Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
J Antimicrob Chemother ; 79(5): 946-958, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38459763

ABSTRACT

BACKGROUND: Pharmacokinetic/pharmacodynamic (PK/PD) indices are widely used for the selection of optimum antibiotic doses. For ß-lactam antibiotics, fT>MIC, best relates antibiotic exposure to efficacy and is widely used to guide the dosing of ß-lactam/ß-lactamase inhibitor (BLI) combinations, often without considering any PK/PD exposure requirements for BLIs. OBJECTIVES: This systematic review aimed to describe the PK/PD exposure requirements of BLIs for optimal microbiological efficacy when used in combination with ß-lactam antibiotics. METHODS: Literature was searched online through PubMed, Embase, Web of Science, Scopus and Cochrane Library databases up to 5 June 2023. Studies that report the PK/PD index and threshold concentration of BLIs approved for clinical use were included. Narrative data synthesis was carried out to assimilate the available evidence. RESULTS: Twenty-three studies were included. The PK/PD index that described the efficacy of BLIs was fT>CT for tazobactam, avibactam and clavulanic acid and fAUC0-24/MIC for relebactam and vaborbactam. The optimal magnitude of the PK/PD index is variable for each BLI based on the companion ß-lactam antibiotics, type of bacteria and ß-lactamase enzyme gene transcription levels. CONCLUSIONS: The PK/PD index that describes the efficacy of BLIs and the exposure measure required for their efficacy is variable among inhibitors; as a result, it is difficult to make clear inference on what the optimum index is. Further PK/PD profiling of BLI, using preclinical infection models that simulate the anticipated mode(s) of clinical use, is warranted to streamline the exposure targets for use in the optimization of dosing regimens.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , beta-Lactamase Inhibitors , beta-Lactamase Inhibitors/pharmacokinetics , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/administration & dosage , Humans , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , beta-Lactams/pharmacokinetics , beta-Lactams/pharmacology , beta-Lactams/administration & dosage , beta-Lactams/therapeutic use , beta-Lactamases/metabolism
2.
Antimicrob Agents Chemother ; 68(4): e0140423, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38411995

ABSTRACT

Piperacillin/tazobactam (TZP) is administered intravenously in a fixed ratio (8:1) with the potential for inadequate tazobactam exposure to ensure piperacillin activity against Enterobacterales. Adult patients receiving continuous infusion (CI) of TZP and therapeutic drug monitoring (TDM) of both agents were evaluated. Demographic variables and other pertinent laboratory data were collected retrospectively. A population pharmacokinetic approach was used to select the best kidney function model predictive of TZP clearance (CL). The probability of target attainment (PTA), cumulative fraction of response (CFR) and the ratio between piperacillin and tazobactam were computed to identify optimal dosage regimens by continuous infusion across kidney function. This study included 257 critically ill patients (79.3% male) with intra-abdominal, bloodstream, and hospital-acquired pneumonia infections in 89.5% as the primary indication. The median (min-max range) age, body weight, and estimated glomerular filtration rate (eGFR) were 66 (23-93) years, 75 (39-310) kg, and 79.2 (6.4-234) mL/min, respectively. Doses of up to 22.5 g/day were used to optimize TZP based on TDM. The 2021 chronic kidney disease epidemiology equation in mL/min best modeled TZP CL. The ratio of piperacillin:tazobactam increased from 6:1 to 10:1 between an eGFR of <20 mL/min and >120 mL/min. At conventional doses, the PTA is below 90% when eGFR is ≥100 mL/min. Daily doses of 18 g/day and 22.5 g/day by CI are expected to achieve a >80% CFR when eGFR is 100-120 mL/min and >120-160 mL/min, respectively. Inadequate piperacillin and tazobactam exposure is likely in patients with eGFR ≥ 100 mL/min. Dose regimen adjustments informed by TDM should be evaluated in this specific population.


Subject(s)
Gammaproteobacteria , beta-Lactamase Inhibitors , Adult , Humans , Male , Aged , Aged, 80 and over , Female , beta-Lactamase Inhibitors/pharmacokinetics , Anti-Bacterial Agents/pharmacokinetics , beta-Lactams , Retrospective Studies , Penicillanic Acid/therapeutic use , Penicillanic Acid/pharmacokinetics , Piperacillin, Tazobactam Drug Combination/pharmacokinetics , Piperacillin/pharmacokinetics , Tazobactam , beta-Lactamases , Microbial Sensitivity Tests
3.
Antimicrob Agents Chemother ; 66(12): e0093622, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36394326

ABSTRACT

Scant pharmacokinetic (PK) data are available on ceftazidime-avibactam (CZA) and aztreonam (ATM) in combination, and it is unknown if CZA-ATM exacerbates alanine aminotransferase (ALT)/aspartate aminotransferase (AST) elevations relative to ATM alone. This phase 1 study sought to describe the PK of CZA-ATM and assess the associations between ATM exposures and ALT/AST elevations. Subjects (n = 48) were assigned to one of six cohorts (intermittent infusion [II] CZA, continuous infusion [CI] CZA, II ATM, CI ATM [8 g/daily], II CZA with II ATM [6 g/daily], and II CZA with II ATM [8 g/daily]), and study product(s) were administered for 7 days. A total of 19 subjects (40%) had ALT/AST elevations, and most (89%) occurred in the ATM/CZA-ATM cohorts. Two subjects in the CI ATM cohort experienced severe ALT/AST elevations, which halted the study. All subjects with ALT/AST elevations were asymptomatic with no other signs of liver injury, and all ALT/AST elevations resolved without sequalae after cessation of dosing. In the population PK (PopPK) analyses, CZA-ATM administration reduced total ATM clearance by 16%, had a negligible effect on total ceftazidime clearance, and was not a covariate in the avibactam PopPK model. In the exposure-response analyses, coadministration of CZA-ATM was not found to augment ALT/AST elevations. Modest associations were observed between ATM exposure (maximum concentration of drug in serum [Cmax] and area under the concentration-time curve [AUC]) and ALT/AST elevations in the analysis of subjects in the II ATM/CZA-ATM cohorts. The findings suggest that administration of CZA-ATM reduces ATM clearance but does not exacerbate AST/ALT elevations relative to ATM alone. The results also indicate that CI ATM should be used with caution.


Subject(s)
Aztreonam , Ceftazidime , Humans , Adult , Ceftazidime/pharmacokinetics , Aztreonam/therapeutic use , beta-Lactamase Inhibitors/pharmacokinetics , Microbial Sensitivity Tests , Azabicyclo Compounds/pharmacokinetics , Drug Combinations , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacokinetics
4.
Clin Pharmacol Ther ; 111(3): 635-645, 2022 03.
Article in English | MEDLINE | ID: mdl-34687548

ABSTRACT

Increasing prevalence of infections caused by antimicrobial-resistant gram-negative bacteria represents a global health crisis, and while several novel therapies that target various aspects of antimicrobial resistance have been introduced in recent years, few are currently approved for children. Ceftazidime-avibactam is a novel ß-lactam ß-lactamase inhibitor combination approved for adults and children 3 months and older with complicated intra-abdominal infection, and complicated urinary tract infection or hospital-acquired ventilator-associated pneumonia (adults only in the United States) caused by susceptible gram-negative bacteria. Extensive population pharmacokinetic (PK) data sets for ceftazidime and avibactam obtained during the adult clinical development program were used to iteratively select, modify, and validate the approved adult dosage regimen (2,000-500 mg by 2-hour intravenous (IV) infusion every 8 hours (q8h), with adjustments for renal function). Following the completion of one phase I (NCT01893346) and two phase II ceftazidime-avibactam studies (NCT02475733 and NCT02497781) in children, adult PK data sets were updated with pediatric PK data. This paper describes the development of updated combined adult and pediatric population PK models and their application in characterizing the population PK of ceftazidime and avibactam in children, and in dose selection for further pediatric evaluation. The updated models supported the approval of ceftazidime-avibactam pediatric dosage regimens (all by 2-hour IV infusion) of 50-12.5 mg/kg (maximum 2,000-500 mg) q8h for those ≥6 months to 18 years old, and 40-10 mg/kg q8h for those ≥3 to 6 months old with creatinine clearance > 50 mL/min/1.73 m2 .


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Azabicyclo Compounds/pharmacokinetics , Ceftazidime/pharmacokinetics , beta-Lactamase Inhibitors/pharmacokinetics , Adolescent , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/therapeutic use , Ceftazidime/therapeutic use , Child , Child, Preschool , Drug Combinations , Drug Resistance, Multiple, Bacterial/drug effects , Female , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Humans , Infant , Intraabdominal Infections/drug therapy , Intraabdominal Infections/microbiology , Male , Pneumonia, Ventilator-Associated/drug therapy , Pneumonia, Ventilator-Associated/microbiology , Probability , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology , beta-Lactamase Inhibitors/therapeutic use
5.
Int J Antimicrob Agents ; 58(4): 106408, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34314808

ABSTRACT

Continuous infusion (CI) piperacillin/tazobactam is frequently used to treat infections in very elderly patients. This study aimed to conduct a population pharmacokinetic analysis of CI piperacillin/tazobactam, and to identify optimal dosages for safe and effective probability of target attainment (PTA) against Enterobacterales and Pseudomonas aeruginosa. Non-linear mixed-effects modelling was performed with Pmetrics. Monte Carlo simulations assessed the steady-state concentration (Css) of increasing piperacillin/tazobactam regimens (from 2.25 to 18 g daily by continuous infusion). Permissible doses were defined as those associated with <10% probability of Css >157.2 mg/L. PTA at the pharmacodynamic targets of free plasma steady-state concentration (fCss)/minimum inhibitory concentration (MIC) ≥1 and ≥4 and cumulative fraction of response (CFR) against EUCAST MIC distribution were also calculated. A total of 141 patients (median age 85 years) provided 217 plasma piperacillin Css. Most patients (55.2%) had hospital-acquired pneumonia and intra-abdominal infections. A one-compartment pharmacokinetic model with parallel linear and Michaelis-Menten elimination best described piperacillin data. Creatinine clearance (CLCR) was the covariate retained by the model. Pharmacokinetic estimates were 6.05 L/h for clearance and 3.39 mg/L for the Michaelis-Menten constant. Permissible doses were up to 4.5, 9, 11.25 and 13.5 g daily by continuous infusion for patients with CLCR of 0-19, 20-39, 40-59 and 60-79 mL/min/1.73 m2, respectively. At the clinical breakpoint of 8 mg/L, the permissible doses only achieved optimal PTA for fCss/MIC ≥1 in patients with CLCR 20-79 mL/min/1.73 m2. Optimal CFRs with the permissible doses were only attained against Escherichia coli and Proteus mirabilis. Permissible dosages and CLCR should be considered for prescribing CI piperacillin/tazobactam in very elderly patients.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Enterobacteriaceae Infections/drug therapy , Piperacillin, Tazobactam Drug Combination/pharmacokinetics , Piperacillin, Tazobactam Drug Combination/therapeutic use , Pseudomonas Infections/drug therapy , beta-Lactamase Inhibitors/therapeutic use , Aged, 80 and over , Anti-Bacterial Agents/pharmacokinetics , Enterobacteriaceae/drug effects , Female , Humans , Infusions, Intravenous , Italy , Male , Microbial Sensitivity Tests , Monte Carlo Method , Pseudomonas aeruginosa/drug effects , Retrospective Studies , beta-Lactamase Inhibitors/pharmacokinetics
6.
Anal Bioanal Chem ; 413(13): 3561-3571, 2021 May.
Article in English | MEDLINE | ID: mdl-33851228

ABSTRACT

Clavulanic acid is a molecule with antimicrobial effect used in several livestock species treatment. Its inclusion in the treatment of infectious diseases of broilers requires determination of pharmacokinetic and pharmacodynamic parameters in order to determine the appropriate dosage for broilers and ensure safety of chicken products for human health. The present study describes the optimisation of analytical LC-MS/MS method for identification and quantification of clavulanic acid in broiler chicken plasma and meat. The limit of detection and the limit of quantification for the developed method were 3.09 µg·L-1 and 10.21 µg·L-1 for plasma and 2.57 µg·kg-1 and 8.47 µg·kg-1 for meat. The recoveries of the developed plasma and tissue extraction procedure were > 105.7% and > 95.6%, respectively. The achieved coefficient of variation of within-run precision ranged from 2.8 to 10.9% for plasma and from 6.5 to 8.5% for meat. The pharmacokinetic experiment was performed in 112 Ross broiler chickens assigned into time interval groups ranging from 10 min to 24 h in accredited animal facilities. Administered dose of clavulanic acid was 2.5 mg·kg-1 according to the manufacturer's recommendations. The pharmacokinetic parameters obtained from the experiment are as follows: Cmax = 1.82 ± 0.91 mg·L-1, Tmax = 0.25 h, T1/2 = 0.87 h, Kel = 0.80 ± 0.04 h-1, AUC0-∞ = 2.17 mg·h ·L-1.


Subject(s)
Clavulanic Acid/metabolism , Mass Spectrometry/methods , beta-Lactamase Inhibitors/metabolism , Animals , Chickens , Chromatography, High Pressure Liquid/methods , Clavulanic Acid/blood , Clavulanic Acid/pharmacokinetics , Limit of Detection , Reference Standards , Reproducibility of Results , beta-Lactamase Inhibitors/blood , beta-Lactamase Inhibitors/pharmacokinetics
7.
Expert Rev Clin Pharmacol ; 14(5): 583-599, 2021 May.
Article in English | MEDLINE | ID: mdl-33687300

ABSTRACT

INTRODUCTION: Several novel beta-lactams (BLs) and/or beta lactams/beta-lactamase inhibitors (BL/BLIs) have been recently developed for the management of multidrug-resistant bacterial infections. Data concerning dose optimization in critically ill patients with altered renal function are scanty. AREAS COVERED: This article provides a critical reappraisal of pharmacokinetic and clinical issues emerged with novel BLs and/or BL/BLIs in renal critically ill patients. Clinical and pharmacokinetic studies published in English until December 2020 were searched on the PubMed-MEDLINE database. EXPERT OPINION: Several issues emerged with the use of novel BLs and/or BL/BLIs in critically ill renal patients. Suboptimal clinical response rate with ceftazidime-avibactam and ceftolozane-tazobactam was reported in phase II-III trials in patients with moderate kidney injury; data on patients undergoing renal replacement therapy are limited to some case reports; dose adjustment in augmented renal clearance is provided only for cefiderocol. Implementation of altered dosing strategies (prolonged infusion and/or higher dosage) coupled with adaptive real-time therapeutic drug monitoring could represent the most effective approach in warranting optimal pharmacokinetic/pharmacodynamic targets with novel BLs and/or BL/BLIs in challenging scenarios, thus minimizing the risk of clinical failure and/or of resistance selection.


Subject(s)
Bacterial Infections/drug therapy , beta-Lactamase Inhibitors/administration & dosage , beta-Lactams/administration & dosage , Bacterial Infections/microbiology , Critical Illness , Dose-Response Relationship, Drug , Drug Development , Drug Monitoring , Drug Resistance, Multiple, Bacterial , Humans , Kidney Diseases/complications , Kidney Diseases/physiopathology , beta-Lactamase Inhibitors/pharmacokinetics , beta-Lactamase Inhibitors/pharmacology , beta-Lactams/pharmacokinetics , beta-Lactams/pharmacology
8.
Clin Microbiol Rev ; 34(1)2020 12 16.
Article in English | MEDLINE | ID: mdl-33177185

ABSTRACT

The limited armamentarium against drug-resistant Gram-negative bacilli has led to the development of several novel ß-lactam-ß-lactamase inhibitor combinations (BLBLIs). In this review, we summarize their spectrum of in vitro activities, mechanisms of resistance, and pharmacokinetic-pharmacodynamic (PK-PD) characteristics. A summary of available clinical data is provided per drug. Four approved BLBLIs are discussed in detail. All are options for treating multidrug-resistant (MDR) Enterobacterales and Pseudomonas aeruginosa Ceftazidime-avibactam is a potential drug for treating Enterobacterales producing extended-spectrum ß-lactamase (ESBL), Klebsiella pneumoniae carbapenemase (KPC), AmpC, and some class D ß-lactamases (OXA-48) in addition to carbapenem-resistant Pseudomonas aeruginosa Ceftolozane-tazobactam is a treatment option mainly for carbapenem-resistant P. aeruginosa (non-carbapenemase producing), with some activity against ESBL-producing Enterobacterales Meropenem-vaborbactam has emerged as treatment option for Enterobacterales producing ESBL, KPC, or AmpC, with similar activity as meropenem against P. aeruginosa Imipenem-relebactam has documented activity against Enterobacterales producing ESBL, KPC, and AmpC, with the combination having some additional activity against P. aeruginosa relative to imipenem. None of these drugs present in vitro activity against Enterobacterales or P. aeruginosa producing metallo-ß-lactamase (MBL) or against carbapenemase-producing Acinetobacter baumannii Clinical data regarding the use of these drugs to treat MDR bacteria are limited and rely mostly on nonrandomized studies. An overview on eight BLBLIs in development is also provided. These drugs provide various levels of in vitro coverage of carbapenem-resistant Enterobacterales, with several drugs presenting in vitro activity against MBLs (cefepime-zidebactam, aztreonam-avibactam, meropenem-nacubactam, and cefepime-taniborbactam). Among these drugs, some also present in vitro activity against carbapenem-resistant P. aeruginosa (cefepime-zidebactam and cefepime-taniborbactam) and A. baumannii (cefepime-zidebactam and sulbactam-durlobactam).


Subject(s)
Gram-Negative Bacteria/drug effects , beta-Lactamase Inhibitors/pharmacology , beta-Lactams/pharmacology , Drug Combinations , Drug Resistance, Multiple, Bacterial/drug effects , Microbial Sensitivity Tests , beta-Lactamase Inhibitors/pharmacokinetics , beta-Lactams/pharmacokinetics
9.
Expert Rev Anti Infect Ther ; 18(7): 643-655, 2020 07.
Article in English | MEDLINE | ID: mdl-32297801

ABSTRACT

INTRODUCTION: infections due to carbapenem-resistant Enterobacterales (CRE) constitute a worldwide threat and are associated with significant mortality, especially in fragile patients, and costs. Meropenem-vaborbactam (M/V) is a combination of a group 2 carbapenem with a novel cyclic boronic acid-based ß-lactamase inhibitor which has shown good efficacy against KPC carbapenemase-producing Klebsiella pneumoniae, which are amongst the most prevalent types of CRE. AREAS COVERED: This article reviews the microbiological and pharmacological profile and current clinical experience and safety of M/V in the treatment of infections caused by CRE. EXPERT OPINION: M/V is a promising drug for the treatment of infections due to KPC-producing CRE (KPC-CRE). It exhibited an almost complete coverage of KPC-CRE isolates from large surveillance studies and a low propensity for resistance selection, retaining activity also against strains producing KPC mutants resistant to ceftazidime-avibactam. Both meropenem and vaborbactam have a favorable pharmacokinetic profile, with similar kinetic properties, a good intrapulmonary penetration, and are efficiently cleared during continuous venovenous hemofiltration (CVVH). According to available data, M/V monotherapy is associated with higher clinical cure rates and lower rates of adverse events, especially in terms of nephrotoxicity, if compared to 'older' combination therapies.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Boronic Acids/administration & dosage , Enterobacteriaceae Infections/drug therapy , Heterocyclic Compounds, 1-Ring/administration & dosage , Meropenem/administration & dosage , Animals , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Boronic Acids/pharmacokinetics , Boronic Acids/pharmacology , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Drug Combinations , Enterobacteriaceae Infections/microbiology , Hemofiltration , Heterocyclic Compounds, 1-Ring/pharmacokinetics , Heterocyclic Compounds, 1-Ring/pharmacology , Humans , Meropenem/pharmacokinetics , Meropenem/pharmacology , Tissue Distribution , beta-Lactamase Inhibitors/administration & dosage , beta-Lactamase Inhibitors/pharmacokinetics , beta-Lactamase Inhibitors/pharmacology
10.
J Med Chem ; 63(14): 7491-7507, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32150407

ABSTRACT

Despite major advances in the ß-lactamase inhibitor field, certain enzymes remain refractory to inhibition by agents recently introduced. Most important among these are the class B (metallo) enzyme NDM-1 of Enterobacteriaceae and the class D (OXA) enzymes of Acinetobacter baumannii. Continuing the boronic acid program that led to vaborbactam, efforts were directed toward expanding the spectrum to allow treatment of a wider range of organisms. Through key structural modifications of a bicyclic lead, stepwise gains in spectrum of inhibition were achieved, ultimately resulting in QPX7728 (35). This compound displays a remarkably broad spectrum of inhibition, including class B and class D enzymes, and is little affected by porin modifications and efflux. Compound 35 is a promising agent for use in combination with a ß-lactam antibiotic for the treatment of a wide range of multidrug resistant Gram-negative bacterial infections, by both intravenous and oral administration.


Subject(s)
Borinic Acids/pharmacology , Boronic Acids/pharmacology , Carboxylic Acids/pharmacology , beta-Lactamase Inhibitors/pharmacology , Animals , Bacteria/drug effects , Borinic Acids/chemistry , Borinic Acids/pharmacokinetics , Borinic Acids/therapeutic use , Boronic Acids/chemistry , Boronic Acids/pharmacokinetics , Boronic Acids/therapeutic use , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacokinetics , Carboxylic Acids/therapeutic use , Drug Discovery , Klebsiella Infections/drug therapy , Mice , Microbial Sensitivity Tests , Structure-Activity Relationship , beta-Lactamase Inhibitors/chemistry , beta-Lactamase Inhibitors/pharmacokinetics , beta-Lactamase Inhibitors/therapeutic use
11.
Article in English | MEDLINE | ID: mdl-32015048

ABSTRACT

Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae (KPC-Kp) is an emerging global public health threat that causes life-threatening pneumonia and bacteremia. Ceftazidime-avibactam (CZA) represents a promising advance for the treatment of serious infections caused by KPC-Kp We investigated the pharmacokinetics and efficacy of ceftazidime-avibactam in the treatment of experimental KPC-Kp pneumonia in persistently neutropenic rabbits. For single-dose and multidose (administration every 8 h) pharmacokinetics, rabbits received ceftazidime-avibactam intravenous infusions at 60/15, 90/22.5, and 120/30 mg/kg of body weight. Ceftazidime mean area under the concentration-time curves (AUCs) ranged from 287 to 608 µg·h/ml for a single dose and from 300 to 781 µg·h/ml for multiple doses. Avibactam AUCs ranged from 21 to 48 µg·h/ml for a single dose and from 26 to 48 µg·h/ml for multiple doses. KPC-Kp pneumonia was established by direct endotracheal inoculation. Treatments consisted of ceftazidime-avibactam at 120/30 mg/kg every 6 h, a polymyxin B (PMB) loading dose of 2.5 mg/kg followed by 1.5 mg/kg every 12 h q12h, or no treatment (untreated controls [UC]). There were significant reductions in the residual bacterial burden, lung weights, and pulmonary hemorrhage scores in CZA- and PMB-treated rabbits for a 7-day or a 14-day (P ≤ 0.01) course in comparison with those in the UC. These results corresponded to significant decreases in the bacterial burden in bronchoalveolar lavage fluid after a 7-day or a 14-day treatment (P ≤ 0.01). The outcomes demonstrated an improved response at 14 days versus that at 7 days. There was significantly prolonged survival in rabbits treated with CZA for 14 days in comparison with that in the PMB-treated or UC rabbits (P ≤ 0.05). This study demonstrates that ceftazidime-avibactam displays linear dose-proportional exposures simulating those seen from human plasma pharmacokinetic profiles, is active for the treatment of experimental KPC-Kp pneumonia in persistently neutropenic rabbits, and provides an experimental foundation for the treatment of severely immunocompromised patients with this life-threatening infection.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/therapeutic use , Ceftazidime/therapeutic use , Klebsiella Infections/drug therapy , Klebsiella pneumoniae/drug effects , beta-Lactamase Inhibitors/therapeutic use , Animals , Anti-Bacterial Agents/pharmacokinetics , Azabicyclo Compounds/pharmacokinetics , Bacteremia/drug therapy , Bacteremia/microbiology , Bacterial Load/drug effects , Bacterial Proteins/metabolism , Carbapenem-Resistant Enterobacteriaceae/drug effects , Ceftazidime/pharmacokinetics , Drug Combinations , Drug Resistance, Multiple, Bacterial/genetics , Female , Microbial Sensitivity Tests , Neutropenia , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/microbiology , Rabbits , beta-Lactamase Inhibitors/pharmacokinetics , beta-Lactamases/metabolism
12.
Article in English | MEDLINE | ID: mdl-32015049

ABSTRACT

An extensive clinical development program (comprising two phase 2 and five phase 3 trials) has demonstrated the efficacy and safety of ceftazidime-avibactam in the treatment of adults with complicated intra-abdominal infection (cIAI), complicated urinary tract infection (cUTI), and hospital-acquired pneumonia (HAP), including ventilator-associated pneumonia (VAP). During the phase 3 clinical program, updated population pharmacokinetic (PK) modeling and Monte Carlo simulations using clinical PK data supported modified ceftazidime-avibactam dosage adjustments for patients with moderate or severe renal impairment (comprising a 50% increase in total daily dose compared with the original dosage adjustments) to reduce the risk of subtherapeutic drug exposures in the event of rapidly improving renal function. The modified dosage adjustments were included in the ceftazidime-avibactam labeling information at the time of initial approval and were subsequently evaluated in the final phase 3 trial (in patients with HAP, including VAP), providing supportive data for the approved U.S. and European ceftazidime-avibactam dosage regimens across renal function categories. This review describes the analyses supporting the ceftazidime-avibactam dosage adjustments for renal impairment and discusses the wider implications and benefits of using modeling and simulation to support dosage regimen optimization based on emerging clinical evidence.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/pharmacokinetics , Azabicyclo Compounds/therapeutic use , Ceftazidime/pharmacokinetics , Ceftazidime/therapeutic use , Intraabdominal Infections/drug therapy , Pneumonia, Ventilator-Associated/drug therapy , Urinary Tract Infections/drug therapy , beta-Lactamase Inhibitors/therapeutic use , Anti-Bacterial Agents/pharmacokinetics , Drug Combinations , Drug Dosage Calculations , Drug Resistance, Multiple, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Renal Insufficiency/pathology , beta-Lactamase Inhibitors/pharmacokinetics
13.
Article in English | MEDLINE | ID: mdl-32041717

ABSTRACT

Nacubactam is a novel ß-lactamase inhibitor with dual mechanisms of action as an inhibitor of serine ß-lactamases (classes A and C and some class D) and an inhibitor of penicillin binding protein 2 in Enterobacteriaceae The safety, tolerability, and pharmacokinetics of intravenous nacubactam were evaluated in single- and multiple-ascending-dose, placebo-controlled studies. Healthy participants received single ascending doses of nacubactam of 50 to 8,000 mg, multiple ascending doses of nacubactam of 1,000 to 4,000 mg every 8 h (q8h) for up to 7 days, or nacubactam of 2,000 mg plus meropenem of 2,000 mg q8h for 6 days after a 3-day lead-in period. Nacubactam was generally well tolerated, with the most frequently reported adverse events (AEs) being mild to moderate complications associated with intravenous access and headache. There was no apparent relationship between drug dose and the pattern, incidence, or severity of AEs. No clinically relevant dose-related trends were observed in laboratory safety test results. No serious AEs, dose-limiting AEs, or deaths were reported. After single or multiple doses, nacubactam pharmacokinetics appeared linear, and exposure increased in an approximately dose-proportional manner across the dose range investigated. Nacubactam was excreted largely unchanged into urine. Coadministration of nacubactam with meropenem did not significantly alter the pharmacokinetics of either drug. These findings support the continued clinical development of nacubactam and demonstrate the suitability of meropenem as a potential ß-lactam partner for nacubactam. (The studies described in this paper have been registered at ClinicalTrials.gov under NCT02134834 [single ascending dose study] and NCT02972255 [multiple ascending dose study].).


Subject(s)
Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacokinetics , Azabicyclo Compounds/adverse effects , Azabicyclo Compounds/pharmacokinetics , Lactams/adverse effects , Lactams/pharmacokinetics , Meropenem/adverse effects , Meropenem/pharmacokinetics , beta-Lactamase Inhibitors/adverse effects , beta-Lactamase Inhibitors/pharmacokinetics , Adolescent , Adult , Aged , Area Under Curve , Dose-Response Relationship, Drug , Double-Blind Method , Drug Combinations , Drug Interactions , Electrocardiography/drug effects , Female , Humans , Male , Middle Aged , Patient Safety , Young Adult
14.
J Clin Pharmacol ; 60(2): 172-180, 2020 02.
Article in English | MEDLINE | ID: mdl-31423601

ABSTRACT

Monte Carlo simulations (MCSs) are used in antibiotic development to predict the probability of pharmacodynamic target attainment (PTA) for a dosing regimen. However, for ß-lactam/ß-lactamase inhibitor combinations (BL-BLICs), methods for linking simulated concentration profiles of the ß-lactam (BL) and ß-lactamase inhibitor (BLI) components are rarely described. Using a previously defined pharmacokinetic model of ceftazidime/avibactam from critically ill patients, we performed four 5000-patient MCSs using different methods of increasing complexity to couple the BL and BLI components and compared PTA for ceftazidime and avibactam targets of >70% fT>MIC and >70% fT>1 mg/L, respectively, at MICs from 1 to 128 mg/L. Method A ignored all covariates and correlations, whereas methods B, C, and D enhanced associations by adding (B) pharmacokinetic parameter correlation within each drug only; (C) pharmacokinetic parameter correlation within each drug and creatinine clearance (CRCL); and (D) pharmacokinetic parameter correlation within each drug, CRCL, and pharmacokinetic parameter correlation between drugs. Method D produced a simulated patient population that best recapitulated the observed relationships between pharmacokinetic parameters in actual patients. Ceftazidime/avibactam PTA at MIC 8 mg/L (the susceptibility break point) and 16 mg/L ranged from 92.4% to 98.3% and 80.2% to 88.4%, respectively. PTA was lowest with method A, whereas PTA estimates were similar for all other methods. Compared with ignoring all pharmacokinetic parameter associations, the inclusion of covariate relationships and parameter correlation between both components of ceftazidime/avibactam leads to fewer patients with discordant pharmacokinetic parameters and results in higher PTA. Consideration of these methodologies should guide future MCS analyses for BL-BLIC.


Subject(s)
Azabicyclo Compounds/administration & dosage , Azabicyclo Compounds/pharmacokinetics , Ceftazidime/administration & dosage , Ceftazidime/pharmacokinetics , Monte Carlo Method , beta-Lactamase Inhibitors/administration & dosage , beta-Lactamase Inhibitors/pharmacokinetics , beta-Lactams/administration & dosage , beta-Lactams/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/therapeutic use , Ceftazidime/therapeutic use , Computer Simulation , Drug Administration Schedule , Drug Combinations , Humans , Microbial Sensitivity Tests , Models, Biological , Models, Statistical , beta-Lactamase Inhibitors/therapeutic use , beta-Lactams/therapeutic use
15.
J Antimicrob Chemother ; 75(2): 400-408, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31670804

ABSTRACT

BACKGROUND: Diazabicyclooctanes (DBOs) are an increasingly important group of non ß-lactam ß-lactamase inhibitors, employed clinically in combinations such as ceftazidime/avibactam. The dose finding of such combinations is complicated using the traditional pharmacokinetic/pharmacodynamic (PK/PD) index approach, especially if the ß-lactamase inhibitor has an antibiotic effect of its own. OBJECTIVES: To develop a novel mechanism-based pharmacokinetic-pharmacodynamic (PKPD) model for ceftazidime/avibactam against Gram-negative pathogens, with the potential for combination dosage simulation. METHODS: Four ß-lactamase-producing Enterobacteriaceae, covering Ambler classes A, B and D, were exposed to ceftazidime and avibactam, alone and in combination, in static time-kill experiments. A PKPD model was developed and evaluated using internal and external evaluation, and combined with a population PK model and applied in dosage simulations. RESULTS: The developed PKPD model included the effects of ceftazidime alone, avibactam alone and an 'enhancer' effect of avibactam on ceftazidime in addition to the ß-lactamase inhibitory effect of avibactam. The model could describe an extensive external Pseudomonas aeruginosa data set with minor modifications to the enhancer effect, and the utility of the model for clinical dosage simulation was demonstrated by investigating the influence of the addition of avibactam. CONCLUSIONS: A novel mechanism-based PKPD model for the DBO/ß-lactam combination ceftazidime/avibactam was developed that enables future comparison of the effect of avibactam with other DBO/ß-lactam inhibitors in simulations, and may be an aid in translating PKPD results from in vitro to animals and humans.


Subject(s)
Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/pharmacokinetics , Ceftazidime/pharmacology , Ceftazidime/pharmacokinetics , Gram-Negative Bacteria/drug effects , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Drug Combinations , Gram-Negative Bacteria/enzymology , Microbial Sensitivity Tests , beta-Lactamase Inhibitors/pharmacokinetics , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases
16.
Br J Clin Pharmacol ; 86(5): 944-957, 2020 05.
Article in English | MEDLINE | ID: mdl-31856304

ABSTRACT

AIMS: Two phase 1, open-label studies were conducted to investigate the effect of renal impairment (RI) and organic anion transporter (OAT) inhibition on pharmacokinetics (PK) and safety of relebactam (REL) plus imipenem/cilastatin (IMI). METHODS: Study PN005 evaluated the PK of REL (125 mg) plus IMI (250 mg) in participants with RI vs healthy controls. Study PN019 evaluated the PK of REL (250 mg) and imipenem (500 mg; dosed as IMI) with/without probenecid (1 g; OAT inhibitor) in healthy adults. RESULTS: Geometric mean ratios (RI/healthy matched controls) of area under the concentration-time curve from time 0 to infinity (AUC0-∞ ; 90% confidence interval) for REL, imipenem and cilastatin increased as RI increased from mild (1.6 [1.1, 2.4], 1.4 [1.1, 1.8] and 1.6 [1.0, 2.5], respectively) to severe (4.9 [3.4, 7.0], 2.5 [1.9, 3.3] and 5.6 [3.6, 8.6], respectively). For all 3 analytes, plasma and renal clearance decreased and corresponding plasma apparent terminal half-life increased with increasing RI. Geometric mean ratios ([probenecid+IMI/REL]/[IMI/REL]) of plasma exposure for REL and imipenem were 1.24 (1.19, 1.28) and 1.16 (1.13, 1.20), respectively. The dose fraction excreted (fe) in the urine decreased progressively from mild to severe RI. Probenecid reduced renal clearance of REL and imipenem by 25 and 31%, respectively. Compared with IMI/REL, coadministration of IMI/REL with probenecid yielded lower fe for REL and imipenem. In both studies, treatment was well tolerated; there were no serious adverse events or discontinuations due to adverse events. CONCLUSION: RI increased plasma exposure and similarly decreased clearance of REL, imipenem and cilastatin; IMI/REL dose adjustment (fixed-ratio) will be required for patients with RI. Probenecid had no clinically meaningful impact on the PK of REL or imipenem.


Subject(s)
Azabicyclo Compounds , Organic Anion Transporters , Renal Insufficiency , beta-Lactamase Inhibitors , Adult , Aged , Azabicyclo Compounds/pharmacokinetics , Cilastatin/adverse effects , Drug Combinations , Female , Humans , Imipenem/adverse effects , Male , Middle Aged , Renal Insufficiency/complications , Young Adult , beta-Lactamase Inhibitors/pharmacokinetics
17.
Article in English | MEDLINE | ID: mdl-31871076

ABSTRACT

The percentage of the time that the free drug concentration remains above a concentration threshold (%fT > concentration threshold) has frequently been identified to be the optimal pharmacokinetic (PK)-pharmacodynamic (PD) target of interest for tazobactam using in vitro infection models. Similar in vitro models suggested that an 85% fT > concentration threshold of 2 µg/ml for tazobactam is required to demonstrate a 2-log10-unit decrease in the number of CFU per milliliter from that at the baseline at 24 h for high-level ß-lactamase-producing Escherichia coli strains. The objective of this study was to characterize the tazobactam concentrations in a cohort of critically ill patients with Gram-negative bacterial infections, determine if traditional dosing regimens achieve a prespecified PK/PD target of an 80% fT > concentration threshold of 2 µg/ml, and propose alternative dosing regimens. Hospitalized critically ill adult patients receiving piperacillin-tazobactam (TZP) for a culture-positive Gram-negative bacterial infection were eligible to consent for study inclusion. Two blood samples were drawn, one during the midpoint of the dosing interval and one at the time of the trough concentration once the patient achieved PK steady state. A population PK model was developed using Phoenix NLME (v8.1) software to characterize the observed concentration-time profile of tazobactam, explore potential covariates to explain the variability in the clearance and volume parameters, and to simulate potential dosing regimens that would achieve the PK/PD target. The PK of tazobactam were adequately described by a one-compartment model with first-order elimination in 18 patients who provided consent. The final model incorporated creatinine clearance as a covariate on clearance. Simulations demonstrated target attainments of less than 50% for tazobactam using traditional dosing regimens (4/0.5 g over 30 min every 6 h). Target attainments of greater than 75% were achieved when using extended infusion times of 4 to 6 h or when administering TZP as a continuous infusion (16/2 g over 24 h). Traditional tazobactam dosing regimens fail to achieve conservative PK/PD targets in critically ill patients. Increases in the tazobactam dose or prolongation of the infusion rate may be warranted to achieve activity against ß-lactamase-producing Gram-negative bacteria.


Subject(s)
Critical Illness , Tazobactam/blood , Tazobactam/pharmacokinetics , Aged , Female , Humans , Male , Middle Aged , Piperacillin, Tazobactam Drug Combination/blood , Piperacillin, Tazobactam Drug Combination/pharmacokinetics , Prospective Studies , beta-Lactamase Inhibitors/blood , beta-Lactamase Inhibitors/pharmacokinetics
18.
Int J Infect Dis ; 89: 55-61, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31479762

ABSTRACT

OBJECTIVES: Relebactam is a small molecule ß-lactamase inhibitor under clinical investigation for use as a fixed-dose combination with imipenem/cilastatin. Here we present a translational pharmacokinetic/pharmacodynamic mathematical model to support optimal dose selection of relebactam. METHODS: Data derived from in vitro checkerboard and hollow fiber infection studies of imipenem-resistant strains of Pseudomonas aeruginosa were incorporated into the model. The model integrates the effect of relebactam concentration on imipenem susceptibility in a semi-mechanistic manner using the checkerboard data and characterizes the bacterial time-kill profiles from the hollow fiber infection model data. RESULTS: Simulations demonstrated that the ratio of the area under the concentration-time curve for free drug to the minimum inhibitory concentration (fAUC/MIC) was the pharmacokinetic driver for relebactam, with a target fAUC/MIC=7.5 associated with 2-log kill. At a clinical dose of 250mg relebactam, greater than 2-log reductions in bacterial load are projected for imipenem-resistant strains with an imipenem/relebactam MIC≤4µg/mL. CONCLUSIONS: The study confirms that the pharmacokinetic/pharmacodynamic driver for relebactam is fAUC/MIC, that an fAUC/MIC ratio of 7.5 is associated with 2-log kill in vitro, and that a 250mg clinical dose of relebactam achieves this target value when delivered in combination with imipenem/cilastatin.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Azabicyclo Compounds/pharmacokinetics , Imipenem/pharmacokinetics , Models, Theoretical , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , beta-Lactamase Inhibitors/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Azabicyclo Compounds/administration & dosage , Cilastatin/administration & dosage , Cilastatin/pharmacokinetics , Dose-Response Relationship, Drug , Drug Resistance, Bacterial , Humans , Imipenem/administration & dosage , Microbial Sensitivity Tests , Pseudomonas Infections/microbiology , beta-Lactamase Inhibitors/administration & dosage
19.
Expert Rev Anti Infect Ther ; 17(8): 571-582, 2019 08.
Article in English | MEDLINE | ID: mdl-31340665

ABSTRACT

Introduction: ß-lactamase production in Gram-negative bacteria is a leading cause of antimicrobial resistance. ß-lactamase inhibitors are therapeutic agents used in combination with a partner antimicrobial to overcome the production of these enzymes and restore antimicrobial activity. To address the ongoing threat of multi-drug resistant bacteria, a recent wave of ß-lactamase inhibitor development has occurred. Emphasis on the pharmacokinetics and pharmacodynamics of these agents is needed to optimize their clinical impact. Areas covered: This review will describe methods currently used to define the pharmacokinetics/pharmacodynamics of ß-lactamase inhibitors. Minimal focus will be on the structure and mechanism of ß-lactamase inhibitors. Emphasis will be placed on the use of specific thresholds to normalize ß-lactamase inhibitor exposure. In vitro and in vivo pharmacokinetic/pharmacodynamic data specific to FDA approved and pipeline ß-lactamase inhibitors will be explored. Expert opinion: Describing the exposure-response relationship of ß-lactamase inhibitors is an ongoing challenge due to the dynamic relationship of the ß-lactamase inhibitor with the active partner compound. Pharmacokinetic/pharmacodynamic indices and target exposures lack generalizability, as they are often specific to the infecting organism and/or ß-lactamase, rather than ß-lactamase inhibitor class. Selected dosage regimens of new agents should be validated via the use of population target attainment analyses.


Subject(s)
Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/drug therapy , beta-Lactamase Inhibitors/administration & dosage , Animals , Dose-Response Relationship, Drug , Drug Development , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria/enzymology , Gram-Negative Bacterial Infections/microbiology , Humans , beta-Lactamase Inhibitors/pharmacokinetics , beta-Lactamase Inhibitors/pharmacology
20.
Int J Antimicrob Agents ; 54(2): 240-244, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31108222

ABSTRACT

Urinary tract infections caused by multidrug-resistant Enterobacteriaceae are a growing burden worldwide. Recent studies of urinary pharmacokinetics described high piperacillin/tazobactam (TZP) concentrations in urine, but it is unknown whether this results in treatment efficacy. This study investigated the pharmacodynamics of TZP in a static in vitro model for Enterobacteriaceae to determine the concentration-effect relationship and ultimately the required free (unbound) time above the minimum inhibitory concentration (fT>MIC) required for bacterial killing. The static simulation model investigated TZP fT>MIC between 0% and 100%. Resistant Escherichia coli and Klebsiella pneumoniae isolates with piperacillin/tazobactam MICs of 4096/512, 1024/128 and 128/16 mg/L were investigated; two of the three organisms were carbapenemase-producers. Clinical efficacy was determined as a 3-log reduction over the dosing interval by comparing interval growth with controls. TZP was observed to exhibit time dependence for all organisms. The fT>MIC was determined to be 37.5%, 37.5% and 50% for MICs of 4096/512, 1024/128 and 128/16 mg/L, respectively. Linear regression identified the overall target to be 49.85 ± 16.9% fT>MIC. In conclusion, bactericidal activity against TZP-resistant Enterobacteriaceae occurred at 49.85 ± 16.9% fT>MIC. This suggests that highly resistant urinary organisms, including carbapenemase-producers, with MICs up to 4096/512 mg/L could be treated with TZP. Further investigations are required to elucidate urinary breakpoints and to explore the impact of different resistance mechanisms.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Drug Resistance, Bacterial , Escherichia coli/drug effects , Klebsiella pneumoniae/drug effects , Piperacillin, Tazobactam Drug Combination/pharmacokinetics , Urine/chemistry , beta-Lactamase Inhibitors/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Microbial Sensitivity Tests , Models, Theoretical , Piperacillin, Tazobactam Drug Combination/administration & dosage , beta-Lactamase Inhibitors/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...