Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Antimicrob Agents Chemother ; 68(8): e0172123, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38990013

ABSTRACT

The use of ß-lactam/ß-lactamase inhibitors constitutes an important strategy to counteract ß-lactamases in multidrug-resistant (MDR) Gram-negative bacteria. Recent reports have described ceftazidime-/avibactam-resistant isolates producing CTX-M variants with different amino acid substitutions (e.g., P167S, L169Q, and S130G). Relebactam (REL) combined with imipenem has proved very effective against Enterobacterales producing ESBLs, serine-carbapenemases, and AmpCs. Herein, we evaluated the inhibitory efficacy of REL against CTX-M-96, a CTX-M-15-type variant. The CTX-M-96 structure was obtained in complex with REL at 1.03 Å resolution (PDB 8EHH). REL was covalently bound to the S70-Oγ atom upon cleavage of the C7-N6 bond. Compared with apo CTX-M-96, binding of REL forces a slight displacement of the deacylating water inwards the active site (0.81 Å), making the E166 and N170 side chains shift to create a proper hydrogen bonding network. Binding of REL also disturbs the hydrophobic patch formed by Y105, P107, and Y129, likely due to the piperidine ring of REL that creates clashes with these residues. Also, a remarkable change in the positioning of the N104 sidechain is also affected by the piperidine ring. Therefore, differences in the kinetic behavior of REL against class A ß-lactamases seem to rely, at least in part, on differences in the residues being involved in the association and stabilization of the inhibitor before hydrolysis. Our data provide the biochemical and structural basis for REL effectiveness against CTX-M-producing Gram-negative pathogens and essential details for further DBO design. Imipenem/REL remains an important choice for dealing with isolates co-producing CTX-M with other ß-lactamases.


Subject(s)
Azabicyclo Compounds , beta-Lactamase Inhibitors , beta-Lactamases , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/chemistry , beta-Lactamases/genetics , beta-Lactamases/metabolism , beta-Lactamases/chemistry , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/chemistry , Crystallography, X-Ray , Anti-Bacterial Agents/pharmacology , Imipenem/pharmacology , Imipenem/chemistry , Ceftazidime/pharmacology , Microbial Sensitivity Tests , Catalytic Domain
2.
J Mol Recognit ; 37(5): e3100, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39014869

ABSTRACT

Metallo-ß-lactamases (MßLs) hydrolyze and inactivate ß-lactam antibiotics, are a pivotal mechanism conferring resistance against bacterial infections. SMB-1, a novel B3 subclass of MßLs from Serratia marcescens could deactivate almost all ß-lactam antibiotics including ampicillin (AMP), which has posed a serious threat to public health. To illuminate the mechanism of recognition and interaction between SMB-1 and AMP, various fluorescence spectroscopy techniques and molecular dynamics simulation were employed. The results of quenching spectroscopy unraveled that AMP could make SMB-1 fluorescence quenching that mechanism was the static quenching; the synchronous and three-dimensional fluorescence spectra validated that the microenvironment and conformation of SMB-1 were altered after interaction with AMP. The molecular dynamics results demonstrated that the whole AMP enters the binding pocket of SMB-1, even though with a relatively bulky R1 side chain. Loop1 and loop2 in SMB-1 undergo significant fluctuations, and α2 (71-73) and local α5 (186-188) were turned into random coils, promoting zinc ion exposure consistent with circular dichroism spectroscopy results. The binding between them was driven by a combination of enthalpy and entropy changes, which was dominated by electrostatic force in agreement with the fluorescence observations. The present study brings structural insights and solid foundations for the design of new substrates for ß-lactamases and the development of effective antibiotics that are resistant to superbugs.


Subject(s)
Ampicillin , Molecular Dynamics Simulation , Serratia marcescens , Spectrometry, Fluorescence , beta-Lactamases , beta-Lactamases/chemistry , beta-Lactamases/metabolism , Ampicillin/chemistry , Ampicillin/metabolism , Ampicillin/pharmacology , Serratia marcescens/enzymology , Protein Binding , Binding Sites , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism
3.
Int J Mol Sci ; 25(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39062934

ABSTRACT

Serine ß-lactamase TEM-1 is the first ß-lactamase discovered and is still common in Gram-negative pathogens resistant to ß-lactam antibiotics. It hydrolyzes penicillins and cephalosporins of early generations. Some of the emerging TEM-1 variants with one or several amino acid substitutions have even broader substrate specificity and resistance to known covalent inhibitors. Key amino acid substitutions affect catalytic properties of the enzyme, and secondary mutations accompany them. The occurrence of the secondary mutation M182T, called a "global suppressor", has almost doubled over the last decade. Therefore, we performed saturating mutagenesis at position 182 of TEM-1 to determine the influence of this single amino acid substitution on the catalytic properties, thermal stability, and ability for thermoreactivation. Steady-state parameters for penicillin, cephalothin, and ceftazidime are similar for all TEM-1 M182X variants, whereas melting temperature and ability to reactivate after incubation at a higher temperature vary significantly. The effects are multidirectional and depend on the particular amino acid at position 182. The M182E variant of ß-lactamase TEM-1 demonstrates the highest residual enzymatic activity, which is 1.5 times higher than for the wild-type enzyme. The 3D structure of the side chain of residue 182 is of particular importance as observed from the comparison of the M182I and M182L variants of TEM-1. Both of these amino acid residues have hydrophobic side chains of similar size, but their residual activity differs by three-fold. Molecular dynamic simulations add a mechanistic explanation for this phenomenon. The important structural element is the V159-R65-E177 triad that exists due to both electrostatic and hydrophobic interactions. Amino acid substitutions that disturb this triad lead to a decrease in the ability of the ß-lactamase to be reactivated.


Subject(s)
Amino Acid Substitution , Enzyme Stability , beta-Lactamases , beta-Lactamases/chemistry , beta-Lactamases/genetics , beta-Lactamases/metabolism , Methionine/chemistry , Methionine/metabolism , Methionine/genetics , Models, Molecular , Mutagenesis , Kinetics , Molecular Dynamics Simulation , Penicillins/chemistry , Penicillins/metabolism
4.
Nat Commun ; 15(1): 5141, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902262

ABSTRACT

A major challenge in protein design is to augment existing functional proteins with multiple property enhancements. Altering several properties likely necessitates numerous primary sequence changes, and novel methods are needed to accurately predict combinations of mutations that maintain or enhance function. Models of sequence co-variation (e.g., EVcouplings), which leverage extensive information about various protein properties and activities from homologous protein sequences, have proven effective for many applications including structure determination and mutation effect prediction. We apply EVcouplings to computationally design variants of the model protein TEM-1 ß-lactamase. Nearly all the 14 experimentally characterized designs were functional, including one with 84 mutations from the nearest natural homolog. The designs also had large increases in thermostability, increased activity on multiple substrates, and nearly identical structure to the wild type enzyme. This study highlights the efficacy of evolutionary models in guiding large sequence alterations to generate functional diversity for protein design applications.


Subject(s)
Evolution, Molecular , Mutation , Protein Engineering , beta-Lactamases , beta-Lactamases/genetics , beta-Lactamases/metabolism , beta-Lactamases/chemistry , Protein Engineering/methods , Models, Molecular , Amino Acid Sequence , Enzyme Stability , Protein Conformation
5.
STAR Protoc ; 5(2): 103088, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38787728

ABSTRACT

OXCT1 acts as a succinyltransferase to promote serine beta-lactamase-like protein (LACTB) K284 succinylation. Here, we present a protocol for detecting OXCT1-mediated LACTB succinylation levels and sites. We describe steps for using western blotting (WB) and mass spectrometry to determine OXCT1-mediated LACTB succinylation levels and sites in vitro. This protocol can be applied to detect and identify succinylation levels and sites on other proteins. For complete details on the use and execution of this protocol, please refer to Ma et al.1.


Subject(s)
beta-Lactamases , beta-Lactamases/metabolism , beta-Lactamases/chemistry , Blotting, Western/methods , Mass Spectrometry/methods , Succinic Acid/metabolism , Succinic Acid/chemistry , Protein Processing, Post-Translational
6.
J Mol Biol ; 436(12): 168603, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38729259

ABSTRACT

OXA-66 is a member of the OXA-51 subfamily of class D ß-lactamases native to the Acinetobacter genus that includes Acinetobacter baumannii, one of the ESKAPE pathogens and a major cause of drug-resistant nosocomial infections. Although both wild type OXA-66 and OXA-51 have low catalytic activity, they are ubiquitous in the Acinetobacter genomes. OXA-51 is also remarkably thermostable. In addition, newly emerging, single and double amino acid variants show increased activity against carbapenems, indicating that the OXA-51 subfamily is growing and gaining clinical significance. In this study, we used molecular dynamics simulations, X-ray crystallography, and thermal denaturation data to examine and compare the dynamics of OXA-66 wt and its gain-of-function variants: I129L (OXA-83), L167V (OXA-82), P130Q (OXA-109), P130A, and W222L (OXA-234). Our data indicate that OXA-66 wt also has a high melting temperature, and its remarkable stability is due to an extensive and rigid hydrophobic bridge formed by a number of residues around the active site and harbored by the three loops, P, Ω, and ß5-ß6. Compared to the WT enzyme, the mutants exhibit higher flexibility only in the loop regions, and are more stable than other robust carbapenemases, such as OXA-23 and OXA-24/40. All the mutants show increased rotational flexibility of residues I129 and W222, which allows carbapenems to bind. Overall, our data support the hypothesis that structural features in OXA-51 and OXA-66 promote evolution of multiple highly stable variants with increased clinical relevance in A. baumannii.


Subject(s)
Acinetobacter baumannii , Molecular Dynamics Simulation , beta-Lactamases , Acinetobacter baumannii/genetics , Acinetobacter baumannii/enzymology , beta-Lactamases/chemistry , beta-Lactamases/genetics , beta-Lactamases/metabolism , Crystallography, X-Ray , Enzyme Stability , Protein Conformation , Carbapenems/pharmacology , Carbapenems/metabolism , Evolution, Molecular , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain
7.
Biochemistry ; 63(10): 1278-1286, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38690676

ABSTRACT

Metallo-ß-lactamases (MBL) deactivate ß-lactam antibiotics through a catalytic reaction caused by two zinc ions at the active center. Since MBLs deteriorate a wide range of antibiotics, they are dangerous factors for bacterial multidrug resistance. In this work, organic synthesis, computational design, and crystal structure analysis were performed to obtain potent MBL inhibitors based on a previously identified hit compound. The hit compound comprised 3,4-dihydro-2(1H)-quinolinone linked with a phenyl-ether-methyl group via a thiazole ring. In the first step, the thiazole ring was replaced with a tertiary amine to avoid the planar structure. In the second step, we virtually modified the compound by keeping the quinolinone backbone. Every modified compound was bound to a kind of MBL, imipenemase-1 (IMP-1), and the binding pose was optimized by a molecular mechanics calculation. The binding scores were evaluated for the respective optimized binding poses. Given the predicted binding poses and calculated binding scores, candidate compounds were determined for organic syntheses. The inhibitory activities of the synthesized compounds were measured by an in vitro assay for two kinds of MBLs, IMP-1 and New Delhi metallo-ß-lactamase (NDM-1). A quinolinone connected with an amine bound with methyl-phenyl-ether-propyl and cyclohexyl-ethyl showed a 50% inhibitory concentration of 4.8 µM. An X-ray crystal analysis clarified the binding structure of a synthesized compound to IMP-1. The δ-lactam ring of quinolinone was hydrolyzed, and the generated carboxyl group was coordinated with zinc ions. The findings on the chemical structure and binding pose are expected to be a base for developing MBL inhibitors.


Subject(s)
beta-Lactamase Inhibitors , beta-Lactamases , beta-Lactamases/chemistry , beta-Lactamases/metabolism , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/chemistry , Crystallography, X-Ray , Drug Design , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Quinolones/chemistry , Quinolones/pharmacology , Quinolones/metabolism
8.
Sci Rep ; 14(1): 10066, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698009

ABSTRACT

The global threat of antibiotic resistance has increased the importance of the detection of antibiotics. Conventional methods to detect antibiotics are time-consuming and require expensive specialized equipment. Here, we present a simple and rapid biosensor for detecting ampicillin, a commonly used antibiotic. Our method is based on the fluorescent properties of chitosan-coated Mn-doped ZnS micromaterials combined with the ß-lactamase enzyme. The biosensors exhibited the highest sensitivity in a linear working range of 13.1-72.2 pM with a limit of detection of 8.24 pM in deionized water. In addition, due to the biological specificity of ß-lactamase, the proposed sensors have demonstrated high selectivity over penicillin, tetracycline, and glucose through the enhancing and quenching effects at wavelengths of 510 nm and 614 nm, respectively. These proposed sensors also showed promising results when tested in various matrices, including tap water, bottled water, and milk. Our work reports for the first time the cost-effective (Mn:ZnS)Chitosan micromaterial was used for ampicillin detection. The results will facilitate the monitoring of antibiotics in clinical and environmental contexts.


Subject(s)
Ampicillin , Biosensing Techniques , Chitosan , Manganese , Sulfides , Zinc Compounds , Ampicillin/analysis , Ampicillin/chemistry , Chitosan/chemistry , Biosensing Techniques/methods , Zinc Compounds/chemistry , Manganese/chemistry , Sulfides/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , beta-Lactamases/analysis , beta-Lactamases/metabolism , beta-Lactamases/chemistry , Milk/chemistry , Limit of Detection , Spectrometry, Fluorescence/methods , Fluorescent Dyes/chemistry , Animals
9.
Dalton Trans ; 53(23): 9979-9994, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38812408

ABSTRACT

Herein, we present a dark-green crystalline tetranuclear Cu(II) Schiff base complex {C1 = [Cu4L4](ClO4)4(DMF)4(H2O)} using a N,N,O donor ligand (HL), namely 2-(((2-hydroxypropyl)imino)methyl)-6-methoxyphenol. Spectro-photometrical investigation on the ß-lactamase-like activity of this coordinately saturated system revealed its catalytic inefficiency towards hydrolysis of nitrocefin as a model substrate. This complex has attracted significant interest as a promising photo-catalyst owing to its narrow band gap (2.40 eV) as predicted from DFT calculations and its higher responsivity towards UV light. Therefore, C1 is effectively involved in the photocatalytic reduction of perchlorate to Cl- in the presence of a hole scavenger (H2O-MeOH) under prolonged UV irradiation and itself becomes photo-cleaved to yield a new dark-brown colored chlorobridged dinuclear crystalline complex C2 {[CuL(H2O)2Cl3]H2O}. Furthermore, C2 was deployed as a functional ß-lactamase model and was found to show a remarkable catalytic proficiency towards the hydrolysis of nitrocefin in 70 : 30 (V/V) MeOH-H2O medium. This pro-catalyst C2 has been speculated to generate an aqua bridged active catalyst that plays a crucial factor in hydrolysis. This phenomenon was again experimentally established by potentiometric pH titration where C2 displays only one pKa value (7.11) in the basic pH range, indicating the deprotonation of the bridged water molecule. Based on several other kinetic studies, it may be postulated that the hydrolysis of nitrocefin is initiated by the nucleophilic attack of a bridging hydroxide, followed by very fast protonation of the intermediate to furnish the hydrolyzed product. It is noteworthy that the rate of nitrocefin hydrolysis is greatly inhibited in the presence of external chloride concentration. To the best of our knowledge, this is the first report on the photochemical behavior of such a tetranuclear copper(II) Schiff base complex. Our current interest is focused on inventing a potent ß-lactamase inhibitory therapeutic as well as elucidating its mechanism through comprehensive chemical analysis.


Subject(s)
Coordination Complexes , Copper , Density Functional Theory , Photochemical Processes , Ultraviolet Rays , beta-Lactamases , Copper/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , beta-Lactamases/metabolism , beta-Lactamases/chemistry , beta-Lactamase Inhibitors/chemistry , beta-Lactamase Inhibitors/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Hydrolysis , Drug Resistance, Microbial , Molecular Structure
10.
Int J Biol Macromol ; 271(Pt 1): 132395, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761915

ABSTRACT

In this present study, characteristics and structure-function relationship of an organophosphate-degrading enzyme from Bacillus sp. S3wahi were described. S3wahi metallohydrolase, designated as S3wahi-MH (probable metallohydrolase YqjP), featured the conserved αß/ßα metallo-ß-lactamase-fold (MBL-fold) domain and a zinc bimetal at its catalytic site. The metal binding site of S3wahi-MH also preserves the H-X-H-X-D-H motif, consisting of specific amino acids at Zn1 (Asp69, His70, Asp182, and His230) and Zn2 (His65, His67, and His137). The multifunctionality of S3wahi-MH was demonstrated through a steady-state kinetic study, revealing its highest binding affinity (KM) and catalytic efficiency (kcat/KM) for OP compound, paraoxon, with values of 8.09 × 10-6 M and 4.94 × 105 M-1 s-1, respectively. Using OP compound, paraoxon, as S3wahi-MH native substrate, S3wahi-MH exhibited remarkable stability over a broad temperature range, 20 °C - 60 °C and a broad pH tolerance, pH 6-10. Corresponded to S3wahi-MH thermal stability characterization, the estimated melting temperature (Tm) was found to be 72.12 °C. S3wahi-MH was also characterized with optimum catalytic activity at 30 °C and pH 8. Additionally, the activity of purified S3wahi-MH was greatly enhanced in the presence of 1 mM and 5 mM of manganese (Mn2+), showing relative activities of 1323.68 % and 2073.68 %, respectively. The activity of S3wahi-MH was also enhanced in the presence of DMSO and DMF, showing relative activities of 270.37 % and 307.41 %, respectively. The purified S3wahi-MH retained >60 % residual activity after exposure to non-ionic Tween series surfactants. Nevertheless, the catalytic activity of S3wahi-MH was severely impacted by the treatment of SDS, even at low concentrations. Considering its enzymatic properties and promiscuity, S3wahi-MH emerges as a promising candidate as a bioremediation tool in wide industrial applications, including agriculture industry.


Subject(s)
Bacillus , beta-Lactamases , Bacillus/enzymology , beta-Lactamases/chemistry , beta-Lactamases/metabolism , Kinetics , Substrate Specificity , Enzyme Stability , Hydrogen-Ion Concentration , Catalytic Domain , Amino Acid Sequence , Organophosphates/metabolism , Organophosphates/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Temperature
11.
Biochem Biophys Res Commun ; 720: 150102, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38759302

ABSTRACT

The emergence of drug-resistant bacteria, facilitated by metallo-beta-lactamases (MBLs), presents a significant obstacle to the effective use of antibiotics in the management of clinical drug-resistant bacterial infections. AFM-1 is a MBL derived from Alcaligenes faecalis and shares 86% homology with the NDM-1 family. Both AFM-1 and NDM-1 demonstrate the ability to hydrolyze ampicillin and other ß-lactam antibiotics, however, their substrate affinities vary, and the specific reason for this variation remains unknown. We present the high-resolution structure of AFM-1. The active center of AFM-1 binds two zinc ions, and the conformation of the key amino acid residues in the active center is in accordance with that of NDM-1. However, the substrate-binding pocket of AFM-1 is considerably smaller than that of NDM-1. Additionally, the mutation of amino acid residues in the Loop3 region, as compared to NDM-1, results in the formation of a dense hydrophobic patch comprised of hydrophobic amino acid residues in this area, which facilitates substrate binding. Our findings lay the foundation for understanding the molecular mechanism of AFM-1 with a high affinity for substrates and provide a novel theoretical foundation for addressing the issue of drug resistance caused by B1 MBLs.


Subject(s)
Models, Molecular , beta-Lactamases , beta-Lactamases/chemistry , beta-Lactamases/metabolism , beta-Lactamases/ultrastructure , beta-Lactamases/genetics , Alcaligenes faecalis/enzymology , Alcaligenes faecalis/chemistry , Protein Conformation , Zinc/chemistry , Zinc/metabolism , Crystallography, X-Ray , Catalytic Domain , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Amino Acid Sequence , Binding Sites
12.
BMC Genomics ; 25(1): 508, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778284

ABSTRACT

BACKGROUND: Enzymatic degradation mediated by beta-lactamases constitutes one of the primary mechanisms of resistance to beta-lactam antibiotics in gram-negative bacteria. This enzyme family comprises four molecular classes, categorized into serine beta-lactamases (Classes A, C, and D) and zinc-dependent metallo-beta-lactamases (Class B). Gram-negative bacteria producing beta-lactamase are of significant concern, particularly due to their prevalence in nosocomial infections. A comprehensive understanding of the evolution and dissemination of this enzyme family is essential for effective control of these pathogens. In this study, we conducted the prospecting, phylogenetic analysis, and in silico analysis of beta-lactamases and homologous proteins identified in 1827 bacterial genomes with phenotypic data on beta-lactam resistance. These genomes were distributed among Klebsiella pneumoniae (45%), Acinetobacter baumannii (31%), Pseudomonas aeruginosa (14%), Escherichia coli (6%), and Enterobacter spp. (4%). Using an HMM profile and searching for conserved domains, we mined 2514, 8733, 5424, and 2957 proteins for molecular classes A, B, C, and D, respectively. This set of proteins encompasses canonical subfamilies of beta-lactamases as well as hypothetical proteins and other functional groups. Canonical beta-lactamases were found to be phylogenetically distant from hypothetical proteins, which, in turn, are closer to other representatives of the penicillin-binding-protein (PBP-like) and metallo-beta-lactamase (MBL) families. The catalytic amino acid residues characteristic of beta-lactamases were identified from the sequence alignment and revealed that motifs are less conserved in homologous groups than in beta-lactamases. After comparing the frequency of protein groups in genomes of resistant strains with those of sensitive ones applying Fisher's exact test and relative risk, it was observed that some groups of homologous proteins to classes B and C are more common in the genomes of resistant strains, particularly to carbapenems. We identified the beta-lactamase-like domain widely distributed in gram-negative species of the ESKAPEE group, which highlights its importance in the context of beta-lactam resistance. Some hypothetical homologous proteins have been shown to potentially possess promiscuous activity against beta-lactam antibiotics, however, they do not appear to expressly determine the resistance phenotype. The selective pressure due to the widespread use of antibiotics may favor the optimization of these functions for specialized resistance enzymes.


Subject(s)
Gram-Negative Bacteria , Phylogeny , beta-Lactamases , beta-Lactamases/metabolism , beta-Lactamases/genetics , beta-Lactamases/chemistry , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , beta-Lactams/pharmacology , beta-Lactams/metabolism , Anti-Bacterial Agents/pharmacology , Genome, Bacterial , beta-Lactam Resistance/genetics , beta Lactam Antibiotics
13.
Bioconjug Chem ; 35(6): 750-757, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38815180

ABSTRACT

Site-specific installation of non-natural functionality onto proteins has enabled countless applications in biotechnology, chemical biology, and biomaterials science. Though the N-terminus is an attractive derivatization location, prior methodologies targeting this site have suffered from low selectivity, a limited selection of potential chemical modifications, and/or challenges associated with divergent protein purification/modification steps. In this work, we harness the atypically split VidaL intein to simultaneously N-functionalize and purify homogeneous protein populations in a single step. Our method─referred to as VidaL-tagged expression and protein ligation (VEPL)─enables modular and scalable production of N-terminally modified proteins with native bioactivity. Demonstrating its flexibility and ease of use, we employ VEPL to combinatorially install 4 distinct (multi)functional handles (e.g., biotin, alkyne, fluorophores) to the N-terminus of 4 proteins that span three different classes: fluorescent (Enhanced Green Fluorescent Protein, mCherry), enzymatic (ß-lactamase), and growth factor (epidermal growth factor). Moving forward, we anticipate that VEPL's ability to rapidly generate and isolate N-modified proteins will prove useful across the growing fields of applied chemical biology.


Subject(s)
Inteins , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , beta-Lactamases/metabolism , beta-Lactamases/chemistry , Luminescent Proteins/chemistry , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/chemistry , Red Fluorescent Protein , Proteins/chemistry
14.
J Infect Public Health ; 17(6): 1108-1116, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714123

ABSTRACT

BACKGROUND: New Delhi metallo-beta-lactamase-1 (NDM1) confers resistance to several bacterial species against a broad range of beta-lactam antibiotics and turning them into superbugs that pose a significant threat to healthcare systems worldwide. As such, it is a potentially relevant biological target for counteracting bacterial infections. Given the lack of effective treatment options against NDM1 producing bacteria, finding a reliable inhibitor for the NDM1 enzyme is crucial. METHODS: Using molecular dynamics simulations, the binding selectivities and affinities of three ligands, viz. PNK, 3S0, and N1G were investigated against NDM1. RESULTS: The results indicate that N1G binds with more affinity to NDM1 than PNK and 3S0. The binding energy decomposition analysis revealed that residues I35, W93, H189, K211, and N220 showed significant binding energies with PNK, 3S0, and N1G, and hence are crucially involved in the binding of the ligands to NDM1. Molecular dynamics trajectory analysis further elicited that the ligands influence dynamic flexibility of NDM1 morphology, which contributes to the partial selectivities of PNK, 3S0, and N1G. CONCLUSIONS: This in silico study offers a vital information for developing potential NDM1 inhibitors with high selectivity. Nevertheless, in vitro and in vivo experimental validation is mandated to extend the possible applications of these ligands as NDM1 inhibitors that succor in combating antimicrobial resistance.


Subject(s)
Molecular Dynamics Simulation , beta-Lactamase Inhibitors , beta-Lactamases , beta-Lactamases/metabolism , beta-Lactamases/chemistry , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Protein Binding , Drug Resistance, Bacterial , Ligands
15.
J Chem Inf Model ; 64(10): 3977-3991, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38727192

ABSTRACT

The worldwide spread of the metallo-ß-lactamases (MBL), especially New Delhi metallo-ß-lactamase-1 (NDM-1), is threatening the efficacy of ß-lactams, which are the most potent and prescribed class of antibiotics in the clinic. Currently, FDA-approved MBL inhibitors are lacking in the clinic even though many strategies have been used in inhibitor development, including quantitative high-throughput screening (qHTS), fragment-based drug discovery (FBDD), and molecular docking. Herein, a machine learning-based prediction tool is described, which was generated using results from HTS of a large chemical library and previously published inhibition data. The prediction tool was then used for virtual screening of the NIH Genesis library, which was subsequently screened using qHTS. A novel MBL inhibitor was identified and shown to lower minimum inhibitory concentrations (MICs) of Meropenem for a panel of E. coli and K. pneumoniae clinical isolates expressing NDM-1. The mechanism of inhibition of this novel scaffold was probed utilizing equilibrium dialyses with metal analyses, native state electrospray ionization mass spectrometry, UV-vis spectrophotometry, and molecular docking. The uncovered inhibitor, compound 72922413, was shown to be 9-hydroxy-3-[(5-hydroxy-1-oxa-9-azaspiro[5.5]undec-9-yl)carbonyl]-4H-pyrido[1,2-a]pyrimidin-4-one.


Subject(s)
Machine Learning , Microbial Sensitivity Tests , Molecular Docking Simulation , beta-Lactamase Inhibitors , beta-Lactamases , beta-Lactamases/metabolism , beta-Lactamases/chemistry , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/chemistry , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Escherichia coli/drug effects , Escherichia coli/enzymology , High-Throughput Screening Assays
16.
J Chem Theory Comput ; 20(8): 3335-3348, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38563746

ABSTRACT

Protein-protein interactions mediate most molecular processes in the cell, offering a significant opportunity to expand the set of known druggable targets. Unfortunately, targeting these interactions can be challenging due to their typically flat and featureless interaction surfaces, which often change as the complex forms. Such surface changes may reveal hidden (cryptic) druggable pockets. Here, we analyze a set of well-characterized protein-protein interactions harboring cryptic pockets and investigate the predictive power of current computational methods. Based on our observations, we developed a new computational strategy, SWISH-X (SWISH Expanded), which combines the established cryptic pocket identification capabilities of SWISH with the rapid temperature range exploration of OPES MultiThermal. SWISH-X is able to reliably identify cryptic pockets at protein-protein interfaces while retaining its predictive power for revealing cryptic pockets in isolated proteins, such as TEM-1 ß-lactamase.


Subject(s)
Proteins , beta-Lactamases , beta-Lactamases/chemistry , beta-Lactamases/metabolism , Proteins/chemistry , Proteins/metabolism , Protein Binding , Binding Sites , Molecular Dynamics Simulation
17.
J Chem Inf Model ; 64(9): 3706-3717, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38687957

ABSTRACT

L2 ß-lactamases, serine-based class A ß-lactamases expressed by Stenotrophomonas maltophilia, play a pivotal role in antimicrobial resistance (AMR). However, limited studies have been conducted on these important enzymes. To understand the coevolutionary dynamics of L2 ß-lactamase, innovative computational methodologies, including adaptive sampling molecular dynamics simulations, and deep learning methods (convolutional variational autoencoders and BindSiteS-CNN) explored conformational changes and correlations within the L2 ß-lactamase family together with other representative class A enzymes including SME-1 and KPC-2. This work also investigated the potential role of hydrophobic nodes and binding site residues in facilitating the functional mechanisms. The convergence of analytical approaches utilized in this effort yielded comprehensive insights into the dynamic behavior of the ß-lactamases, specifically from an evolutionary standpoint. In addition, this analysis presents a promising approach for understanding how the class A ß-lactamases evolve in response to environmental pressure and establishes a theoretical foundation for forthcoming endeavors in drug development aimed at combating AMR.


Subject(s)
Deep Learning , Molecular Dynamics Simulation , beta-Lactamases , beta-Lactamases/metabolism , beta-Lactamases/chemistry , Evolution, Molecular , Protein Conformation , Stenotrophomonas maltophilia/enzymology
18.
J Magn Reson ; 362: 107689, 2024 May.
Article in English | MEDLINE | ID: mdl-38677224

ABSTRACT

ß-Lactamases (EC 3.5.2.6) confer resistance against ß-lactam group-containing antibiotics in bacteria and higher eukaryotes, including humans. Pathogenic bacterial resistance against ß-lactam antibiotics is a primary concern for potential therapeutic developments and drug targets. Here, we report putative ß-lactamase activity, sulbactam binding (a ß-lactam analogue) in the low µM affinity range, and site-specific interaction studies of a 14 kDa UV- and dark-inducible protein (abbreviated as UVI31+, a BolA homologue) from Chlamydomonas reinhartii. Intriguingly, the solution NMR structure of UVI31 + bears no resemblance to other known ß-lactamases; however, the sulbactam binding is found at two sites rich in positively charged residues, mainly at the L2 loop regions and the N-terminus. Using NMR spectroscopy, ITC and MD simulations, we map the ligand binding sites in UVI31 + providing atomic-level insights into its ß-lactamase activity. Current study is the first report on ß-lactamase activity of UVI31+, a BolA analogue, from C. reinhartii. Furthermore, our mutation studies reveal that the active site serine-55 is crucial for ß-lactamase activity.


Subject(s)
Chlamydomonas reinhardtii , beta-Lactamases , Chlamydomonas reinhardtii/enzymology , beta-Lactamases/chemistry , beta-Lactamases/metabolism , Binding Sites , Nuclear Magnetic Resonance, Biomolecular/methods , Sulbactam/chemistry , Sulbactam/pharmacology , Magnetic Resonance Spectroscopy/methods , Molecular Dynamics Simulation , Amino Acid Sequence , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Binding
19.
Biosens Bioelectron ; 257: 116300, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38657378

ABSTRACT

Developing simple, inexpensive, fast, sensitive, and specific probes for antibiotic-resistant bacteria is crucial for the management of urinary tract infections (UTIs). We here propose a paper-based sensor for the rapid detection of ß-lactamase-producing bacteria in the urine samples of UTI patients. By conjugating a strongly electronegative group -N+(CH3)3 with the core structures of cephalosporin and carbapenem antibiotics, two visual probes were achieved to respectively target the extended-spectrum/AmpC ß-lactamases (ESBL/AmpC) and carbapenemase, the two most prevalent factors causing antibiotic resistance. By integrating these probes into a portable paper sensor, we confirmed 10 and 8 cases out of 30 clinical urine samples as ESBL/AmpC- and carbapenemase-positive, respectively, demonstrating 100% clinical sensitivity and specificity. This paper sensor can be easily conducted on-site, without resorting to bacterial culture, providing a solution to the challenge of rapid detection of ß-lactamase-producing bacteria, particularly in resource-limited settings.


Subject(s)
Biosensing Techniques , Paper , Urinary Tract Infections , beta-Lactamases , beta-Lactamases/metabolism , beta-Lactamases/chemistry , Humans , Urinary Tract Infections/microbiology , Urinary Tract Infections/diagnosis , Biosensing Techniques/methods , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Bacterial Proteins , Bacteria/isolation & purification , Bacteria/enzymology , Cephalosporins/chemistry , Carbapenems/pharmacology
20.
ACS Infect Dis ; 10(5): 1767-1779, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38619138

ABSTRACT

Peptidoglycan synthesis is an underutilized drug target in Mycobacterium tuberculosis (Mtb). Diazabicyclooctanes (DBOs) are a class of broad-spectrum ß-lactamase inhibitors that also inhibit certain peptidoglycan transpeptidases that are important in mycobacterial cell wall synthesis. We evaluated the DBO durlobactam as an inhibitor of BlaC, the Mtb ß-lactamase, and multiple Mtb peptidoglycan transpeptidases (PonA1, LdtMt1, LdtMt2, LdtMt3, and LdtMt5). Timed electrospray ionization mass spectrometry (ESI-MS) captured acyl-enzyme complexes with BlaC and all transpeptidases except LdtMt5. Inhibition kinetics demonstrated durlobactam was a potent and efficient DBO inhibitor of BlaC (KI app 9.2 ± 0.9 µM, k2/K 5600 ± 560 M-1 s-1) and similar to clavulanate (KI app 3.3 ± 0.6 µM, k2/K 8400 ± 840 M-1 s-1); however, durlobactam had a lower turnover number (tn = kcat/kinact) than clavulanate (1 and 8, respectively). KI app values with durlobactam and clavulanate were similar for peptidoglycan transpeptidases, but ESI-MS captured durlobactam complexes at more time points. Molecular docking and simulation demonstrated several productive interactions of durlobactam in the active sites of BlaC, PonA1, and LdtMt2. Antibiotic susceptibility testing was conducted on 11 Mtb isolates with amoxicillin, ceftriaxone, meropenem, imipenem, clavulanate, and durlobactam. Durlobactam had a minimum inhibitory concentration (MIC) range of 0.5-16 µg/mL, similar to the ranges for meropenem (1-32 µg/mL) and imipenem (0.5-64 µg/mL). In ß-lactam + durlobactam combinations (1:1 mass/volume), MICs were lowered 4- to 64-fold for all isolates except one with meropenem-durlobactam. This work supports further exploration of novel ß-lactamase inhibitors that target BlaC and Mtb peptidoglycan transpeptidases.


Subject(s)
Aminoacyltransferases , Antitubercular Agents , Mycobacterium tuberculosis , beta-Lactamase Inhibitors , beta-Lactamases , Aminoacyltransferases/antagonists & inhibitors , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/chemistry , beta-Lactamases/metabolism , beta-Lactamases/chemistry , Kinetics , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL