Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 279
Filter
1.
Protein Sci ; 33(7): e5075, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38895978

ABSTRACT

Rheostat positions, which can be substituted with various amino acids to tune protein function across a range of outcomes, are a developing area for advancing personalized medicine and bioengineering. Current methods cannot accurately predict which proteins contain rheostat positions or their substitution outcomes. To compare the prevalence of rheostat positions in homologs, we previously investigated their occurrence in two pyruvate kinase (PYK) isozymes. Human liver PYK contained numerous rheostat positions that tuned the apparent affinity for the substrate phosphoenolpyruvate (Kapp-PEP) across a wide range. In contrast, no functional rheostat positions were identified in Zymomonas mobilis PYK (ZmPYK). Further, the set of ZmPYK substitutions included an unusually large number that lacked measurable activity. We hypothesized that the inactive substitution variants had reduced protein stability, precluding detection of Kapp-PEP tuning. Using modified buffers, robust enzymatic activity was obtained for 19 previously-inactive ZmPYK substitution variants at three positions. Surprisingly, both previously-inactive and previously-active substitution variants all had Kapp-PEP values close to wild-type. Thus, none of the three positions were functional rheostat positions, and, unlike human liver PYK, ZmPYK's Kapp-PEP remained poorly tunable by single substitutions. To directly assess effects on stability, we performed thermal denaturation experiments for all ZmPYK substitution variants. Many diminished stability, two enhanced stability, and the three positions showed different thermal sensitivity to substitution, with one position acting as a "stability rheostat." The differences between the two PYK homologs raises interesting questions about the underlying mechanism(s) that permit functional tuning by single substitutions in some proteins but not in others.


Subject(s)
Pyruvate Kinase , Zymomonas , Humans , Zymomonas/enzymology , Zymomonas/genetics , Zymomonas/chemistry , Zymomonas/metabolism , Pyruvate Kinase/chemistry , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Amino Acid Substitution , Protein Stability , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Enzyme Stability , Liver/enzymology , Liver/metabolism , Liver/chemistry , Phosphoenolpyruvate/metabolism , Phosphoenolpyruvate/chemistry
2.
Microb Cell Fact ; 23(1): 180, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890644

ABSTRACT

Nowadays, biofuels, especially bioethanol, are becoming increasingly popular as an alternative to fossil fuels. Zymomonas mobilis is a desirable species for bioethanol production due to its unique characteristics, such as low biomass production and high-rate glucose metabolism. However, several factors can interfere with the fermentation process and hinder microbial activity, including lignocellulosic hydrolysate inhibitors, high temperatures, an osmotic environment, and high ethanol concentration. Overcoming these limitations is critical for effective bioethanol production. In this review, the stress response mechanisms of Z. mobilis are discussed in comparison to other ethanol-producing microbes. The mechanism of stress response is divided into physiological (changes in growth, metabolism, intracellular components, and cell membrane structures) and molecular (up and down-regulation of specific genes and elements of the regulatory system and their role in expression of specific proteins and control of metabolic fluxes) changes. Systemic metabolic engineering approaches, such as gene manipulation, overexpression, and silencing, are successful methods for building new metabolic pathways. Therefore, this review discusses systems metabolic engineering in conjunction with systems biology and synthetic biology as an important method for developing new strains with an effective response mechanism to fermentation stresses during bioethanol production. Overall, understanding the stress response mechanisms of Z. mobilis can lead to more efficient and effective bioethanol production.


Subject(s)
Biofuels , Ethanol , Fermentation , Metabolic Engineering , Stress, Physiological , Zymomonas , Zymomonas/metabolism , Zymomonas/genetics , Ethanol/metabolism , Metabolic Engineering/methods
3.
Microb Cell Fact ; 23(1): 143, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773442

ABSTRACT

BACKGROUND: Zymomonas mobilis is well known for its outstanding ability to produce ethanol with both high specific productivity and with high yield close to the theoretical maximum. The key enzyme in the ethanol production pathway is the pyruvate decarboxylase (PDC) which is converting pyruvate to acetaldehyde. Since it is widely considered that its gene pdc is essential, metabolic engineering strategies aiming to produce other compounds derived from pyruvate need to find ways to reduce PDC activity. RESULTS: Here, we present a new platform strain (sGB027) of Z. mobilis in which the native promoter of pdc was replaced with the IPTG-inducible PT7A1, allowing for a controllable expression of pdc. Expression of lactate dehydrogenase from E. coli in sGB027 allowed the production of D-lactate with, to the best of our knowledge, the highest reported specific productivity of any microbial lactate producer as well as with the highest reported lactate yield for Z. mobilis so far. Additionally, by expressing the L-alanine dehydrogenase of Geobacillus stearothermophilus in sGB027 we produced L-alanine, further demonstrating the potential of sGB027 as a base for the production of compounds other than ethanol. CONCLUSION: We demonstrated that our new platform strain can be an excellent starting point for the efficient production of various compounds derived from pyruvate with Z. mobilis and can thus enhance the establishment of this organism as a workhorse for biotechnological production processes.


Subject(s)
Escherichia coli , Ethanol , Lactic Acid , Metabolic Engineering , Pyruvate Decarboxylase , Zymomonas , Zymomonas/metabolism , Zymomonas/genetics , Pyruvate Decarboxylase/metabolism , Pyruvate Decarboxylase/genetics , Metabolic Engineering/methods , Ethanol/metabolism , Lactic Acid/metabolism , Lactic Acid/biosynthesis , Escherichia coli/metabolism , Escherichia coli/genetics , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/genetics , Alanine/metabolism , Pyruvic Acid/metabolism , Fermentation
4.
Nucleic Acids Res ; 52(10): 5643-5657, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38716861

ABSTRACT

Genomic mutations allow bacteria to adapt rapidly to adverse stress environments. The three-dimensional conformation of the genome may also play an important role in transcriptional regulation and environmental adaptation. Here, using chromosome conformation capture, we investigate the high-order architecture of the Zymomonas mobilis chromosome in response to genomic mutation and ambient stimuli (acetic acid and furfural, derived from lignocellulosic hydrolysate). We find that genomic mutation only influences the local chromosome contacts, whereas stress of acetic acid and furfural restrict the long-range contacts and significantly change the chromosome organization at domain scales. Further deciphering the domain feature unveils the important transcription factors, Ferric uptake regulator (Fur) proteins, which act as nucleoid-associated proteins to promote long-range (>200 kb) chromosomal communications and regulate the expression of genes involved in stress response. Our work suggests that ubiquitous transcription factors in prokaryotes mediate chromosome organization and regulate stress-resistance genes in bacterial adaptation.


Subject(s)
Adaptation, Physiological , Bacterial Proteins , Chromosomes, Bacterial , Gene Expression Regulation, Bacterial , Transcription Factors , Adaptation, Physiological/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Chromosomes, Bacterial/chemistry , Chromosomes, Bacterial/genetics , Gene Expression Regulation, Bacterial/genetics , Mutation , Repressor Proteins/metabolism , Repressor Proteins/genetics , Stress, Physiological/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Zymomonas/genetics , Zymomonas/metabolism , Nucleic Acid Conformation
5.
Microbiol Spectr ; 12(7): e0425623, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38785428

ABSTRACT

Isoprenoids are a diverse family of compounds that are synthesized from two isomeric compounds, isopentenyl diphosphate and dimethylallyl diphosphate. In most bacteria, isoprenoids are produced from the essential methylerythritol phosphate (MEP) pathway. The terminal enzymes of the MEP pathway IspG and IspH are [4Fe-4S] cluster proteins, and in Zymomonas mobilis, the substrates of IspG and IspH accumulate in cells in response to O2, suggesting possible lability of their [4Fe-4S] clusters. Here, we show using complementation assays in Escherichia coli that even under anaerobic conditions, Z. mobilis IspG and IspH are not as functional as their E. coli counterparts, requiring higher levels of expression to rescue viability. A deficit of the sulfur utilization factor (SUF) Fe-S cluster biogenesis pathway did not explain the reduced function of Z. mobilis IspG and IspH since no improvement in viability was observed in E. coli expressing the Z. mobilis SUF pathway or having increased expression of the E. coli SUF pathway. Complementation of single and double mutants with various combinations of Z. mobilis and E. coli IspG and IspH indicated that optimal growth required the pairing of IspG and IspH from the same species. Furthermore, Z. mobilis IspH conferred an O2-sensitive growth defect to E. coli that could be partially rescued by co-expression of Z. mobilis IspG. In vitro analysis showed O2 sensitivity of the [4Fe-4S] cluster of both Z. mobilis IspG and IspH. Altogether, our data indicate an important role of the cognate protein IspG in Z. mobilis IspH function under both aerobic and anaerobic conditions. IMPORTANCE: Isoprenoids are one of the largest classes of natural products, exhibiting diversity in structure and function. They also include compounds that are essential for cellular life across the biological world. In bacteria, isoprenoids are derived from two precursors, isopentenyl diphosphate and dimethylallyl diphosphate, synthesized primarily by the methylerythritol phosphate pathway. The aerotolerant Z. mobilis has the potential for methylerythritol phosphate pathway engineering by diverting some of the glucose that is typically efficiently converted into ethanol to produce isoprenoid precursors to make bioproducts and biofuels. Our data revealed the surprising finding that Z. mobilis IspG and IspH need to be co-optimized to improve flux via the methyl erythritol phosphate pathway in part to evade the oxygen sensitivity of IspH.


Subject(s)
Bacterial Proteins , Erythritol , Escherichia coli , Zymomonas , Zymomonas/metabolism , Zymomonas/enzymology , Zymomonas/genetics , Erythritol/metabolism , Erythritol/analogs & derivatives , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/genetics , Terpenes/metabolism , Oxidoreductases
6.
Int J Biol Macromol ; 262(Pt 2): 129796, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311144

ABSTRACT

Rapid adaptation of metabolic capabilities is crucial for bacterial survival in habitats with fluctuating nutrient availability. In such conditions, the bacterial stringent response is a central regulatory mechanism activated by nutrient starvation or other stressors. This response is primarily controlled by exopolyphosphatase/guanosine pentaphosphate phosphohydrolase (PPX/GPPA) enzymes. To gain further insight into these enzymes, the high-resolution crystal structure of PPX from Zymomonas mobilis (ZmPPX) was determined at 1.8 Å. The phosphatase activity of PPX was strictly dependent on the presence of divalent metal cations. Notably, the structure of ZmPPX revealed the presence of two magnesium ions in the active site center, which is atypical compared to other PPX structures where only one divalent ion is observed. ZmPPX exists as a dimer in solution and belongs to the "long" PPX group consisting of four domains. Remarkably, the dimer configuration exhibits a substantial and deep aqueduct with positive potential along its interface. This aqueduct appears to extend towards the active site region, suggesting that this positively charged aqueduct could potentially serve as a binding site for polyP.


Subject(s)
Magnesium , Zymomonas , Zymomonas/metabolism , Acid Anhydride Hydrolases/chemistry , Acid Anhydride Hydrolases/metabolism , Bacteria/metabolism , Ions
7.
Microb Biotechnol ; 17(1): e14381, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38264843

ABSTRACT

Zymomonas mobilis has the potential to be an optimal chassis for the production of bulk chemicals derived from pyruvate. However, a lack of available standardized and characterized genetic tools hinders both efficient engineering of Z. mobilis and progress in basic research on this organism. In this study, a series of different shuttle vectors were constructed based on the replication mechanisms of the native Z. mobilis plasmids pZMO1, pZMOB04, pZMOB05, pZMOB06, pZMO7 and p29191_2 and on the broad host range replication origin of pBBR1. These plasmids as well as genomic integration sites were characterized for efficiency of heterologous gene expression, stability without selection and compatibility. We were able to show that a wide range of expression levels could be achieved by using different plasmid replicons. The expression levels of the constructs were consistent with the relative copy numbers, as determined by quantitative PCR. In addition, most plasmids are compatible and could be combined. To avoid plasmid loss, antibiotic selection is required for all plasmids except the pZMO7-based plasmid, which is stable also without selection pressure. Stable expression of reporter genes without the need for selection was also achieved by genomic integration. All modules were adapted to the modular cloning toolbox Zymo-Parts, allowing easy reuse and combination of elements. This work provides an overview of heterologous gene expression in Z. mobilis and adds a rich set of standardized genetic elements to an efficient cloning system, laying the foundation for future engineering and research in this area.


Subject(s)
Zymomonas , Zymomonas/genetics , Zymomonas/metabolism , Plasmids , Genetic Vectors , Gene Expression
8.
Sci Rep ; 13(1): 20673, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38001147

ABSTRACT

Zymomonas mobilis (Z. mobilis), a bacterium known for its ethanol production capabilities, can also generate electricity by transitioning from ethanol production to electron generation. The purpose of this study is to investigate the ability of Z. mobilis to produce bioelectricity when utilized as a biocatalyst in a single-chamber microbial fuel cell (MFC). Given the bacterium's strong inclination towards ethanol production, a metabolic engineering strategy was devised to identify key reactions responsible for redirecting electrons from ethanol towards electricity generation. To evaluate the electroactivity of cultured Z. mobilis and its ethanol production in the presence of regulators, the reduction of soluble Fe(III) was utilized. Among the regulators tested, CuCl2 demonstrated superior effectiveness. Consequently, the MFC was employed to analyze the electrochemical properties of Z. mobilis using both a minimal and modified medium. By modifying the bacterial medium, the maximum current and power density of the MFC fed with Z. mobilis increased by more than 5.8- and sixfold, respectively, compared to the minimal medium. These findings highlight the significant impact of metabolic redirection in enhancing the performance of MFCs. Furthermore, they establish Z. mobilis as an active electrogenesis microorganism capable of power generation in MFCs.


Subject(s)
Bioelectric Energy Sources , Zymomonas , Ethanol/metabolism , Zymomonas/genetics , Zymomonas/metabolism , Ferric Compounds/metabolism , Fermentation
9.
Microb Cell Fact ; 22(1): 208, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833755

ABSTRACT

BACKGROUND: Zymomonas mobilis is an important industrial bacterium ideal for biorefinery and synthetic biology studies. High-throughput CRISPR-based genome editing technologies have been developed to enable targeted engineering of genes and hence metabolic pathways in the model ZM4 strain, expediting the exploitation of this biofuel-producing strain as a cell factory for sustainable chemicals, proteins and biofuels production. As these technologies mainly take plasmid-based strategies, their applications would be impeded due to the fact that curing of the extremely stable plasmids is laborious and inefficient. Whilst counterselection markers have been proven to be efficient for plasmid curing, hitherto only very few counterselection markers have been available for Z. mobilis. RESULTS: We constructed a conditional lethal mutant of the pheS gene of Z. mobilis ZM4, clmPheS, containing T263A and A318G substitutions and coding for a mutated alpha-subunit of phenylalanyl-tRNA synthetase to allow for the incorporation of a toxic analog of phenylalanine, p-chloro-phenylalanine (4-CP), into proteins, and hence leading to inhibition of cell growth. We demonstrated that expression of clmPheS driven by a strong Pgap promoter from a plasmid could render the Z. mobilis ZM4 cells sufficient sensitivity to 4-CP. The clmPheS-expressing cells were assayed to be extremely sensitive to 0.2 mM 4-CP. Subsequently, the clmPheS-assisted counterselection endowed fast curing of genome engineering plasmids immediately after obtaining the desired mutants, shortening the time of every two rounds of multiplex chromosome editing by at least 9 days, and enabled the development of a strategy for scarless modification of the native Z. mobilis ZM4 plasmids. CONCLUSIONS: This study developed a strategy, coupling an endogenous CRISPR-based genome editing toolkit with a counterselection marker created here, for rapid and efficient multi-round multiplex editing of the chromosome, as well as scarless modification of the native plasmids, providing an improved genome engineering toolkit for Z. mobilis and an important reference to develope similar genetic manipulation systems in other non-model organisms.


Subject(s)
Zymomonas , Zymomonas/metabolism , Plasmids/genetics , Gene Editing , Phenylalanine/metabolism
10.
Arch Biochem Biophys ; 744: 109679, 2023 08.
Article in English | MEDLINE | ID: mdl-37393983

ABSTRACT

Human liver pyruvate kinase (hlPYK) catalyzes the final step in glycolysis, the formation of pyruvate (PYR) and ATP from phosphoenolpyruvate (PEP) and ADP. Fructose 1,6-bisphosphate (FBP), a pathway intermediate of glycolysis, serves as an allosteric activator of hlPYK. Zymomonas mobilis pyruvate kinase (ZmPYK) performs the final step of the Entner-Doudoroff pathway, which is similar to glycolysis in that energy is harvested from glucose and pyruvate is generated. The Entner-Doudoroff pathway does not have FBP as a pathway intermediate, and ZmPYK is not allosterically activated. In this work, we solved the 2.4 Å X-ray crystallographic structure of ZmPYK. The protein is dimeric in solution as determined by gel filtration chromatography, but crystallizes as a tetramer. The buried surface area of the ZmPYK tetramerization interface is significantly smaller than that of hlPYK, and yet tetramerization using the standard interfaces from higher organisms provides an accessible low energy crystallization pathway. Interestingly, the ZmPYK structure showed a phosphate ion in the analogous location to the 6-phosphate binding site of FBP in hlPYK. Circular Dichroism (CD) was used to measure melting temperatures of hlPYK and ZmPYK in the absence and presence of substrates and effectors. The only significant difference was an additional phase of small amplitude for the ZmPYK melting curves. We conclude that the phosphate ion plays neither a structural or allosteric role in ZmPYK under the conditions tested. We hypothesize that ZmPYK does not have sufficient protein stability for activity to be tuned by allosteric effectors as described for rheostat positions in the allosteric homologues.


Subject(s)
Pyruvate Kinase , Zymomonas , Humans , Pyruvate Kinase/metabolism , Zymomonas/metabolism , Binding Sites , Carbohydrate Metabolism , Pyruvates , Allosteric Regulation
11.
Int J Mol Sci ; 24(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36982961

ABSTRACT

Zymomonas mobilis is a natural ethanologen with many desirable characteristics, which makes it an ideal industrial microbial biocatalyst for the commercial production of desirable bioproducts. Sugar transporters are responsible for the import of substrate sugars and the conversion of ethanol and other products. Glucose-facilitated diffusion protein Glf is responsible for facilitating the diffusion of glucose uptake in Z. mobilis. However, another sugar transporter-encoded gene, ZMO0293, is poorly characterized. We employed gene deletion and heterologous expression mediated by the CRISPR/Cas method to investigate the role of ZMO0293. The results showed that deletion of the ZMO0293 gene slowed growth and reduced ethanol production and the activities of key enzymes involved in glucose metabolism in the presence of high concentrations of glucose. Moreover, ZMO0293 deletion caused different transcriptional changes in some genes of the Entner Doudoroff (ED) pathway in the ZM4-ΔZM0293 strain but not in ZM4 cells. The integrated expression of ZMO0293 restored the growth of the glucose uptake-defective strain Escherichia coli BL21(DE3)-ΔptsG. This study reveals the function of the ZMO0293 gene in Z. mobilis in response to high concentrations of glucose and provides a new biological part for synthetic biology.


Subject(s)
Zymomonas , Zymomonas/genetics , Zymomonas/metabolism , Glucose/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Biological Transport , Ethanol/metabolism
12.
Arch Microbiol ; 205(4): 146, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36971832

ABSTRACT

Rice straw is a suitable alternative to a cheaper carbohydrate source for the production of ethanol. For pretreatment efficiency, different sodium hydroxide concentrations (0.5-2.5% w/v) were tested. When compared to other concentrations, rice straw processed with 2% NaOH (w/v) yielded more sugar (8.17 ± 0.01 mg/ml). An alkali treatment induces effective delignification and swelling of biomass. The pretreatment of rice straw with 2% sodium hydroxide (w/v) is able to achieve 55.34% delignification with 53.30% cellulose enrichment. The current study shows the effectiveness of crude cellulolytic preparation from Aspergillus niger resulting in 80.51 ± 0.4% cellulose hydrolysis. Rice straw hydrolysate was fermented using ethanologenic Saccharomyces cerevisiae (yeast) and Zymomonas mobilis (bacteria). Overall, superior efficiency of sugar conversion to ethanol 70.34 ± 0.3% was obtained with the yeast compared to bacterial strain 39.18 ± 0.5%. The current study showed that pretreatment with sodium hydroxide is an effective method for producing ethanol from rice straw and yeast strain S. cerevisiae having greater fermentative potential for bioethanol production than bacterial strain Z. mobilis.


Subject(s)
Oryza , Zymomonas , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Oryza/microbiology , Sodium Hydroxide , Zymomonas/genetics , Zymomonas/metabolism , Ethanol , Fermentation , Cellulose/metabolism , Carbohydrates , Sugars , Hydrolysis
13.
Sci Rep ; 13(1): 1165, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36670195

ABSTRACT

Cell-free systems have become valuable investigating tools for metabolic engineering research due to their easy access to metabolism without the interference of the membrane. Therefore, we applied Zymomonas mobilis cell-free system to investigate whether ethanol production is controlled by the genes of the metabolic pathway or is limited by cofactors. Initially, different glucose concentrations were added to the extract to determine the crude extract's capability to produce ethanol. Then, we investigated the genes of the metabolic pathway to find the limiting step in the ethanol production pathway. Next, to identify the bottleneck gene, a systemic approach was applied based on the integration of gene expression data on a cell-free metabolic model. ZMO1696 was determined as the bottleneck gene and an activator for its enzyme was added to the extract to experimentally assess its effect on ethanol production. Then the effect of NAD+ addition at the high concentration of glucose (1 M) was evaluated, which indicates no improvement in efficiency. Finally, the imbalance ratio of ADP/ATP was found as the controlling factor by measuring ATP levels in the extract. Furthermore, sodium gluconate as a carbon source was utilized to investigate the expansion of substrate consumption by the extract. 100% of the maximum theoretical yield was obtained at 0.01 M of sodium gluconate while it cannot be consumed by Z. mobilis. This research demonstrated the challenges and advantages of using Z. mobilis crude extract for overproduction.


Subject(s)
Ethanol , Zymomonas , Ethanol/metabolism , Fermentation , Zymomonas/genetics , Zymomonas/metabolism , Complex Mixtures/metabolism , Glucose/metabolism , Adenosine Triphosphate/metabolism
14.
ACS Synth Biol ; 11(11): 3855-3864, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36346889

ABSTRACT

Zymomonas mobilis is a microorganism with extremely high sugar consumption and ethanol production rates and is generally considered to hold great potential for biotechnological applications. However, its genetic engineering is still difficult, hampering the efficient construction of genetically modified strains. In this work, we present Zymo-Parts, a modular toolbox based on Golden-Gate cloning offering a collection of promoters (including native, inducible, and synthetic constitutive promoters of varying strength), an array of terminators and several synthetic ribosomal binding sites and reporter genes. All these parts can be combined in an efficient and flexible way to achieve a desired level of gene expression, either from plasmids or via genome integration. Use of the GoldenBraid-based system also enables an assembly of operons consisting of up to five genes. We present the basic structure of the Zymo-Parts cloning system, characterize several constitutive and inducible promoters, and exemplify the construction of an operon and of chromosomal integration of a reporter gene. Finally, we demonstrate the power and utility of the Zymo-Parts toolbox for metabolic engineering applications by overexpressing a heterologous gene encoding for the lactate dehydrogenase of Escherichia coli to achieve different levels of lactate production in Z. mobilis.


Subject(s)
Zymomonas , Zymomonas/genetics , Zymomonas/metabolism , Plasmids/genetics , Metabolic Engineering , Escherichia coli/genetics , Cloning, Molecular , Gene Expression/genetics
15.
Bioprocess Biosyst Eng ; 45(9): 1465-1476, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35876965

ABSTRACT

The purpose of this study was the production of maltobionic acid, in the form of sodium maltobionate, by Z. mobilis cells immobilized in polyurethane. The in situ immobilized system (0.125-0.35 mm) was composed of 7 g polyol, 3.5 g isocyanate, 0.02 g silicone, and 7 g Z. mobilis cell, at the concentration of 210 g/L. The bioconversion of maltose to sodium maltobionate was performed with different cell concentrations (7.0-9.0 gimobilized/Lreaction_medium), temperature (30.54-47.46 °C), pH (5.55-7.25), and substrate concentration (0.7-1.3 mol/L). The stability of the immobilized system was evaluated for 24 h bioconversion cycles and storage of 6 months. The maximum concentration of sodium maltobionate was 648.61 mmol/L in 34.34 h process (8.5 gdry_cell/Lreaction_medium) at 39 °C and pH 6.30. The immobilized system showed stability for 19 successive operational cycles of 24 h bioconversion and 6 months of storage, at 4 °C or 22 °C.


Subject(s)
Zymomonas , Cells, Immobilized/metabolism , Disaccharides , Fermentation , Polyurethanes , Sodium/metabolism , Zymomonas/metabolism
16.
Bioprocess Biosyst Eng ; 45(8): 1319-1329, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35786774

ABSTRACT

Kinases modulate the various physiological activities of microbial fermenting strains including the conversion of lignocellulose-derived phenolic aldehydes (4-hydroxyaldehyde, vanillin, and syringaldehyde). Here, we comprehensively investigated the gene transcriptional profiling of the kinases under the stress of phenolic aldehydes for ethanologenic Zymomonas mobilis using DNA microarray. Among 47 kinase genes, three genes of ZMO0003 (adenylylsulfate kinase), ZMO1162 (histidine kinase), and ZMO1391 (diacylglycerol kinase), were differentially expressed against 4-hydroxybenzaldehyde and vanillin, in which the overexpression of ZMO1162 promoted the phenolic aldehydes conversion and ethanol fermentability. The perturbance originated from plasmid-based expression of ZMO1162 gene contributed to a unique expression profiling of genome-encoding genes under all three phenolic aldehydes stress. Differentially expressed ribosome genes were predicted as one of the main contributors to phenolic aldehydes conversion and thus finally enhanced ethanol fermentability for Z. mobilis ZM4. The results provided an insight into the kinases on regulation of phenolic aldehydes conversion and ethanol fermentability for Z. mobilis ZM4, as well as the target object for rational design of robust biorefinery strains.


Subject(s)
Zymomonas , Aldehydes/metabolism , Ethanol/metabolism , Fermentation , Zymomonas/genetics , Zymomonas/metabolism
17.
Sheng Wu Gong Cheng Xue Bao ; 38(7): 2513-2522, 2022 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-35871621

ABSTRACT

A bio-electrochemical system can promote the interaction between microorganism and electrode and consequently change cellular metabolism. To investigate the metabolic performance of Zymomonas mobilis in the bio-electrochemical system, we applied an H-type bio-electrochemical reactor to control Z. mobilis fermentation under 3 V. Compared with the control group without applied voltage, the glycerol in the anode chamber increased by 24%, while the glucose consumption in the cathode chamber increased by 16%, and the ethanol and succinic acid concentration increased by 13% and 8%, respectively. Transcriptomic analysis revealed that the pathways related to organic acid metabolism, redox balance, and electron transfer played roles in metabolic changes. Three significantly differentially expressed genes, ZMO1060 (superoxide dismutase), ZMO0401 (diguanylate cyclase), and ZMO1819 (nitrogen fixation protein), were selected to verify their functions in the bio-electrochemical system. Overexpression of ZMO1060 and ZMO1819 improved the electrochemical activity of Z. mobilis. This study provides insights into the microbial metabolism regulated by the bio-electrochemical system.


Subject(s)
Zymomonas , Ethanol/metabolism , Fermentation , Glucose/metabolism , Succinic Acid/metabolism , Zymomonas/genetics , Zymomonas/metabolism
18.
ACS Synth Biol ; 11(8): 2811-2819, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35771099

ABSTRACT

A promoter plays a crucial role in controlling the expression of the target gene in cells, thus being one of the key biological parts for synthetic biology practices. Although significant efforts have been made to identify and characterize promoters with different strengths in various microorganisms, the compatibility of promoters within different hosts still lacks investigation. In this study, we chose the native Pgap promoter of Zymomonas mobilis to investigate nucleotide sequences within promoter regions affecting promoter compatibility between Escherichia coli and Z. mobilis. Pgap is one of the strongest promotors in Z. mobilis that has many excellent characteristics to be developed as microbial cell factories. Using EGFP as a reporter, a Z. mobilis-derived Pgap mutant library was constructed and sorted in E. coli, with candidate promoters exhibiting high fluorescence intensity collected. A total of 53 variants were finally selected and sequenced by Sanger sequencing. The sequencing results grouped these variants into 12 different Pgap variant types, among which seven types presented higher promoter strength than native Pgap in E. coli. The next-generation sequencing technique was then employed to identify key mutations within the Pgap promoter region that affect the promoter compatibility. Finally, six important sites were identified and confirmed to help increase Pgap strength in E. coli while keeping similar strength of native Pgap in Z. mobilis. Compared to native Pgap, synthetic promoters combining these sites had enhanced strength; especially, Pgap-6M combining all six sites exhibited 20-fold greater strength than native Pgap in E. coli. This study thus not only determined six important sites affecting promoter compatibility but also confirmed a series of Pgap promoter variants with strong promoter activity in both E. coli and Z. mobilis. In addition, a strategy was established in this study to investigate and determine nucleotide sequences in promoter regions affecting promoter compatibility, which can be applied in other microorganisms to help reveal universal factors affecting promoter compatibility and design promoters with desired strengths among different microbial cell factories.


Subject(s)
Zymomonas , Base Sequence , Escherichia coli/genetics , Promoter Regions, Genetic/genetics , Synthetic Biology , Zymomonas/genetics , Zymomonas/metabolism
19.
Protein Sci ; 31(7): e4336, 2022 07.
Article in English | MEDLINE | ID: mdl-35762709

ABSTRACT

Various protein properties are often illuminated using sequence comparisons of protein homologs. For example, in analyses of the pyruvate kinase multiple sequence alignment, the set of positions that changed during speciation ("phylogenetic" positions) were enriched for "rheostat" positions in human liver pyruvate kinase (hLPYK). (Rheostat positions are those which, when substituted with various amino acids, yield a range of functional outcomes). However, the correlation was moderate, which could result from multiple biophysical constraints acting on the same position during evolution and/or various sources of noise. To further examine this correlation, we here tested Zymomonas mobilis PYK (ZmPYK), which has <65% sequence identity to any other PYK sequence. Twenty-six ZmPYK positions were selected based on their phylogenetic scores, substituted with multiple amino acids, and assessed for changes in Kapp-PEP . Although we expected to identify multiple, strong rheostat positions, only one moderate rheostat position was detected. Instead, nearly half of the 271 ZmPYK variants were inactive and most others showed near wild-type function. Indeed, for the active ZmPYK variants, the total range of Kapp,PEP values ("tunability") was 40-fold less than that observed for hLPYK variants. The combined functional studies and sequence comparisons suggest that ZmPYK has evolved functional and/or structural attributes that differ from the rest of the family. We hypothesize that including such "orphan" sequences in MSA analyses obscures the correlations used to predict rheostat positions. Finally, results raise the intriguing biophysical question as to how the same protein fold can support rheostat positions in one homolog but not another.


Subject(s)
Pyruvate Kinase , Zymomonas , Amino Acids , Humans , Proteins/chemistry , Pyruvate Kinase/chemistry , Zymomonas/genetics , Zymomonas/metabolism
20.
Methods Mol Biol ; 2479: 53-70, 2022.
Article in English | MEDLINE | ID: mdl-35583732

ABSTRACT

Metabolic engineering of nonmodel bacteria is often challenging because of the paucity of genetic tools for iterative genome modification necessary to equip bacteria with pathways to produce high-value products. Here, we outline a homologous recombination-based method developed to delete or add genes to the genome of a nonmodel bacterium, Zymomonas mobilis, at the desired locus using a suicide plasmid that contains gfp as a fluorescence marker to track its presence in cells. The suicide plasmid is engineered to contain two 500 bp regions homologous to the DNA sequence immediately flanking the target locus. A single crossover event at one of the two homologous regions facilitates insertion of the plasmid into the genome and subsequent homologous recombination events excise the plasmid from the genome, leaving either the original genotype or the desired modified genotype. A key feature of this plasmid is that Green Fluorescent Protein (GFP) expressed from the suicide plasmid allows easy identification and sorting of cells that have lost the plasmid by use of a fluorescence activated cell sorter. Subsequent PCR amplification of genomic DNA from strains lacking GFP allows rapid identification of the desired genotype, which is confirmed by DNA sequencing. This method provides an efficient and flexible platform for improved genetic engineering of Z. mobilis, which can be easily adapted to other nonmodel bacteria.


Subject(s)
Zymomonas , Base Sequence , DNA/metabolism , Humans , Metabolic Engineering , Plasmids/genetics , Zymomonas/genetics , Zymomonas/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...