Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 41(13): 6074-6088, 2023.
Article in English | MEDLINE | ID: mdl-35869651

ABSTRACT

The interaction between the anti-apoptotic Bcl-2 protein and its antagonist Bax is essential to the regulation of the mitochondrial pathway of apoptosis. For this work, we built models by homology of Bcl-2 full-sequence length in monomeric form (apo-Bcl-2) and in complex with the BH3 domain of Bax (holo-Bcl-2). The Bcl-2 protein was analyzed with its transmembrane domain anchored to a lipidic bilayer of DPPC, imitating physiological conditions. We performed molecular dynamics (MD) simulations using the GROMACS program. Conformational changes showed that the flexible loop domain (FLD) tends to fold on itself and move towards the main core. Furthermore, the BH3 peptide of pro-apoptotic protein Bax, showed an allosteric stabilizing effect on FLD upon being bound to the hydrophobic cleft of the anti-apoptotic protein Bcl-2, causing a reduction in its structural flexibility. However, FLD is distal from the main core of Bcl-2. Principal component analysis (PCA) showed a weak correlation between FLD residues and BH3 peptide from Bax. Upon MD simulations, several new contacts appeared between FLD and some α-helices of the core of Bcl-2, which contribute to maintaining the stability of Bcl-2. This knowledge sheds light on the behavior of Bcl-2 in the cell's native environment.Communicated by Ramaswamy H. Sarma.


Subject(s)
Apoptosis Regulatory Proteins , Molecular Dynamics Simulation , Apoptosis Regulatory Proteins/chemistry , bcl-2-Associated X Protein/chemistry , Proto-Oncogene Proteins c-bcl-2/chemistry , Apoptosis , Protein Conformation
2.
Front Immunol ; 10: 2562, 2019.
Article in English | MEDLINE | ID: mdl-31798573

ABSTRACT

The survival of patients with non-Hodgkin's lymphoma (NHL) has substantially improved with current treatments. Nevertheless, the appearance of drug-resistant cancer cells leads to patient relapse. It is therefore necessary to find new antitumor therapies that can completely eradicate transformed cells. Chemotherapy-resistant cancer cells are characterized by the overexpression of members of the anti-apoptotic B-cell lymphoma 2 (Bcl-2) protein family, such as Bcl-XL, Bcl-2, and Mcl-1. We have recently shown that peptides derived from the BH3 domain of the pro-apoptotic Bax protein may antagonize the anti-apoptotic activity of the Bcl-2 family proteins, restore apoptosis, and induce chemosensitization of tumor cells. In this study, we investigated the feasibility of releasing this peptide into the tumor microenvironment using live attenuated Salmonella enterica, which has proven to be an ally in cancer therapy due to its high affinity for tumor tissue, its ability to activate the innate and adaptive antitumor immune responses, and its potential use as a delivery system of heterologous molecules. Thus, we expressed and released the cell-permeable Bax BH3 peptide from the surface of Salmonella enterica serovar Typhimurium SL3261 through the MisL autotransporter system. We demonstrated that this recombinant bacterium significantly decreased the viability and increased the apoptosis of Ramos cells, a human B NHL cell line. Indeed, the intravenous administration of this recombinant Salmonella enterica elicited antitumor activity and extended survival in a xenograft NHL murine model. This antitumor activity was mediated by apoptosis and an inflammatory response. Our approach may represent an eventual alternative to treat relapsing or refractory NHL.


Subject(s)
Bacterial Proteins , Cancer Vaccines/immunology , Drug Delivery Systems , Lymphoma, Non-Hodgkin/immunology , Lymphoma, Non-Hodgkin/pathology , Membrane Transport Proteins , Peptide Fragments/immunology , Proto-Oncogene Proteins/immunology , Salmonella enterica/immunology , bcl-2-Associated X Protein/immunology , Animals , Apoptosis/drug effects , Bacterial Proteins/chemistry , Cancer Vaccines/administration & dosage , Cell Line , Cell Membrane Permeability , Cell Survival , Disease Models, Animal , Female , Gene Expression , Humans , Lymphoma, Non-Hodgkin/mortality , Lymphoma, Non-Hodgkin/therapy , Membrane Transport Proteins/chemistry , Mice , Models, Molecular , Oligonucleotides/chemistry , Peptide Fragments/genetics , Proto-Oncogene Proteins/genetics , Recombinant Proteins , Salmonella enterica/genetics , Structure-Activity Relationship , Xenograft Model Antitumor Assays , bcl-2-Associated X Protein/chemistry , bcl-2-Associated X Protein/genetics
3.
Biotechnol Appl Biochem ; 64(3): 356-363, 2017 May.
Article in English | MEDLINE | ID: mdl-27144384

ABSTRACT

Endostatin (ES) is an antiangiogenic protein that exhibits antitumor activity in animal models. However, the activity observed in animals was not observed in human clinical trials. ES-BAX is a fusion protein composed of two functional domains: ES, which presents specificity and is internalized by activated endothelial cells and the proapoptotic BH3 domain of the protein BAX, a peptide inductor of cellular death when internalized. We have previously shown (Chura-Chambi et al., Cell Death Dis, 5, e1371, 2014) that ES-BAX presents improved antitumor activity in relation to wild-type ES. Secondary and tertiary structures of ES-BAX are similar to ES, as indicated by homology-modeling studies and molecular dynamics simulations. Tryptophan intrinsic fluorescence and circular dichroism spectroscopy corroborate these data. 15 N HSQC NMR indicates that ES-BAX is structured, but some ES residues have suffered chemical shift perturbations, suggesting that the BH3 peptide interacts with some parts of the ES protein. ES and ES-BAX present similar stability to thermal denaturation. The production of stable hybrid proteins can be a new approach to the development of therapeutic agents presenting specificity for tumoral endothelium and improved antitumor effect.


Subject(s)
Antineoplastic Agents/chemistry , Endostatins/chemistry , Recombinant Fusion Proteins/chemistry , bcl-2-Associated X Protein/chemistry , Endostatins/genetics , Humans , Magnetic Resonance Spectroscopy , Protein Domains , Recombinant Fusion Proteins/genetics , bcl-2-Associated X Protein/genetics
4.
Cell Death Dis ; 5: e1371, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25118931

ABSTRACT

Endostatin (ES) inhibits angiogenesis, reducing tumor growth in animal models. However, it has low therapeutic effect in human clinical trials. BAX is a member of the BCL-2 family of proteins; its proapoptotic (BH3) domain interacts with other members of the family in the cytoplasm, to induce apoptosis. Here, we fused the BAX BH3 domain with murine ES, to enhance ES potency. Endothelial cells specifically internalize the fusion protein ES-BAX. The presence of the BAX domain enhances endothelial cell death by apoptosis by 1.8-fold and diminishes microvessel outgrowth in the rat aortic ring assay by 6.5-fold. Daily injections of 15 µg of ES-BAX/g in tumor-bearing mice reduce tumor weight by 86.9% as compared with ES-treated animals. Co-immunoprecipitation assays confirmed that ES-BAX interacts with members of the BCL-2 family. Also, ES interacts with BCL-2, BCL-XL, and BAK in endothelial cell lysates, suggesting a potential new mechanism for the apoptosis induction by ES. The superiority of the ES-BAX antiangiogenic effect indicates that this fusion protein could be a promising therapeutic alternative to treat cancer.


Subject(s)
Angiogenesis Inhibitors/toxicity , Apoptosis/drug effects , Endostatins/toxicity , bcl-2-Associated X Protein/metabolism , Amino Acid Sequence , Angiogenesis Inhibitors/therapeutic use , Animals , Cell Line, Tumor , Endostatins/genetics , Endostatins/therapeutic use , Escherichia coli/metabolism , Kidney Neoplasms/drug therapy , Male , Mice , Mice, Inbred BALB C , Molecular Sequence Data , NIH 3T3 Cells , Protein Binding , Protein Structure, Tertiary , Rats , Rats, Sprague-Dawley , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/therapeutic use , Recombinant Fusion Proteins/toxicity , Transplantation, Homologous , bcl-2-Associated X Protein/chemistry , bcl-2-Associated X Protein/genetics
5.
Biochim Biophys Acta ; 1808(7): 1888-95, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21440528

ABSTRACT

Several proteins that interact with cholesterol have a highly conserved sequence, corresponding to the cholesterol recognition/interaction amino acid consensus. Since cholesterol has been proposed to modulate both oligomerization and insertion of the pro-apoptotic protein BAX, we investigated the existence of such a motif in the BAX sequence. Residues 113 to 119 of the recombinant BAX α5-helix, LFYFASK, correspond with the sequence motif described for the consensus pattern, -L/V-(X)(1-5)-Y-(X)(1-5)-R/K. Functional characterization of the point mutations, K119A, Y115F, and L113A in BAX, was performed in liposomes supplemented with cholesterol, comparing binding, integration, and pore forming activities. Our results show that the mutations Y115F and L113A changed the cholesterol-dependent insertion observed in the wild type protein. In addition, substitutions in the BAX sequence modified the concentration dependency of carboxyfluorescein release in liposomes, although neither pore activity of the wild type or of any of the mutants significantly increased in cholesterol-enriched liposomes. Thus, while it is likely that the putative CRAC motif in BAX accounts for its enhanced insertion in cholesterol-enriched liposomes; the pore forming properties of BAX did not depend on cholesterol content in the membranes, albeit those mutations changed the pore channeling activity of the protein.


Subject(s)
Amino Acid Motifs , Liposomes , bcl-2-Associated X Protein/chemistry , Amino Acid Sequence , Biopolymers/chemistry , Cholesterol/chemistry , Fluoresceins/chemistry , Molecular Sequence Data , Mutagenesis, Site-Directed , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL