Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.501
Filter
1.
Behav Pharmacol ; 35(2-3): 79-91, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38451022

ABSTRACT

Remarkable performance improvements occur at the end of the third postnatal week in rodents tested in various tasks that require navigation according to spatial context. While alterations in hippocampal function at least partially subserve this cognitive advancement, physiological explanations remain incomplete. Previously, we discovered that developmental modifications to hippocampal glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in juvenile rats was related to more mature spontaneous alternation behavior in a symmetrical Y-maze. Moreover, a positive allosteric modulator of AMPA receptors enabled immature rats to alternate at rates seen in older animals, suggesting an excitatory synaptic limitation to hippocampal maturation. We then validated the Barnes maze for juvenile rats in order to test the effects of positive AMPA receptor modulation on a goal-directed spatial memory task. Here we report the effects of the AMPA receptor modulator, CX614, on spatial learning and memory in the Barnes maze. Similar to our prior report, animals just over 3 weeks of age display substantial improvements in learning and memory performance parameters compared to animals just under 3 weeks of age. A moderate dose of CX614 enabled immature animals to move more directly to the goal location, but only after 1 day of training. This performance improvement was observed on the second day of training with drug delivery or during a memory probe trial performed without drug delivery after the second day of training. Higher doses created more search errors, especially in more mature animals. Overall, CX614 provided modest performance benefits for immature rats in a goal-directed spatial memory task.


Subject(s)
Receptors, AMPA , Spatial Learning , Rats , Animals , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Spatial Memory , Cognition
2.
Phytomedicine ; 126: 155452, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422650

ABSTRACT

BACKGROUND: Depression is a common and recurrent neuropsychiatric disorder. Recent studies have shown that the N-methyl-d-aspartate (NMDA) receptor (NMDAR) is involved in the pathophysiology of depression. Previous studies have found that Kaji-ichigoside F1 (KF1) has a protective effect against NMDA-induced neurotoxicity. However, the antidepressant mechanism of KF1 has not been confirmed yet. PURPOSE: In the present study, we aimed to evaluate the rapid antidepressant activity of KF1 and explore the underlying mechanism. STUDY DESIGN: First, we explored the effect of KF1 on NMDA-induced hippocampal neurons and the underlying mechanism. Second, depression was induced in C57BL/6 mice via chronic unpredictable mild stress (CUMS), and the immediate and persistent depression-like behavior was evaluated using the forced swimming test (FST) after a single administration of KF1. Third, the contributions of NMDA signaling to the antidepressant effect of KF1 were investigated using pharmacological interventions. Fourth, CUMS mice were treated with KF1 for 21 days, and then their depression-like behaviors and the underlying mechanism were further explored. METHODS: The FST was used to evaluate immediate and persistent depression-like behavior after a single administration of KF1 with or without NMDA pretreatment. The effect of KF1 on depressive-like behavior was investigated in CUMS mice by treating them with KF1 once daily for 21 days through the sucrose preference test, FST, open field test, and tail suspension test. Then, the effects of KF1 on the morphology and molecular and functional phenotypes of primary neuronal cells and hippocampus of mice were investigated by hematoxylin-eosin staining, Nissl staining, propidium iodide staining, TUNEL staining, Ca2+ imaging, JC-1 staining, ELISA, immunofluorescence analysis, RT-PCR, and Western blot. RESULTS: KF1 could effectively improve cellular viability, reduce apoptosis, inhibit the release of LDH and Ca2+, and increase the mitochondrial membrane potential and the number of dendritic spines numbers in hippocampal neurons. Moreover, behavioral tests showed that KF1 exerted acute and sustained antidepressant-like effects by reducing Glu-levels and ameliorating neuronal damage in the hippocampus. Additionally, in vivo and in vitro experiments revealed that PSD95, Syn1, α-amino-3­hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and brain-derived neurotrophic factor (BDNF) were upregulated at the protein level, and BDNF and AMPA were upregulated at the mRNA level. NR1 and NR2A showed the opposite trend. CONCLUSION: These results confirm that KF1 exerts rapid antidepressant effects mainly by activating the AMPA-BDNF-mTOR pathway and inhibiting the NMDAR-CaMKIIα pathway. This study serves as a new reference for discovering rapid antidepressants.


Subject(s)
Brain-Derived Neurotrophic Factor , Depression , Mice , Animals , Depression/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , N-Methylaspartate/metabolism , N-Methylaspartate/pharmacology , Mice, Inbred C57BL , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , TOR Serine-Threonine Kinases/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Hippocampus , Stress, Psychological/drug therapy , Disease Models, Animal
3.
Neurotoxicology ; 100: 72-84, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38065418

ABSTRACT

The exact causes of Amyotrophic lateral sclerosis (ALS), a progressive and fatal neurological disorder due to loss of upper and/or lower motoneurons, remain elusive. Gene-environment interactions are believed to be an important factor in the development of ALS. We previously showed that in vivo exposure of mice overexpressing the human superoxide dismutase 1 (hSOD1) gene mutation (hSOD1G93A; G93A), a mouse model for ALS, to environmental neurotoxicant methylmercury (MeHg) accelerated the onset of ALS-like phenotype. Here we examined the time-course of effects of MeHg on AMPA receptor (AMPAR)-mediated currents in hypoglossal motoneurons in brainstem slices prepared from G93A, hSOD1wild-type (hWT) and non-carrier WT mice following in vivo exposure to MeHg. Mice were exposed daily to 3 ppm (approximately 0.7 mg/kg/day) MeHg via drinking water beginning at postnatal day 28 (P28) and continued until P47, 64 or 84, then acute brainstem slices were prepared, and spontaneous excitatory postsynaptic currents (sEPSCs) or AMPA-evoked currents were examined using whole cell patch-clamp recording technique. Brainstem slices of untreated littermates were prepared at the same time points to serve as control. MeHg exposure had no significant effect on either sEPSCs or AMPA-evoked currents in slices from hWT or WT mice during any of those exposure time periods under our experimental conditions. MeHg also did not cause any significant effect on sEPSCs or AMPA-currents in G93A hypoglossal motoneurons at P47 and P64. However, at P84, MeHg significantly increased amplitudes of both sEPSCs and AMPA-evoked currents in hypoglossal motineurons from G93A mice (p < 0.05), but not the sEPSC frequency, suggesting a postsynaptic action on AMPARs. MeHg exposure did not cause any significant effect on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs). Therefore, MeHg exposure in vivo caused differential effects on AMPARs in hypoglossal motoneurons from mice with different genetic backgrounds. MeHg appears to preferentially stimulate the AMPAR-mediated currents in G93A hypoglossal motoneurons in an exposure time-dependent manner, which may contribute to the AMPAR-mediated motoneuron excitotoxicity, thereby facilitating development of ALS-like phenotype.


Subject(s)
Amyotrophic Lateral Sclerosis , Methylmercury Compounds , Mice , Humans , Animals , Superoxide Dismutase-1 , Amyotrophic Lateral Sclerosis/chemically induced , Amyotrophic Lateral Sclerosis/genetics , Methylmercury Compounds/toxicity , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Superoxide Dismutase/metabolism , Mice, Transgenic , Motor Neurons/metabolism , Brain Stem/metabolism , Mutation , Disease Models, Animal , Spinal Cord/metabolism
4.
Anesth Analg ; 138(5): 1094-1106, 2024 May 01.
Article in English | MEDLINE | ID: mdl-37319016

ABSTRACT

BACKGROUND: The ketamine metabolite (2R,6R)-hydroxynorketamine ([2R,6R]-HNK) has analgesic efficacy in murine models of acute, neuropathic, and chronic pain. The purpose of this study was to evaluate the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) dependence of (2R,6R)-HNK analgesia and protein changes in the hippocampus in murine pain models administered (2R,6R)-HNK or saline. METHODS: All mice were CD-1 IGS outbred mice. Male and female mice underwent plantar incision (PI) (n = 60), spared nerve injury (SNI) (n = 64), or tibial fracture (TF) (n = 40) surgery on the left hind limb. Mechanical allodynia was assessed using calibrated von Frey filaments. Mice were randomized to receive saline, naloxone, or the brain-penetrating AMPA blocker (1,2,3,4-Tetrahydro-6-nitro-2,3-dioxobenzo [f]quinoxaline-7-sulfonamide [NBQX]) before (2R,6R)-HNK 10 mg/kg, and this was repeated for 3 consecutive days. The area under the paw withdrawal threshold by time curve for days 0 to 3 (AUC 0-3d ) was calculated using trapezoidal integration. The AUC 0-3d was converted to percent antiallodynic effect using the baseline and pretreatment values as 0% and 100%. In separate experiments, a single dose of (2R,6R)-HNK 10 mg/kg or saline was administered to naive mice (n = 20) and 2 doses to PI (n = 40), SNI injury (n = 40), or TF (n = 40) mice. Naive mice were tested for ambulation, rearing, and motor strength. Immunoblot studies of the right hippocampal tissue were performed to evaluate the ratios of glutamate ionotropic receptor (AMPA) type subunit 1 (GluA1), glutamate ionotropic receptor (AMPA) type subunit 2 (GluA2), phosphorylated voltage-gated potassium channel 2.1 (p-Kv2.1), phosphorylated-calcium/calmodulin-dependent protein kinase II (p-CaMKII), brain-derived neurotrophic factor (BDNF), phosphorylated protein kinase B (p-AKT), phosphorylated extracellular signal-regulated kinase (p-ERK), CXC chemokine receptor 4 (CXCR4), phosphorylated eukaryotic translation initiation factor 2 subunit 1 (p-EIF2SI), and phosphorylated eukaryotic translation initiation factor 4E (p-EIF4E) to glyceraldehyde 3-phosphate dehydrogenase (GAPDH). RESULTS: No model-specific gender difference in antiallodynic responses before (2R,6R)-HNK administration was observed. The antiallodynic AUC 0-3d of (2R,6R)-HNK was decreased by NBQX but not with pretreatment with naloxone or saline. The adjusted mean (95% confidence interval [CI]) antiallodynic effect of (2R,6R)-HNK in the PI, SNI, and TF models was 40.7% (34.1%-47.3%), 55.1% (48.7%-61.5%), and 54.7% (46.5%-63.0%), greater in the SNI, difference 14.3% (95% CI, 3.1-25.6; P = .007) and TF, difference 13.9% (95% CI, 1.9-26.0; P = .019) compared to the PI model. No effect of (2R,6R)-HNK on ambulation, rearing, or motor coordination was observed. Administration of (2R,6R)-HNK was associated with increased GluA1, GluA2, p-Kv2.1, and p-CaMKII and decreased BDNF ratios in the hippocampus, with model-specific variations in proteins involved in other pain pathways. CONCLUSIONS: (2R,6R)-HNK analgesia is AMPA-dependent, and (2R,6R)-HNK affected glutamate, potassium, calcium, and BDNF pathways in the hippocampus. At 10 mg/kg, (2R,6R)-HNK demonstrated a greater antiallodynic effect in models of chronic compared with acute pain. Protein analysis in the hippocampus suggests that AMPA-dependent alterations in BDNF-TrkB and Kv2.1 pathways may be involved in the antiallodynic effect of (2R,6R)-HNK.


Subject(s)
Ketamine , Animals , Female , Male , Mice , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Antidepressive Agents , Brain-Derived Neurotrophic Factor , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Glutamates/metabolism , Glutamates/pharmacology , Hippocampus , Ketamine/pharmacology , Ketamine/analogs & derivatives , Naloxone , Pain/metabolism
5.
Purinergic Signal ; 20(2): 181-192, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37458955

ABSTRACT

L-Glutamate (L-Glu) is an amino acid present in the diet that plays a fundamental role in the central nervous system, as the main excitatory neurotransmitter participating in learning and memory processes. In addition, the nucleoside adenosine has a crucial role in L-Glu metabolism, by regulating the liberation of this neurotransmitter through four different receptors: A1, A2A, A2B and A3, which activate (A2A and A2B) or inhibit (A1 and A3) adenylate cyclase pathway. L-Glu at high concentrations can act as a neurotoxin and induce oxidative stress. The study of the oxidative stress correlated with an excess of L-Glu consumption during maternity is key to understand its effects on foetuses and neonates. Previous studies have shown that there is a change in the receptor levels in the brain of pregnant rats and their foetuses when mothers are administered L-Glu during gestation; however, its effect on the cerebellum is unknown. Cerebellum is known to be responsible for motor, cognitive and emotional functions, so its possible involvement after L-Glu consumption is an important issue to study. Therefore, the aim of the present work was to study the effect of L-Glu exposure during gestation and lactation on oxidative stress biomarkers and neurotransmitter receptors from the cerebellum of foetuses and neonates. After maternal L-Glu intake during gestation, oxidative stress was increased, as the ionotropic L-Glu receptors, and GluR1 AMPA subunit levels were altered in foetuses. A1 adenosine receptor suffered changes after L-Glu treatment during gestation, lactation or both, in lactating neonate cerebellum, while adenylate cyclase activity remain unaltered. Further studies will be necessary to elucidate the importance of L-Glu intake and its possible excitotoxicity in the cerebellum of Wistar rats during the pregnancy period and their involvement in long-term neurodegeneration.


Subject(s)
Glutamic Acid , Prenatal Exposure Delayed Effects , Humans , Animals , Rats , Female , Pregnancy , Glutamic Acid/metabolism , Lactation , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Rats, Wistar , Adenosine/metabolism , Receptors, AMPA , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/pharmacology , Cerebellum/metabolism , Fetus/metabolism , Oxidative Stress , Neurotransmitter Agents/metabolism , Neurotransmitter Agents/pharmacology
6.
Brain Res ; 1825: 148694, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38048977

ABSTRACT

Stroke is a pathology related to the vascular system in the brain and it is one of the main causes of disability, representing a burden on public health. This lesion provokes a disorganization of sensory-motor and cognitive systems, the latter associated with hippocampal activity, a structure in which α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA N-methyl-D-aspartate (NMDA) receptors are important for the integration of information. Several molecules have been studied for their capacity to enhance recovery from a stroke, including cerebrolysin that could potentially be reinforced by environmental enrichment. Here, stroke was induced in 40 male rats and 24 h later, they were administered cerebrolysin (2.5 ml/kg), put in an environmentally enriched arena or given both treatments, for 10 days. Subsequently, motor functioning was assessed with the Bederson test and the cognitive domain was assessed through novel object recognition. Hematoxylin/eosin staining was then used to assess the infarct size, and AMPA-GRIA1 and NMDA-R1 subunits in the hippocampus were measured by ELISA. In motor and cognitive performance, the administration of cerebrolysin and environmental enrichment enhanced recovery. Moreover, the infarct size decreased in all the groups that received a treatment, but an increase occurred in AMPA-GRIA1 only in experimental group regarding to control group, while NMDA-R1 had no differences. These results suggest that cerebrolysin and environmental enrichment could act in synergy to recover after a stroke, leading to a smaller infarct area and the presence of more AMPA-GRIA1 subunits in the hippocampus of experimental group. These data encourage further studies in which neurorehabilitation approaches can be combined with cerebrolysin administration to treat the motor and cognitive symptoms of stroke.


Subject(s)
Amino Acids , N-Methylaspartate , Stroke , Rats , Animals , Male , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , N-Methylaspartate/pharmacology , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Hippocampus/metabolism , Stroke/drug therapy , Infarction , Cognition
7.
Eur J Med Chem ; 264: 116036, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38101041

ABSTRACT

The synthesis and biological evaluation on AMPA and kainate receptors of new examples of 3,4-dihydro-2H-1,2,4-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxides is described. The introduction of a cyclopropyl chain instead of an ethyl chain at the 4-position of the thiadiazine ring was found to dramatically improve the potentiator activity on AMPA receptors, with compound 32 (BPAM395) expressing in vitro activity on AMPARs (EC2x = 0.24 µM) close to that of the reference 4-cyclopropyl-substituted benzothiadiazine dioxide 10 (BPAM344). Interestingly, the 4-allyl-substituted thienothiadiazine dioxide 27 (BPAM307) emerged as the most promising compound on kainate receptors being a more effective potentiator than the 4-cyclopropyl-substituted thienothiadiazine dioxide 32 and supporting the view that the 4-allyl substitution of the thiadiazine ring could be more favorable than the 4-cyclopropyl substitution to induce marked activity on kainate receptors versus AMPA receptors. The thieno-analogue 36 (BPAM279) of the clinically tested S18986 (11) was selected for in vivo evaluation in mice as a cognitive enhancer due to a safer profile than 32 after massive per os drug administration. Compound 36 was found to increase the cognition performance in mice at low doses (1 mg/kg) per os suggesting that the compound was well absorbed after oral administration and able to reach the central nervous system. Finally, compound 32 was selected for co-crystallization with the GluA2-LBD (L504Y,N775S) and glutamate to examine the binding mode of thienothiadiazine dioxides within the allosteric binding site of the AMPA receptor. At the allosteric site, this compound established similar interactions as the previously reported BTD-type AMPA receptor modulators.


Subject(s)
Receptors, AMPA , Thiadiazines , Mice , Animals , Receptors, AMPA/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Receptors, Kainic Acid/metabolism , Structure-Activity Relationship , Thiadiazines/chemistry , Allosteric Regulation
8.
Neuropharmacology ; 242: 109772, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37898332

ABSTRACT

In rats, eating obesogenic diets increases calcium-permeable AMPA receptor (CP-AMPAR) transmission in the nucleus accumbens (NAc) core, and enhances food-motivated behavior. Interestingly, these diet-induced alterations in NAc transmission are pronounced and sustained in obesity-prone (OP) male rats and absent in obesity-resistant (OR) populations. However, effects of diet manipulation on food motivation, and the mechanisms underlying this NAc plasticity in OPs is unknown. Using male selectively-bred OP and OR rats, we assessed food-motivated behavior following ad lib access to chow (CH), junk-food (JF), or 10d of JF followed by a return to chow diet (JF-Dep). Motivation for food was greater in OP than OR rats, as expected. However, JF-Dep only produced enhancements in food-seeking in OP groups, while continuous JF access reduced food-seeking in both OPs and ORs. Additionally, optogenetic, chemogenetic, and pharmacological approaches were used to examine NAc CP-AMPAR recruitment following diet manipulation and ex vivo treatment of brain slices. Reducing excitatory transmission in the NAc was sufficient to recruit CP-AMPARs to synapses in OPs, but not ORs. In OPs, JF-induced increases in CP-AMPARs occurred in mPFC-, but not BLA-to-NAc inputs. Together results show that diet differentially affects behavioral and neural plasticity in obesity susceptible populations. We also identify conditions for acute recruitment of NAc CP-AMPARs; these results suggest that synaptic scaling mechanisms contribute to NAc CP-AMPAR recruitment. Overall, this work helps elucidate how diet interacts with obesity susceptibility to influence food-motivated behavior and extends our fundamental understanding of NAc CP-AMPAR recruitment.


Subject(s)
Calcium , Receptors, AMPA , Rats , Male , Animals , Receptors, AMPA/metabolism , Calcium/metabolism , Rats, Sprague-Dawley , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Glutamic Acid/pharmacology , Nucleus Accumbens , Obesity
9.
Neuropharmacology ; 242: 109773, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37865136

ABSTRACT

Individuals with opioid use disorder (OUD) frequently use other substances, including cocaine. Opioid withdrawal is associated with increased likelihood of cocaine use, which may represent an attempt to ameliorate opioid withdrawal effects. Clinically, 30% of co-using individuals take opioids and cocaine exclusively in a sequential manner. Preclinical studies evaluating mechanisms of drug use typically study drugs in isolation. However, polysubstance use is a highly prevalent clinical issue and thus, we established a novel preclinical model of sequential oxycodone and cocaine self-administration (SA) whereby rats acquired oxycodone and cocaine SA in an A-B-A-B design. Somatic signs of withdrawal were evaluated at 0, 22, and 24h following oxycodone SA, with the 24h timepoint representing somatic signs immediately following cocaine SA. Preclinically, aberrant glutamate signaling within the nucleus accumbens core (NAcore) occurs following use of cocaine or opioids, whereby medium spiny neurons (MSNs) rest in a potentiated or depotentiated state, respectively. Further, NAcore glial glutamate transport via GLT-1 is downregulated following SA of either drug alone. However, it is not clear if cocaine can exacerbate opioid-induced changes in glutamate signaling. In this study, NAcore GLT-1 protein and glutamate plasticity were measured (via AMPA/NMDA ratio) following SA. Rats acquired SA of both oxycodone and cocaine regardless of sex, and the acute oxycodone-induced increase in somatic signs at 22h was positively correlated with cocaine consumption during the cocaine testing phase. Cocaine use following oxycodone SA downregulated GLT-1 and reduced AMPA/NMDA ratios compared to cocaine use following food SA. Further, oxycodone SA alone was associated with reduced AMPA/NMDA ratio. Together, behavioral signs of oxycodone withdrawal may drive cocaine use and further dysregulate NAcore glutamate signaling.


Subject(s)
Cocaine-Related Disorders , Cocaine , Rats , Animals , Cocaine/pharmacology , Oxycodone/pharmacology , Glutamic Acid/metabolism , Rats, Sprague-Dawley , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Analgesics, Opioid/pharmacology , N-Methylaspartate/pharmacology , Cocaine-Related Disorders/metabolism , Nucleus Accumbens , Self Administration
10.
Sci Adv ; 9(49): eadj6187, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38064562

ABSTRACT

While most research and treatments for multiple sclerosis (MS) focus on autoimmune reactions causing demyelination, it is possible that neurodegeneration precedes the autoimmune response. Hence, glutamate receptor antagonists preventing excitotoxicity showed promise in MS animal models, though blocking glutamate signaling prevents critical neuronal functions. This study reports the discovery of a small molecule that prevents AMPA-mediated excitotoxicity by targeting an allosteric binding site. A machine learning approach was used to screen for small molecules targeting the AMPA receptor GluA2 subunit. The lead candidate has potent effects in restoring neurological function and myelination while reducing the immune response in experimental autoimmune encephalitis and cuprizone MS mouse models without affecting basal neurotransmission or learning and memory. These findings facilitate development of a treatment for MS with a different mechanism of action than current immune modulatory drugs and avoids important off-target effects of glutamate receptor antagonists. This class of MS therapeutics could be useful as an alternative or complementary treatment to existing therapies.


Subject(s)
Multiple Sclerosis , Mice , Animals , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Receptors, AMPA , Neurons/metabolism
11.
Brain Res Bull ; 205: 110822, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37984622

ABSTRACT

The contributions of hypoxia and oxidative stress to the pathophysiology of acute ischemic stroke are well established and can lead to disruptions in synaptic signaling. Hypoxia and oxidative stress lead to the neurotoxic overproduction of reactive oxygen species (ROS) and the stabilization of hypoxia inducible factors (HIF). Compounds such as prolyl-4-hydroxylase domain enzyme inhibitors (PHDIs) have been shown to have a preconditioning and neuroprotective effect against ischemic insults such as hypoxia, anoxia, oxygen glucose deprivation (OGD) or H2O2. Therefore, this study explored the effects of two PHDIs, JNJ-42041935 (10 µM) and roxadustat (100 µM) on cell viability using organotypic hippocampal slice cultures. We also assessed the effects of these compounds on synaptic transmission during and post hypoxia, OGD and H2O2 application in isolated rat hippocampal slices using field recording electrophysiological techniques and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit trafficking using immunohistochemistry. Our organotypic data demonstrated a protective role for both inhibitors, where slices had significantly less cell death post anoxia and OGD compared to controls. We also report a distinct modulatory role for both JNJ-42041935 and roxadustat on fEPSP slope post hypoxia and OGD but not H2O2. In addition, we report that application of roxadustat impaired long-term potentiation, but only when applied post-hypoxia. This inhibitory effect was not reversed with co-application of the cyclin-dependent kinase 5 (CDK-5) inhibitor, roscovitine (10 µM), suggesting a CDK-5 independent synaptic AMPAR trafficking mechanism. Both hypoxia and OGD induced a reduction in synaptic AMPA GluA2 subunits, the OGD effect being reversed by prior treatment with both JNJ-42041935 and roxadustat. These results suggest an important role for PHDs in synaptic signaling and plasticity during episodes of ischemic stress.


Subject(s)
Ischemic Stroke , Neuroprotective Agents , Rats , Animals , Oxygen/metabolism , Prolyl Hydroxylases/metabolism , Prolyl Hydroxylases/pharmacology , Glucose/metabolism , Ischemic Stroke/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Hydrogen Peroxide/pharmacology , Hippocampus/metabolism , Hypoxia/metabolism , Oxidative Stress , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism
12.
Biomolecules ; 13(10)2023 09 27.
Article in English | MEDLINE | ID: mdl-37892143

ABSTRACT

Alzheimer's disease (AD), a devastating neurodegenerative disease characterized by cognitive dysfunctions, is associated with high levels of amyloid beta 42 (Aß42), which is believed to play a role in cellular damage and signaling changes in AD. Decanoic acid has been shown to be therapeutic in AD. Glutamatergic signaling within neurons and astrocytes of the CA1 region of the hippocampus is critical in cognitive processes, and previous work has indicated deficiencies in this signaling in a mouse model of AD. In this study, we investigated glutamate-mediated signaling by evaluating AMPA-mediated calcium rises in female and male CA1 neurons and astrocytes in a mouse model of AD and examined the potential of decanoic acid to normalize this signaling. In brain slices from 5xFAD mice in which there are five mutations leading to increasing levels of Aß42, AMPA-mediated calcium transients in CA1 neurons and astrocytes were significantly lower than that seen in wildtype controls in both females and males. Interestingly, incubation of 5xFAD slices in decanoic acid restored AMPA-mediated calcium levels in neurons and astrocytes in both females and males to levels indistinguishable from those seen in wildtype, whereas similar exposure to decanoic acid did not result in changes in AMPA-mediated transients in neurons or astrocytes in either sex in the wildtype. Our data indicate that one mechanism by which decanoic acid could improve cognitive functioning is through normalizing AMPA-mediated signaling in CA1 hippocampal cells.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Male , Mice , Female , Animals , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Astrocytes/metabolism , Calcium , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Hippocampus/metabolism , Neurons/metabolism , Disease Models, Animal
13.
Sheng Li Xue Bao ; 75(4): 537-543, 2023 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-37583041

ABSTRACT

The purpose of this study was to investigate the effect of glutamate and its ionotropic receptor agonists on the response to acute hypoxia in rat carotid body in vitro. Briefly, after SD rats were anesthetized and decapitated, the bilateral carotid bifurcations were rapidly isolated. Then bifurcation was placed into a recording chamber perfused with 95% O2-5% CO2 saturated Kreb's solution. The carotid body-sinus nerve complex was dissected, and the carotid sinus nerve discharge was recorded using a suction electrode. To detect the response of carotid body to acute hypoxia, the chamber was perfused with 5% O2-5% CO2-90% N2 saturated Kreb's solution for a period of 100 s at an interval of 15 min. To observe the effect of glutamate, ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor agonist AMPA or N-methyl-D-aspartate (NMDA) receptor agonist NMDA on the response to acute hypoxia in rat carotid body, the chamber was perfused with 5% O2-5% CO2-90% N2 saturated Kreb's solution containing the corresponding reagent. The results showed that glutamate (20 µmol/L), AMPA (5 µmol/L) or NMDA (10 µmol/L) inhibited the acute hypoxia-induced enhancement of carotid sinus nerve activity, and these inhibitory effects were dose-dependent. In summary, the activation of glutamate ionotropic receptors appears to exert an inhibitory effect on the response to acute hypoxia in carotid body of rats.


Subject(s)
Carotid Body , Glutamic Acid , Rats , Animals , Glutamic Acid/pharmacology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , N-Methylaspartate/pharmacology , Rats, Sprague-Dawley , Carbon Dioxide , Receptors, N-Methyl-D-Aspartate , Receptors, AMPA , Hypoxia
14.
Int J Mol Sci ; 24(13)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37446169

ABSTRACT

Abnormal depolarization of neuronal membranes called paroxysmal depolarization shift (PDS) represents a cellular correlate of interictal spikes. The mechanisms underlying the generation of PDSs or PDS clusters remain obscure. This study aimed to investigate the role of ionotropic glutamate receptors (iGluRs) in the generation of PDS and dependence of the PDS pattern on neuronal membrane potential. We have shown that significant depolarization or hyperpolarization (by more than ±50 mV) of a single neuron does not change the number of individual PDSs in the cluster, indicating the involvement of an external stimulus in PDS induction. Based on this data, we have suggested reliable protocols for stimulating single PDS or PDS clusters. Furthermore, we have found that AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors are necessary for PDS generation since AMPAR antagonist NBQX completely suppresses bicuculline-induced paroxysmal activity. In turn, antagonists of NMDA (N-methyl-D-aspartate) and kainate receptors (D-AP5 and UBP310, respectively) caused a decrease in the amplitude of the first action potential in PDSs and in the amplitude of the oscillations of intracellular Ca2+ concentration occurring alongside the PDS cluster generation. The effects of the NMDAR (NMDA receptor) and KAR (kainate receptor) antagonists indicate that these receptors are involved only in the modulation of paroxysmal activity. We have also shown that agonists of some Gi-coupled receptors, such as A1 adenosine (A1Rs) or cannabinoid receptors (CBRs) (N6-cyclohexyladenosine and WIN 55,212-2, respectively), completely suppressed PDS generation, while the A1R agonist even prevented it. We hypothesized that the dynamics of extracellular glutamate concentration govern paroxysmal activity. Fine-tuning of neuronal activity via action on Gi-coupled receptors or iGluRs paves the way for the development of new approaches for epilepsy pharmacotherapy.


Subject(s)
Hippocampus , Receptors, N-Methyl-D-Aspartate , Rats , Animals , Bicuculline/pharmacology , Neurons , Action Potentials , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
15.
Arch Environ Contam Toxicol ; 85(1): 92-103, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37468648

ABSTRACT

Glyphosate's primary metabolite, AMPA (aminomethylphosphonic acid), is one of the most widely detected anthropogenic substance in surface waters worldwide. However, ecotoxicological studies on the potential effects of this metabolite at environmental concentrations on wildlife are scarce. Yet, due to its chemical properties, AMPA is likely to affect non-target species. In this study, we investigated sublethal effects of environmental concentrations of AMPA on the larval development of a widespread amphibian species, the spined toad Bufo spinosus. We performed a factorial experiment to study the effect of concentration and the timing of exposure (during embryonic development, larval development or both) to AMPA on the morphology, rate of development and survival of tadpoles. AMPA and timing of exposure interactively affected tadpole size (individuals exposed to AMPA after hatching were transitorily smaller, while individuals exposed to AMPA before hatching were longer), but not duration of development. Most of these effects were linked to exposure during embryonic development. Such effects in individuals exposed during embryonic development solely were long-lasting and persisted until the latest larval stages. Finally, we found that exposure to AMPA after hatching (during the larval stage) increased mortality. Exposure to low environmental concentrations of AMPA could have long-lasting consequences on fitness and population persistence. These findings are especially important to take into account at a time when multiple threats can interact to affect wildlife.


Subject(s)
Amphibians , Animals, Wild , Humans , Animals , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Larva
16.
Neuroscience ; 521: 31-43, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37085005

ABSTRACT

Mitochondrial damage is a central mechanism involved in neurological disorders as Alzheimer's, and Parkinson's diseases and amyotrophic lateral sclerosis. Energy production is the most studied mitochondrial function; however, mitochondria are also involved in processes like calcium buffering homeostasis, and cell death control during apoptosis and necrosis. Using transmission electron microscopy, in this in vivo study in male rats, we describe ultrastructural mitochondrial alterations of spinal motor neurons along chronic AMPA-induced excitotoxicity, which has been described as one of the most relevant mechanisms in ALS disease. Mitochondrial alterations begin with a crest swelling, which progresses to a full mitochondrial swelling and crest disruption. Changes on the mitochondrial morphology from elongated to a circular shape also occur along the AMPA-excitotoxicity process. In addition, by combining the TUNEL assay and immunohistochemistry for mitochondrial enzymes, we show evidence of mitochondrial DNA damage. Evidence of mitochondrial alterations during an AMPA-excitotoxic event is relevant because resembles the mitochondrial alterations previously reported in ALS patients and in transgenic familial ALS models, suggesting that a chronic excitotoxic model can be related to sporadic ALS (as has been shown in recent papers), which represent more than the 90% of the ALS cases. Understanding the mechanisms involved in motor neuron degenerative process, such as the ultrastructural mitochondrial changes permits to design strategies for MN-degeneration treatments in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Rats , Male , Animals , Amyotrophic Lateral Sclerosis/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Spinal Cord/metabolism , Motor Neurons/metabolism , Carboxylic Acids/metabolism , Mitochondria/metabolism
17.
Biomolecules ; 13(3)2023 03 11.
Article in English | MEDLINE | ID: mdl-36979451

ABSTRACT

Dopamine (DA) and glutamate interact, influencing neural excitability and promoting synaptic plasticity. However, little is known regarding the molecular mechanisms underlying this crosstalk. Since perturbation of DA-AMPA receptor interaction might sustain pathological conditions, the major aim of our work was to evaluate the effect of the hyperactive DA system on the AMPA subunit composition, trafficking, and membrane localization in the prefrontal cortex (PFC). Taking advantage of dopamine transporter knock-out (DAT-/-) rats, we found that DA overactivity reduced the translation of cortical AMPA receptors and their localization at both synaptic and extra-synaptic sites through, at least in part, altered intracellular vesicular sorting. Moreover, the reduced expression of AMPA receptor-specific anchoring proteins and structural markers, such as Neuroligin-1 and nCadherin, likely indicate a pattern of synaptic instability. Overall, these data reveal that a condition of hyperdopaminergia markedly alters the homeostatic plasticity of AMPA receptors, suggesting a general destabilization and depotentiation of the AMPA-mediated glutamatergic neurotransmission in the PFC. This effect might be functionally relevant for disorders characterized by elevated dopaminergic activity.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Receptors, AMPA , Rats , Animals , Receptors, AMPA/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Dopamine/metabolism , Receptors, Dopamine/metabolism , Prefrontal Cortex/metabolism
18.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(2): 189-194, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36916380

ABSTRACT

OBJECTIVE: To investigate whether propofol can cause injury to hippocampal mitochondria in neonatal rats and the regulation of excitatory amino acid receptor AMPA receptor. METHODS: Forty-eight Sprague-Dawley (SD) rats aged 7 days were randomly divided into control group, propofol group, propofol+AMPA receptor agonist AMPA group (propofol+AMPA group) and propofol+AMPA receptor inhibitor CNQX group (propofol+CNQX group), with 12 rats in each group. The rats in the propofol groups were intraperitoneally injected with 30 mg/kg propofol, while in control group with 3 mg/kg normal saline. Each group was given 1/2 of the first dose every 20 minutes after the first administration, three times a day, for three consecutive days. The rats in the propofol+AMPA group and the propofol+CNQX group were injected with 1 g/L AMPA or CNQX 5 µL through left ventricle after the first administration. Three days after administration, the rats were sacrificed to obtain brain tissue. Western blotting was used to determine the expression of AMPA receptor glutamate receptors (GluR1, GluR2) subunit totally (T) and on membrane (M) in hippocampus. The expression of dynamin-related protein-1 (DRP-1) and phosphorylated-DRP-1 (p-DRP-1) and mitofusin 2 (Mfn2) related to mitochondrial fission and fusion were determined. The adenosine triphosphate (ATP) content and ATPase activity were determined. RESULTS: Compared with the control group, GluR1 expression and its M/T ratio were significantly increased after treatment of propofol, GluR2 expression and its M/T ratio were significantly decreased, the ATP content and ATP-related enzyme activity were decreased significantly, while the expression of DRP-1 and its phosphorylation was significantly increased, and the expression of Mfn2 was significantly decreased. The changes indicated that repeated intraperitoneal injection of 30 mg/kg propofol leading to the injury of mitochondria in neural cells. Compared with the propofol group, the GluR1 expression and its M/T ratio further increased after AMPA agonist administration [T-GluR1 protein (T-GluR1/ß-actin): 2.41±0.29 vs. 1.72±0.11, M-GluR1 protein (M-GluR1/ß-actin): 1.18±0.15 vs. 0.79±0.09, M/T ratio: 0.78±0.12 vs. 0.46±0.08, all P < 0.01], GluR2 expression was significantly increased [T-GluR2 protein (T-GluR2/ß-actin): 0.65±0.13 vs. 0.30±0.14, P < 0.01; M-GluR2 protein (M-GluR2/ß-actin): 0.17±0.05 vs. 0.13±0.07, P > 0.05], but its M/T ratio was further decreased (0.27±0.10 vs. 0.41±0.08, P < 0.05). The ATP-related enzyme activity was further decreased, and the ATP content was further decreased (µmol/g: 0.32±0.07 vs. 0.70±0.10, P < 0.01). Mitochondria DRP-1 expression and its phosphorylation were further increased [DRP-1 protein (DRP-1/GAPDH): 2.75±0.36 vs. 1.70±0.19, p-DRP-1 protein (p-DRP-1/GAPDH): 0.99±0.14 vs. 0.76±0.15, both P < 0.05], and Mfn2 expression was further decreased (Mfn2/GAPDH: 0.23±0.12 vs. 0.54±0.12, P < 0.05). This indicated that the AMPA agonist increased the expression of the AMPA receptor GluR1 subunit on the cell membrane and shifted the GluR2 into the cell, thus increasing the mitochondrial injury caused by propofol. Compared with the propofol group, the GluR1 expression and its M/T ratio decreased significantly after AMPA inhibitor administration [T-GluR1 protein (T-GluR1/ß-actin): 0.99±0.14 vs. 1.72±0.11, M-GluR1 protein (M-GluR1/ß-actin): 0.21±0.07 vs. 0.79±0.09, M/T ratio: 0.21±0.07 vs. 0.46±0.08, all P < 0.01], the change of GluR2 expression was not significant, but its M/T ratio was significantly increased (0.59±0.09 vs. 0.41±0.08, P < 0.05). The ATP-related enzyme activity was increased significantly, and the ATP content was increased significantly (µmol/g: 0.87±0.12 vs. 0.70±0.10, P < 0.05). Mitochondria DRP-1 expression and its phosphorylation were significantly decreased [DRP-1 protein (DRP-1/GAPDH): 1.18±0.17 vs. 1.70±0.19, p-DRP-1 protein (p-DRP-1/GAPDH): 0.37±0.10 vs. 0.76±0.10, both P < 0.05], and Mfn2 expression was significantly increased (Mfn2/GAPDH: 0.78±0.10 vs. 0.54±0.12, P < 0.05). This indicated that AMPA inhibitor promoted the movement to the cell membrane of GluR2 subunits meanwhile inhibited the expression of GluR1 subunits, thus alleviating the injury of mitochondrial caused by propofol in the brain. CONCLUSIONS: Repeated intraperitoneal injection of 30 mg/kg propofol for 3 days can increase the expression of GluR1 subunits of AMPA receptor in 7-day neonatal rats hippocampus mainly distributing in the cell membrane, decrease the expression of GluR2 subunits moving into the cell, thus causing injury of mitochondrial function and dynamics, which can be aggravated by AMPA receptor agonist and alleviated by AMPA receptor inhibitors.


Subject(s)
Propofol , Receptors, AMPA , Rats , Animals , Receptors, AMPA/metabolism , Rats, Sprague-Dawley , Propofol/pharmacology , Animals, Newborn , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Actins/metabolism , 6-Cyano-7-nitroquinoxaline-2,3-dione/metabolism , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Hippocampus/metabolism
19.
Neurotoxicology ; 95: 173-180, 2023 03.
Article in English | MEDLINE | ID: mdl-36775207

ABSTRACT

Glutamate excitotoxicity is involved in dopaminergic degeneration in the substantia nigra pars compacta (SNpc). Here we compared vulnerability to neurodegeneration after exposure to NMDA and AMPA. Apomorphine-induced movement disorder and dopaminergic degeneration in the SNpc, which are associated with Parkinson's syndrome, were induced after injection of AMPA into the SNpc of rats, but not after injection of NMDA. Co-injection of 1-naphthyl acetyl spermine (NASPM), a selective blocker of Ca2+- and Zn2+-permeable GluR2-lacking AMPA receptors rescued dopaminergic degeneration and increase in intracellular Zn2+ by AMPA. Furthermore, we tested the effect of capturing reactive oxygen species (ROS) produced by Zn2+ on neuroprotection in vivo. The levels of ROS, which were determined by HYDROP, a membrane-permeable H2O2 fluorescence probe and Aminophenyl Fluorescein (APF), a fluorescence probe for hydroxyl radical and peroxynitrite, were increased after injection of AMPA, but not after co-injection of CaEDTA, an extracellular Zn2+ chelator, suggesting that increase in Zn2+ influx by AMPA elevates the levels of intracellular ROS. AMPA-mediated dopaminergic degeneration was completely rescued by co-injection of either HYDROP or APF. The present study indicates that neurotoxic signaling of the influx of extracellular Zn2+ through Zn2+-permeable GluR2-lacking AMPA receptors is converted to ROS production and that capturing the ROS completely protects dopaminergic degeneration after exposure to AMPA, but not NMDA. It is likely that regulation of the conversion from Zn2+ influx into ROS production plays a key role to preventing Parkinson's syndrome.


Subject(s)
Parkinson Disease , Receptors, AMPA , Rats , Animals , Reactive Oxygen Species/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Rats, Wistar , Hydrogen Peroxide , Zinc/metabolism , Edema , Dopaminergic Neurons
20.
J Neuroinflammation ; 20(1): 1, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36593485

ABSTRACT

Chronic hyperammonemia, a main contributor to hepatic encephalopathy (HE), leads to neuroinflammation which alters neurotransmission leading to cognitive impairment. There are no specific treatments for the neurological alterations in HE. Extracellular vesicles (EVs) from mesenchymal stem cells (MSCs) reduce neuroinflammation in some pathological conditions. The aims were to assess if treatment of hyperammonemic rats with EVs from MSCs restores cognitive function and analyze the underlying mechanisms. EVs injected in vivo reach the hippocampus and restore performance of hyperammonemic rats in object location, object recognition, short-term memory in the Y-maze and reference memory in the radial maze. Hyperammonemic rats show reduced TGFß levels and membrane expression of TGFß receptors in hippocampus. This leads to microglia activation and reduced Smad7-IkB pathway, which induces NF-κB nuclear translocation in neurons, increasing IL-1ß which alters AMPA and NMDA receptors membrane expression, leading to cognitive impairment. These effects are reversed by TGFß in the EVs from MSCs, which activates TGFß receptors, reducing microglia activation and NF-κB nuclear translocation in neurons by normalizing the Smad7-IkB pathway. This normalizes IL-1ß, AMPA and NMDA receptors membrane expression and, therefore, cognitive function. EVs from MSCs may be useful to improve cognitive function in patients with hyperammonemia and minimal HE.


Subject(s)
Extracellular Vesicles , Hyperammonemia , Mesenchymal Stem Cells , Rats , Animals , Rats, Wistar , Inflammation/metabolism , Neuroinflammatory Diseases , Receptors, N-Methyl-D-Aspartate/metabolism , Hyperammonemia/therapy , Hyperammonemia/metabolism , NF-kappa B/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Hippocampus/metabolism , Cognition , Mesenchymal Stem Cells/metabolism , Extracellular Vesicles/metabolism , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...