblastoma/diagnostic imaging , Magnetite Nanoparticles/administration & dosage , Animals , Female , Glioblastoma/pathology , Injections , Injections, Intravenous , Magnetite Nanoparticles/chemistry , Mice, Inbred C57BL , Models, Biological , Positron Emission Tomography Computed Tomography , Radioisotopes/pharmacokinetics , Technetium/pharmacokinetics , Theranostic Nanomedicine/methods , Tissue Distribution , Xenograft Model Antitumor Assays , Zirconium/pharmacokinetics
10.
Int J Mol Sci ; 21(14)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679799

ABSTRACT

Proteins, as a major component of organisms, are considered the preferred biomaterials for drug delivery vehicles. Hemoglobin (Hb) has been recently rediscovered as a potential drug carrier, but its use for biomedical applications still lacks extensive investigation. To further explore the possibility of utilizing Hb as a potential tumor targeting drug carrier, we examined and compared the biodistribution of Hb in healthy and lung tumor-bearing mice, using for the first time 89Zr labelled Hb in a positron emission tomography (PET) measurement. Hb displays a very high conjugation yield in its fast and selective reaction with the maleimide-deferoxamine (DFO) bifunctional chelator. The high-resolution X-ray structure of the Hb-DFO complex demonstrated that cysteine ß93 is the sole attachment moiety to the αß-protomer of Hb. The Hb-DFO complex shows quantitative uptake of 89Zr in solution as determined by radiochromatography. Injection of 0.03 mg of Hb-DFO-89Zr complex in healthy mice indicates very high radioactivity in liver, followed by spleen and lungs, whereas a threefold increased dosage results in intensification of PET signal in kidneys and decreased signal in liver and spleen. No difference in biodistribution pattern is observed between naïve and tumor-bearing mice. Interestingly, the liver Hb uptake did not decrease upon clodronate-mediated macrophage depletion, indicating that other immune cells contribute to Hb clearance. This finding is of particular interest for rapidly developing clinical immunology and projects aiming to target, label or specifically deliver agents to immune cells.


Subject(s)
Drug Carriers/pharmacokinetics , Drug Delivery Systems , Hemoglobins/pharmacokinetics , Lung Neoplasms/metabolism , Lung/metabolism , Animals , Cell Line, Tumor , Coordination Complexes/chemistry , Coordination Complexes/pharmacokinetics , Deferoxamine/analogs & derivatives , Deferoxamine/pharmacokinetics , Drug Carriers/chemistry , Female , Hemoglobins/chemistry , Humans , Mice , Mice, Inbred BALB C , Models, Molecular , Positron Emission Tomography Computed Tomography , Radioisotopes/chemistry , Radioisotopes/pharmacokinetics , Tissue Distribution , Zirconium/chemistry , Zirconium/pharmacokinetics
11.
Radiology ; 296(2): 370-378, 2020 08.
Article in English | MEDLINE | ID: mdl-32515679

ABSTRACT

Background Human epidermal growth factor receptor 2 (HER2)-targeted therapies are successful in patients with HER2-positive malignancies; however, spatial and temporal heterogeneity of HER2 expression may prevent identification of optimal patients for these therapies. Purpose To determine whether imaging with the HER2-targeted PET tracer zirconium 89 (89Zr)-pertuzumab can depict HER2-positive metastases in women with HER2-negative primary breast cancer. Materials and Methods From January to June 2019, women with biopsy-proven HER2-negative primary breast cancer and biopsy-proven metastatic disease were enrolled in a prospective clinical trial (ClinicalTrials.gov NCT02286843) and underwent 89Zr-pertuzumab PET/CT for noninvasive whole-biopsy evaluation of potential HER2-positive metastases. 89Zr-pertuzumab-avid foci that were suspicious for HER2-positive metastases were tissue sampled and examined by pathologic analysis to document HER2 status. Results Twenty-four women (mean age, 55 years ± 11 [standard deviation]) with HER2-negative primary breast cancer were enrolled. Six women demonstrated foci at 89Zr-pertuzumab PET/CT that were suspicious for HER2-positive disease. Of these six women, three had biopsy-proven HER2-positive metastases, two had pathologic findings that demonstrated HER2-negative disease, and one had a fine-needle aspirate with inconclusive results. Conclusion Human epidermal growth factor receptor 2 (HER2)-targeted imaging with zirconium 89-pertuzumab PET/CT was successful in detecting HER2-positive metastases in women with HER2-negative primary breast cancer. This demonstrates the ability of targeted imaging to identify patients for targeted therapies that might not otherwise be considered. © RSNA, 2020 Online supplemental material is available for this article. See the editorial by Mankoff and Pantel in this issue.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Breast Neoplasms , Positron Emission Tomography Computed Tomography , Radioisotopes/therapeutic use , Receptor, ErbB-2/metabolism , Zirconium/therapeutic use , Aged , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Breast Neoplasms/classification , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Humans , Middle Aged , Neoplasm Metastasis/diagnostic imaging , Neoplasm Metastasis/pathology , Positron Emission Tomography Computed Tomography/methods , Prospective Studies , Radioisotopes/pharmacokinetics , Receptor, ErbB-2/analysis , Zirconium/pharmacokinetics
12.
Cancer Biother Radiopharm ; 35(8): 549-557, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32315549

ABSTRACT

The rise of programmed death-1 (PD-1)/PD-L1 immune checkpoint inhibitor therapy has been one of the most promising developments in melanoma research. However, not all the melanoma patients respond to such immune checkpoint blockade. There is a great need of biomarkers for appropriate melanoma patient selection and therapeutic efficacy monitoring. The objective of this study is to develop a novel radiolabeled anti-PD-L1 antibody fragment, as an imaging biomarker, for evaluating the in vivo PD-L1 levels in melanoma. The Df-conjugated F(ab')2 fragment of the anti-mouse PD-L1 antibody was successfully synthesized and radiolabeled with 89Zr. Both Df-F(ab')2 and 89Zr-Df-F(ab')2 maintained the nano-molar murine PD-L1 targeting specificity and affinity. 89Zr-Df-F(ab')2 showed less uptake in normal liver tissue in mice compared with its full antibody counterpart 89Zr-Df-anti-PD-L1. Positron emission tomography (PET)/computed tomography images clearly showed that 89Zr-Df-F(ab')2 possessed superior pharmacokinetics and imaging contrast over the radiolabeled full antibody, with much earlier and higher tumor uptake (5.5 times more at 2 h post injection) and much lower liver background (51% reduction at 2 h post injection). The specific and high murine PD-L1-targeting uptake at tumor foci coupled with fast clearance of 89Zr-Df-F(ab')2 highlighted its potential for in vivo PET imaging of murine PD-L1 levels and future development of radiolabeled anti-human PD-L1 fragment for potential application in melanoma patients.


Subject(s)
B7-H1 Antigen/analysis , Immunoconjugates/administration & dosage , Melanoma, Experimental/diagnosis , Positron Emission Tomography Computed Tomography/methods , Skin Neoplasms/diagnosis , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Immunoconjugates/pharmacokinetics , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Molecular Imaging/methods , Radioisotopes/administration & dosage , Radioisotopes/pharmacokinetics , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/pharmacokinetics , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Tissue Distribution , Zirconium/administration & dosage , Zirconium/pharmacokinetics
13.
J Nucl Med ; 61(11): 1594-1601, 2020 11.
Article in English | MEDLINE | ID: mdl-32284393

ABSTRACT

Bispecific T-cell engager (BiTE) molecules are designed to engage and activate cytotoxic T cells to kill tumor cells. Little is known about their biodistribution in immunocompetent settings. Methods: To explore their pharmacokinetics and the role of the immune cells, BiTE molecules were radiolabeled with the PET isotope 89Zr and studied in immunocompetent and immunodeficient mouse models. Results: PET images and ex vivo biodistribution in immunocompetent mice with [89Zr]Zr-DFO-N-suc-muS110, targeting mouse CD3 (dissociation constant [KD], 2.9 nM) and mouse epithelial cell adhesion molecule (EpCAM; KD, 21 nM), and with [89Zr]Zr-DFO-N-suc-hyS110, targeting only mouse CD3 (KD, 2.9 nM), showed uptake in the tumor, spleen, and other lymphoid organs, whereas the human-specific control BiTE [89Zr]Zr-DFO-N-suc-AMG 110 showed similar tumor uptake but lacked spleen uptake. [89Zr]Zr-DFO-N-suc-muS110 spleen uptake was lower in immunodeficient than in immunocompetent mice. After repeated administration of nonradiolabeled muS110 to immunocompetent mice, 89Zr-muS110 uptake in the spleen and other lymphoid tissues decreased and was comparable to uptake in immunodeficient mice, indicating saturation of CD3 binding sites. Autoradiography and immunohistochemistry demonstrated colocalization of [89Zr]Zr-DFO-N-suc-muS110 and [89Zr]Zr-DFO-N-suc-hyS110 with CD3-positive T cells in the tumor and spleen but not with EpCAM expression. Also, uptake in the duodenum correlated with a high incidence of T cells. Conclusion: [89Zr]Zr-DFO-N-suc-muS110 biodistribution is dependent mainly on the T-cell-targeting arm, with a limited contribution from its second arm, targeting EpCAM. These findings highlight the need for extensive biodistribution studies of novel bispecific constructs, as the results might have implications for their respective drug development and clinical translation.


Subject(s)
Antibodies, Bispecific/pharmacokinetics , CD3 Complex/immunology , Epithelial Cell Adhesion Molecule/immunology , Radioisotopes/pharmacokinetics , T-Lymphocytes/immunology , Zirconium/pharmacokinetics , Animals , Cell Line, Tumor , Female , Mice , Mice, Inbred BALB C , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Positron-Emission Tomography , Tissue Distribution
14.
Mater Sci Eng C Mater Biol Appl ; 109: 110592, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32228986

ABSTRACT

Resin-based pit-and-fissure sealants (flowable resin composites) were formulated using bisphenol-A-glycerolatedimethacrylate (Bis-GMA)-triethylene glycol dimethacrylate-(TEGDMA)-diurethanedimethacrylate (UDMA) mixed monomers and multiple fillers, including synthetic strontium fluoride (SrF2) nanoparticles as a fluoride-releasing and antibacterial agent, yttria-stabilized zirconia (YSZ) nanoparticles as an auxiliary filler, and poly-ε-l-lysin (ε-PL) as an auxiliary antibacterial agent. Based on the physical, mechanical and initial antibacterial properties, the formulated nano-sealant containing 5 wt% SrF2, 5 wt% YSZ and 0.5 wt% ε-PL was selected as the optimal specimen and examined for ion release and cytotoxicity. The results showed an average release rate of 0.87 µg·cm-2·day-1 in the aqueous medium (pH 6.9) and 1.58 µg·cm-2·day-1 in acidic medium (pH 4.0). The maximum cytotoxicity of 20% toward human bone marrow mesenchymal stem cells (hMSCs) was observed according to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) cytotoxicity assay and acridine orange staining test. A synergy between SrF2 nanoparticles and ε-PL exhibited a better antibacterial activity in terms of colony reduction compared to the other samples. However, the inclusion of SrF2 and ε-PL caused mechanically weakening of the sealants that was partly compensated by incorporation of YSZ nanoparticles (up to 10 wt%).


Subject(s)
Anti-Bacterial Agents , Root Canal Filling Materials , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Fluorides/chemistry , Fluorides/pharmacokinetics , Fluorides/pharmacology , Ions/chemistry , Ions/pharmacokinetics , Ions/pharmacology , Polylysine/chemistry , Polylysine/pharmacokinetics , Polylysine/pharmacology , Root Canal Filling Materials/chemistry , Root Canal Filling Materials/pharmacokinetics , Root Canal Filling Materials/pharmacology , Strontium/chemistry , Strontium/pharmacokinetics , Strontium/pharmacology , Yttrium/chemistry , Yttrium/pharmacokinetics , Yttrium/pharmacology , Zirconium/chemistry , Zirconium/pharmacokinetics , Zirconium/pharmacology
15.
Nanoscale ; 12(16): 8890-8897, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32266902

ABSTRACT

Selectively attenuating the protection offered by heat shock protein 90 (HSP90), which is indispensable for the stabilization of the essential regulators of cell survival and works as a cell guardian under oxidative stress conditions, is a potential approach to improve the efficiency of cancer therapy. Here, we designed a biodegradable nanoplatform (APCN/BP-FA) based on a Zr(iv)-based porphyrinic porous coordination network (PCN) and black phosphorus (BP) sheets for efficient photodynamic therapy (PDT) by enhancing the accumulation of the nanoplatforms in the tumor area and attenuating the protection of cancer cells. Owing to the favorable degradability of BP, the nanosystem exhibited accelerated the release of the HSP90 inhibitor tanespimycin (17-AAG) and an apparent promotion in the reactive oxygen species (ROS) yield of PCN as well as expedited the degradation of the PCN-laden BP nanoplatforms. Both in vitro and in vivo results revealed that the elevated amounts of ROS and reduced cytoprotection in tumor cells were caused by the nanoplatforms. This strategy may provide a promising method for attenuating cytoprotection to aid efficient photodynamic therapy.


Subject(s)
Metal-Organic Frameworks/chemistry , Neoplasms/drug therapy , Phosphorus/chemistry , Photochemotherapy/methods , Animals , Benzoquinones/chemistry , Benzoquinones/therapeutic use , Cell Line, Tumor , Drug Delivery Systems , Folic Acid/chemistry , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Humans , Lactams, Macrocyclic/chemistry , Lactams, Macrocyclic/therapeutic use , Metal-Organic Frameworks/pharmacokinetics , Metal-Organic Frameworks/therapeutic use , Mice , Nanostructures/chemistry , Nanostructures/therapeutic use , Neoplasms/metabolism , Phosphorus/pharmacokinetics , Phosphorus/therapeutic use , Porosity , Porphyrins/chemistry , Porphyrins/pharmacokinetics , Porphyrins/therapeutic use , Reactive Oxygen Species/metabolism , Xenograft Model Antitumor Assays , Zirconium/chemistry , Zirconium/pharmacokinetics , Zirconium/therapeutic use
16.
Cancer Immunol Res ; 8(5): 596-608, 2020 05.
Article in English | MEDLINE | ID: mdl-32184296

ABSTRACT

Patients with hematologic cancers have improved outcomes after treatment with bispecific antibodies that bind to CD3 on T cells and that redirect T cells toward cancer cells. However, clinical benefit against solid tumors remains to be shown. We made a bispecific antibody that targets both the common prostate tumor-specific antigen PSMA and CD3 (PMSAxCD3) and provide evidence for tumor inhibition in several preclinical solid tumor models. Mice expressing the human extracellular regions of CD3 and PSMA were generated to examine antitumor efficacy in the presence of an intact immune system and PSMA expression in normal tissues. PSMAxCD3 accumulated in PSMA-expressing tissues and tumors as detected by immuno-PET imaging. Although PSMAxCD3 induced T-cell activation and showed antitumor efficacy in mice with low tumor burden, PSMAxCD3 lost efficacy against larger solid tumors, mirroring the difficulty of treating solid tumors in the clinic. Costimulatory receptors can enhance T-cell responses. We show here that costimulation can enhance the antitumor efficacy of PSMAxCD3. In particular, 4-1BB stimulation in combination with PSMAxCD3 enhanced T-cell activation and proliferation, boosted efficacy against larger tumors, and induced T-cell memory, leading to durable antitumor responses. The combination of CD3 bispecific antibodies and anti-4-1BB costimulation represents a therapeutic approach for the treatment of solid tumors.


Subject(s)
Antibodies, Bispecific/pharmacology , Antibodies, Monoclonal/pharmacology , CD3 Complex/immunology , Glutamate Carboxypeptidase II/antagonists & inhibitors , Prostatic Neoplasms/drug therapy , T-Lymphocytes/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , Animals , Antibodies, Bispecific/immunology , Antigens, Surface/immunology , Antigens, Surface/metabolism , CD3 Complex/metabolism , Cell Line, Tumor , Disease Models, Animal , Glutamate Carboxypeptidase II/immunology , Glutamate Carboxypeptidase II/metabolism , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Prostatic Neoplasms/immunology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Radioisotopes/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism , Zirconium/pharmacokinetics
17.
Clin Cancer Res ; 26(11): 2573-2581, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32034075

ABSTRACT

PURPOSE: Trials of adoptive natural killer (NK)-cell immunotherapy for hematologic malignancies have thus far shown only marginal effects, despite the potent in vitro antitumor activity of these cells. Homing of infused cells to tumor microenvironments is critical for efficacy, but has not been well characterized. We established a novel method to track and quantify the distribution of adoptively transferred NK cells using rhesus macaques (RM) as a clinically relevant preclinical model. EXPERIMENTAL DESIGN: RM NK cells were expanded ex vivo for 14-21 days, labeled with 89Zr-oxine complex, and assessed for phenotype, function, and survival. Trafficking of 89Zr-labeled ex vivo-expanded NK cells infused into RMs was monitored and quantitated by serial positron emission tomography (PET)/CT (n = 3, 2.05 ± 0.72 MBq, 23.5 ± 2.0 × 106 NK cells/kg) and compared with that of 89Zr-labeled nonexpanded NK cells, apoptotic NK cells, and hematopoietic stem and progenitor cells (HSPC). RESULTS: NK cells retained sufficient levels of 89Zr for accurate in vivo tracking for 7 days. 89Zr labeling did not alter cellular phenotype, viability, or function. PET/CT showed NK cells initially localized in the lungs, followed by their migration to the liver, spleen, and, at low levels, bone marrow. One day following transfer, only 3.4% of infused NK cells localized to the BM versus 22.1% of HSPCs. No clinical side effects were observed, and dosimetry analysis indicated low organ radioexposures of 6.24 mSv/MBq (spleen) or lower. CONCLUSIONS: These data support translation of this technique to humans to track the distribution of adoptively infused cells and to develop novel techniques to improve immune cell homing to tumor microenvironments.


Subject(s)
Cell Tracking/methods , Cell Transplantation/methods , Killer Cells, Natural/cytology , Lung/metabolism , Monitoring, Physiologic/methods , Oxyquinoline/chemistry , Radioisotopes/pharmacokinetics , Zirconium/pharmacokinetics , Animals , Killer Cells, Natural/metabolism , Killer Cells, Natural/transplantation , Macaca mulatta , Positron-Emission Tomography , Radioisotopes/chemistry , Tissue Distribution , Zirconium/chemistry
18.
Clin Cancer Res ; 26(15): 3999-4009, 2020 08 01.
Article in English | MEDLINE | ID: mdl-31953313

ABSTRACT

PURPOSE: Probody therapeutic CX-072 is a protease-activatable antibody that is cross-reactive with murine and human programmed death-ligand 1 (PD-L1). CX-072 can be activated in vivo by proteases present in the tumor microenvironment, thereby potentially reducing peripheral, anti-PD-L1-mediated toxicities. To study its targeting of PD-L1-expressing tissues, we radiolabeled CX-072 with the PET isotope zirconium-89 (89Zr). EXPERIMENTAL DESIGN: 89Zr-labeled CX-072, nonspecific Probody control molecule (PbCtrl) and CX-072 parental antibody (CX-075) were injected in BALB/c nude mice bearing human MDA-MB-231 tumors or C57BL/6J mice bearing syngeneic MC38 tumors. Mice underwent serial PET imaging 1, 3, and 6 days after intravenous injection (pi), followed by ex vivo biodistribution. Intratumoral 89Zr-CX-072 distribution was studied by autoradiography on tumor tissue sections, which were subsequently stained for PD-L1 by IHC. Activated CX-072 species in tissue lysates were detected by Western capillary electrophoresis. RESULTS: PET imaging revealed 89Zr-CX-072 accumulation in MDA-MB-231 tumors with 2.1-fold higher tumor-to-blood ratios at 6 days pi compared with 89Zr-PbCtrl. Tumor tissue autoradiography showed high 89Zr-CX-072 uptake in high PD-L1-expressing regions. Activated CX-072 species were detected in these tumors, with 5.3-fold lower levels found in the spleen. Furthermore, 89Zr-CX-072 uptake by lymphoid tissues of immune-competent mice bearing MC38 tumors was low compared with 89Zr-CX-075, which lacks the Probody design. CONCLUSIONS: 89Zr-CX-072 accumulates specifically in PD-L1-expressing tumors with limited uptake in murine peripheral lymphoid tissues. Our data may enable clinical evaluation of 89Zr-CX-072 whole-body distribution as a tool to support CX-072 drug development (NCT03013491).


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , B7-H1 Antigen/antagonists & inhibitors , Immune Checkpoint Inhibitors/pharmacokinetics , Neoplasms/drug therapy , Radiopharmaceuticals/pharmacokinetics , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Autoradiography , Cell Line, Tumor , Drug Design , Humans , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/chemistry , Male , Mice , Neoplasms/diagnostic imaging , Neoplasms/immunology , Neoplasms/pathology , Positron-Emission Tomography , Radioisotopes/administration & dosage , Radioisotopes/chemistry , Radioisotopes/pharmacokinetics , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/chemistry , Tissue Distribution , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays , Zirconium/administration & dosage , Zirconium/chemistry , Zirconium/pharmacokinetics
19.
Mol Imaging Biol ; 22(3): 685-694, 2020 06.
Article in English | MEDLINE | ID: mdl-31529407

ABSTRACT

PURPOSE: Glioblastoma is a lethal brain tumor, heavily infiltrated by tumor-associated myeloid cells (TAMCs). TAMCs are emerging as a promising therapeutic target as they suppress anti-tumor immune responses and promote tumor cell growth. Quantifying TAMCs using non-invasive immunoPET could facilitate patient stratification for TAMC-targeted treatments and monitoring of treatment efficacy. As TAMCs uniformly express the cell surface marker, integrin CD11b, we evaluated a Zr-89 labeled anti-CD11b antibody for non-invasive imaging of TAMCs in a syngeneic orthotopic mouse glioma model. PROCEDURES: A human/mouse cross-reactive anti-CD11b antibody (clone M1/70) was conjugated to a DFO chelator and radiolabeled with Zr-89. PET/CT and biodistribution with or without a blocking dose of anti-CD11b Ab were performed 72 h post-injection (p.i.) of [89Zr]anti-CD11b Ab in mice bearing established orthotopic syngeneic GL261 gliomas and in non tumor-bearing mice. Flow cytometry and immunohistochemistry of dissected GL261 tumors were conducted to confirm the presence of CD11b+ TAMCs. RESULTS: Significant uptake of [89Zr]anti-CD11b Ab was detected at the tumor site (SUVmean = 2.60 ± 0.24) compared with the contralateral hemisphere (SUVmean = 0.6 ± 0.11). Blocking with a 10-fold lower specific activity of [89Zr]anti-CD11b Ab markedly reduced the SUV in the right brain (SUVmean = 0.11 ± 0.06), demonstrating specificity. Spleen and lymph nodes (myeloid cell rich organs) also showed high uptake of the tracer, and biodistribution analysis correlated with the imaging results. CD11b expression within the tumor was validated using flow cytometry and immunohistochemistry, which showed high CD11b expression primarily in the tumoral hemisphere compared with the contralateral hemisphere with very minimal accumulation in non tumor-bearing brain. CONCLUSION: These data establish that [89Zr]anti-CD11b Ab immunoPET targets CD11b+ cells (TAMCs) with high specificity in a mouse model of GBM, demonstrating the potential for non-invasive quantification of tumor-infiltrating CD11b+ immune cells during disease progression and immunotherapy in patients with GBM.


Subject(s)
Antibodies, Monoclonal , Brain Neoplasms/diagnostic imaging , CD11b Antigen/immunology , Glioblastoma/diagnostic imaging , Myeloid Cells/pathology , Positron Emission Tomography Computed Tomography/methods , Radioisotopes , Zirconium , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/pharmacokinetics , Brain Neoplasms/drug therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Female , Glioblastoma/drug therapy , Glioblastoma/immunology , Glioblastoma/pathology , Immunotherapy , Mice , Mice, Inbred C57BL , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/metabolism , Radioisotopes/chemistry , Radioisotopes/pharmacokinetics , Tissue Distribution , Zirconium/chemistry , Zirconium/pharmacokinetics
20.
Mol Imaging Biol ; 22(1): 105-114, 2020 02.
Article in English | MEDLINE | ID: mdl-31065895

ABSTRACT

PURPOSE: Tumor necrosis factor alpha (TNFα) drives inflammation and bone degradation in patients with rheumatoid arthritis (RA). Some RA patients experience a rapid clinical response to TNFα inhibitors such as certolizumab pegol (CZP) while other patients show limited to no response. Current methods for imaging RA have limited sensitivity and do not assist in the selection of patients most likely to respond to immune-mediated therapy. Herein, we developed a novel positron emission tomography (PET) radiotracer for immuno-PET imaging of TNFα in transgenic human TNFα-expressing mice. PROCEDURES: CZP was modified with p-isothiocyanatobenzyl-deferoxamine (DFO) and radiolabeled with Zr-89. The biological activity of [89Zr]DFO-CZP was evaluated by HPLC and binding assay using human recombinant TNFα (hTNFα). The feasibility of specific immuno-PET imaging of human TNFα was assessed in a transgenic mouse model of RA that expresses human TNFα. This model resembles the progression of RA in humans by maintaining lower levels of circulating hTNFα and exhibits chronic arthritis in the forepaw and hind paw joints. The dosimetry of [89Zr]DFO-CZP in humans was estimated using microPET/CT imaging in Sprague Dawley rats. RESULTS: [89Zr]DFO-CZP was isolated with radiolabeling yields of 85 ± 6 % (n = 5) and specific activities ranging from 74 to 185 MBq/mg (n = 5). Following size exclusion purification, the radiochemical purity of [89Zr]DFO-CZP was greater than 97 %. [89Zr]DFO-CZP retained high immunoreactivity with more than 95 % of the radioactivity shifted into higher molecular weight complexes. Images showed increasing uptake of the tracer in forepaw and hind paw joints with disease progression. No uptake was observed in the model previously administered with an excess amount of unmodified CZP and in normal control mice, demonstrating in vivo specific uptake of [89Zr]DFO-CZP. CONCLUSION: The feasibility of immuno-PET imaging of human TNFα with [89Zr]DFO-CZP has been demonstrated in a preclinical model of RA.


Subject(s)
Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Certolizumab Pegol/pharmacokinetics , Immunoconjugates/pharmacokinetics , Positron Emission Tomography Computed Tomography/methods , Radioisotopes/pharmacokinetics , Tumor Necrosis Factor-alpha/metabolism , Zirconium/pharmacokinetics , Animals , Antirheumatic Agents/pharmacokinetics , Arthritis, Experimental/diagnostic imaging , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Rats , Rats, Sprague-Dawley , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...