Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Int J Med Sci ; 21(8): 1472-1490, 2024.
Article in English | MEDLINE | ID: mdl-38903914

ABSTRACT

Synuclein family members (Snca, Sncb, and Scng) are expressed in the retina, but their precise locations and roles are poorly understood. We performed an extensive analysis of the single-cell transcriptome in healthy and injured retinas to investigate their expression patterns and roles. We observed the expression of all synuclein family members in retinal ganglion cells (RGCs), which remained consistent across species (human, mouse, and chicken). We unveiled differential expression of Snca across distinct clusters (highly expressed in most), while Sncb and Sncg displayed uniform expression across all clusters. Further, we observed a decreased expression in RGCs following traumatic axonal injury. However, the proportion of α-Syn-positive RGCs in all RGCs and α-Syn-positive intrinsically photosensitive retinal ganglion cells (ipRGCs) in all ipRGCs remained unaltered. Lastly, we identified changes in communication patterns preceding cell death, with particular significance in the pleiotrophin-nucleolin (Ptn-Ncl) and neural cell adhesion molecule signaling pathways, where communication differences were pronounced between cells with varying expression levels of Snca. Our study employs an innovative approach using scRNA-seq to characterize synuclein expression in health retinal cells, specifically focusing on RGC subtypes, advances our knowledge of retinal physiology and pathology.


Subject(s)
Retinal Ganglion Cells , alpha-Synuclein , gamma-Synuclein , Animals , Retinal Ganglion Cells/metabolism , Humans , Mice , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , gamma-Synuclein/genetics , gamma-Synuclein/metabolism , beta-Synuclein/genetics , beta-Synuclein/metabolism , Chickens/genetics , Transcriptome , Single-Cell Analysis , Retina/metabolism , Retina/cytology , Neoplasm Proteins
2.
ACS Chem Neurosci ; 15(13): 2445-2453, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38905183

ABSTRACT

Parkinson's disease (PD) is the second most common age-related neurodegenerative disease in the world, and synuclein is closely related to the onset and progression of PD. Synuclein is considered a therapeutic target for PD. Recent studies have found that abnormal aggregation of α-synuclein (α-Syn) in the brains of PD patients leads to mitochondrial dysfunction and neuroinflammation. Research in the field of neuroscience has confirmed that ß-synuclein (ß-Syn) also plays a role in Parkinson's disease. However, there has been little research on the role mechanisms and interactions between ß-Syn and α-Syn in PD. Therefore, the purpose of this study is to clarify the relationship between α-Syn, ß-Syn, and PD and to explore the roles and interactions of ß-Syn and α-Syn in PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , beta-Synuclein , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Humans , beta-Synuclein/metabolism , Animals , Brain/metabolism
3.
Neurosci Lett ; 833: 137826, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38768940

ABSTRACT

Synucleins are pivotal in neurodegenerative conditions. Beta-synuclein (ß-synuclein) is part of the synuclein protein family alongside alpha-synuclein (α-synuclein) and gamma-synuclein (γ-synuclein). These proteins, found mainly in brain tissue and cancers, are soluble and unstructured. ß-synuclein shares significant similarity with α-synuclein, especially in their N-terminus, with a 90% match. However, their aggregation tendencies differ significantly. While α-synuclein aggregation is believed to be counteracted by ß-synuclein, which occurs in conditions like Parkinson's disease, ß-synuclein may counteract α-synuclein's toxic effects on the nervous system, offering potential treatment for neurodegenerative diseases. Under normal circumstances, ß-synuclein may guard against disease by interacting with α-synuclein. Yet, in pathological environments with heightened levels or toxic substances, it might contribute to disease. Our research aims to explore potential harmful mutations in the ß-synuclein using computational tools to predict their destabilizing impact on protein structure. Consensus analysis revealed rs1207608813 (A63P), rs1340051870 (S72F), and rs1581178262 (G36C) as deleterious. These findings highlight the intricate relationship between nsSNPs and protein function, shedding light on their potential implications in disease pathways. Understanding the structural consequences of nsSNPs is crucial for elucidating their role in pathogenesis and developing targeted therapeutic interventions. Our results offer a robust computational framework for identifying neurodegenerative disorder-related mutations from SNP datasets, potentially reducing the costs associated with experimental characterization.


Subject(s)
Polymorphism, Single Nucleotide , beta-Synuclein , beta-Synuclein/genetics , beta-Synuclein/metabolism , beta-Synuclein/chemistry , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Genetic Predisposition to Disease , Mutation , Protein Conformation
4.
Brain Struct Funct ; 229(5): 1279-1298, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703218

ABSTRACT

ß-synuclein, a member of the synuclein family, is frequently co-expressed with α-synuclein in the neural system, where it serves to inhibit abnormal aggregation of α-synuclein in neurodegenerative diseases. Beyond its role in pathological conditions, ß-synuclein plays various functions independently of α-synuclein. In our investigation, we discovered a broader expression of ß-synuclein in the mouse retina compared to α-synuclein. This widespread pattern implies its potential significance in the retina. Through detailed examination via light- and electron-microscopic immunocytochemistry, we identified ß-synuclein expression from the inner segment (IS) and outer segment (OS) of photoreceptor cells to the ganglion cell layer (GCL). Our findings unveiled unique features, including ß-synuclein immunoreactive IS and OS of cones, higher expression in cone pedicles than in rod spherules, absence in horizontal cells, limited expression in cone bipolar dendrites and somas, higher expression in cone bipolar terminals, presence in most amacrine cells, and expression in almost majority of somas in GCL with an absence in intrinsically photosensitive retinal ganglion cell (ipRGCs) processes. Notably, all cholinergic amacrine cells express high ß- but not α-synuclein, while dopaminergic amacrine cells express α-synuclein exclusively. These distinctive expression patterns offer valuable insights for further exploration into the functions of ß-synuclein and its potential role in synuclein pathology within the retina.


Subject(s)
Mice, Inbred C57BL , Retina , Retinal Ganglion Cells , alpha-Synuclein , beta-Synuclein , Animals , Male , Mice , alpha-Synuclein/metabolism , Amacrine Cells/metabolism , beta-Synuclein/metabolism , Retina/metabolism , Retinal Bipolar Cells/metabolism , Retinal Ganglion Cells/metabolism
5.
Int J Mol Sci ; 25(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542197

ABSTRACT

Synucleins are a family of proteins consisting of α, ß, and γ synuclein (syn) [...].


Subject(s)
alpha-Synuclein , beta-Synuclein , alpha-Synuclein/metabolism , beta-Synuclein/metabolism , gamma-Synuclein/metabolism
6.
Cells ; 12(4)2023 02 10.
Article in English | MEDLINE | ID: mdl-36831238

ABSTRACT

Neuron-to-neuron transfer of pathogenic α-synuclein species is a mechanism of likely relevance to Parkinson's disease development. Experimentally, interneuronal α-synuclein spreading from the low brainstem toward higher brain regions can be reproduced by the administration of AAV vectors encoding for α-synuclein into the mouse vagus nerve. The aim of this study was to determine whether α-synuclein's spreading ability is shared by other proteins. Given α-synuclein synaptic localization, experiments involved intravagal injections of AAVs encoding for other synaptic proteins, ß-synuclein, VAMP2, or SNAP25. Administration of AAV-VAMP2 or AAV-SNAP25 caused robust transduction of either of the proteins in the dorsal medulla oblongata but was not followed by interneuronal VAMP2 or SNAP25 transfer and caudo-rostral spreading. In contrast, AAV-mediated ß-synuclein overexpression triggered its spreading to more frontal brain regions. The aggregate formation was investigated as a potential mechanism involved in protein spreading, and consistent with this hypothesis, results showed that overexpression of ß-synuclein, but not VAMP2 or SNAP25, in the dorsal medulla oblongata was associated with pronounced protein aggregation. Data indicate that interneuronal protein transfer is not a mere consequence of increased expression or synaptic localization. It is rather promoted by structural/functional characteristics of synuclein proteins that likely include their tendency to form aggregate species.


Subject(s)
Parkinson Disease , alpha-Synuclein , Mice , Animals , alpha-Synuclein/metabolism , beta-Synuclein/metabolism , Parkinson Disease/metabolism , Brain/metabolism , Brain Stem/pathology , Vesicle-Associated Membrane Protein 2/metabolism
7.
Prion ; 17(1): 29-34, 2023 12.
Article in English | MEDLINE | ID: mdl-36785484

ABSTRACT

Although multiple sclerosis (MS) and multiple system atrophy (MSA) are both characterized by impaired oligodendrocytes (OLs), the aetiological relevance remains obscure. Given inherent stressors affecting OLs, the objective of the present study was to discuss the possible role of amyloidogenic evolvability (aEVO) in these conditions. Hypothetically, in aEVO, protofibrils of amyloidogenic proteins (APs), including ß-synuclein and ß-amyloid, might form in response to diverse stressors in parental brain. Subsequently, the AP protofibrils might be transmitted to offspring via germ cells in a prion-like fashion. By virtue of the stress information conferred by protofibrillar APs, the OLs in offspring's brain might be more resilient to forthcoming stressors, perhaps reducing MS risk. aEVO could be comparable to a gene for the inheritance of acquired characteristics. On the contrary, during ageing, MSA risk is increased through antagonistic pleiotropy. Consistently, the expression levels of APs are reduced in MS, but are increased in MSA compared to controls. Furthermore, ß-synuclein, the non-amyloidogenic homologue of ß-synuclein, might exert a buffering effect on aEVO, and abnormal ß-synuclein could also increase MS and MSA disease activity. Collectively, a better understanding of the role of aEVO in the OL diseases might lead to novel interventions for such chronic degenerative conditions.


Subject(s)
Multiple Sclerosis , Multiple System Atrophy , Humans , Multiple System Atrophy/genetics , Multiple System Atrophy/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , beta-Synuclein/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Brain/metabolism , Amyloidogenic Proteins/genetics , Amyloidogenic Proteins/metabolism
8.
Exp Neurol ; 358: 114221, 2022 12.
Article in English | MEDLINE | ID: mdl-36075453

ABSTRACT

The phosphodiesterase (PDE) superfamily comprises enzymes responsible for the cAMP and cGMP degradation to AMP and GMP. PDEs are abundant in the brain, where they are involved in several neuronal functions. High PDE10A abundance was previously observed in the striatum; however its consequences for stroke recovery were unknown. Herein, we evaluated the effects of PDE10A deactivation by TAK-063 (0.3 or 3 mg/kg, initiated 72 h post-stroke) in mice exposed to intraluminal middle cerebral artery occlusion. We found that PDE10A deactivation over up to eight weeks dose-dependently increased long-term neuronal survival, angiogenesis, and neurogenesis in the peri-infarct striatum, which represents the core of the middle cerebral artery territory, and reduced astroglial scar formation, whole brain atrophy and, more specifically, striatal atrophy. Functional motor-coordination recovery and the long-distance plasticity of pyramidal tract axons, which originate from the contralesional motor cortex and descend through the contralesional striatum to innervate the ipsilesional facial nucleus, were enhanced by PDE10A deactivation. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed a set of dopamine receptor-related and neuronal plasticity-related PDE10A targets, which were elevated (e.g., protein phosphatase-1 regulatory subunit 1B) or reduced (e.g., serine/threonine protein phosphatase 1α, ß-synuclein, proteasome subunit α2) by PDE10A deactivation. Our results identify PDE10A as a therapeutic target that critically controls post-ischemic brain tissue remodeling and plasticity.


Subject(s)
Ischemic Attack, Transient , Phosphoric Diester Hydrolases , Stroke , Adenosine Monophosphate/metabolism , Animals , Atrophy , Chromatography, Liquid , Infarction, Middle Cerebral Artery/drug therapy , Mice , Phosphoric Diester Hydrolases/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Phosphatase 1/metabolism , Pyramidal Tracts/metabolism , Receptors, Dopamine/metabolism , Stroke/drug therapy , Tandem Mass Spectrometry , beta-Synuclein/metabolism
9.
Neurobiol Aging ; 117: 212-221, 2022 09.
Article in English | MEDLINE | ID: mdl-35780561

ABSTRACT

We explored the brain metabolism correlates of emergent cerebrospinal fluid (CSF) biomarkers in a group of 26 patients with prodromal Alzheimer's disease (AD). Distinct volumes of interest (VOIs) expressed the sites of correlation between CSF biomarkers and brain metabolism as determined on [18F]FDG-PET images, as well as of significant hypometabolism in patients compared to healthy controls. Neurogranin- and α-synuclein-VOIs included left precuneus and/or posterior cingulate cortex (PC and/or PCC) and partially overlapped hypometabolism at those sites. ß-synuclein- and neurofilament light chain (NfL)-VOIs regarded either left or right lateral temporal areas, respectively, with partial overlap with hypometabolism only for the ß-synuclein-VOI, whereas the NfL-VOI did not include hypometabolic regions. We speculate that CSF neurogranin and α-synuclein express an already established hippocampal damage leading to PC and/or PCC deafferentation and hypometabolism. ß-synuclein may represent the progression of synaptopathy in the temporal lobe, while NfL the axonal injury in right temporal regions where neuronal loss is not yet evident.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Biomarkers/cerebrospinal fluid , Brain/diagnostic imaging , Brain/metabolism , Cognitive Dysfunction/metabolism , Humans , Neurogranin , Positron-Emission Tomography/methods , Preliminary Data , alpha-Synuclein/metabolism , beta-Synuclein/metabolism
10.
Int J Mol Sci ; 23(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35682736

ABSTRACT

The α-, ß- and γ-synucleins are small soluble proteins expressed in the nervous system of mammals and evolutionary conserved in vertebrates. After being discovered in the cartilaginous fish Torpedo californica, synucleins have been sequenced in all vertebrates, showing differences in the number of genes and splicing isoforms in different taxa. Although α-, ß- and γ-synucleins share high homology in the N-terminal sequence, suggesting their evolution from a common ancestor, the three isoforms also differ in molecular characteristics, expression levels and tissue distribution. Moreover, their functions have yet to be fully understood. Great scientific interest on synucleins mainly derives from the involvement of α-synuclein in human neurodegenerative diseases, collectively named synucleinopathies, which involve the accumulation of amyloidogenic α-synuclein inclusions in neurons and glia cells. Studies on synucleinopathies can take advantage of the development of new vertebrate models other than mammals. Moreover, synuclein expression in non-mammalian vertebrates contribute to clarify the physiological role of these proteins in the evolutionary perspective. In this paper, gene expression levels of α-, ß- and γ-synucleins have been analysed in the main organs of adult Xenopus laevis by qRT-PCR. Moreover, recombinant α-, ß- and γ-synucleins were produced to test the specificity of commercial antibodies against α-synuclein used in Western blot and immunohistochemistry. Finally, the secondary structure of Xenopus synucleins was evaluated by circular dichroism analysis. Results indicate Xenopus as a good model for studying synucleinopathies, and provide a useful background for future studies on synuclein functions and their evolution in vertebrates.


Subject(s)
Synucleinopathies , alpha-Synuclein , Animals , Mammals/metabolism , Protein Isoforms/genetics , Xenopus laevis/genetics , Xenopus laevis/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , beta-Synuclein/genetics , beta-Synuclein/metabolism , gamma-Synuclein/genetics , gamma-Synuclein/metabolism
11.
Cell Rep ; 39(2): 110675, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35417693

ABSTRACT

α-synuclein, ß-synuclein, and γ-synuclein are abundantly expressed proteins in the vertebrate nervous system. α-synuclein functions in neurotransmitter release by binding to and clustering synaptic vesicles and chaperoning SNARE-complex assembly. Pathologically, aggregates originating from soluble pools of α-synuclein are deposited into Lewy bodies in Parkinson's disease and related synucleinopathies. The functions of ß-synuclein and γ-synuclein in presynaptic terminals remain poorly studied. Using in vitro liposome binding studies, circular dichroism spectroscopy, immunoprecipitation, and fluorescence resonance energy transfer (FRET) experiments on isolated synaptic vesicles in combination with subcellular fractionation of brains from synuclein mouse models, we show that ß-synuclein and γ-synuclein have a reduced affinity toward synaptic vesicles compared with α-synuclein, and that heteromerization of ß-synuclein or γ-synuclein with α-synuclein results in reduced synaptic vesicle binding of α-synuclein in a concentration-dependent manner. Our data suggest that ß-synuclein and γ-synuclein are modulators of synaptic vesicle binding of α-synuclein and thereby reduce α-synuclein's physiological activity at the neuronal synapse.


Subject(s)
Synaptic Vesicles , alpha-Synuclein , Animals , Mice , Presynaptic Terminals/metabolism , Synaptic Vesicles/metabolism , alpha-Synuclein/metabolism , beta-Synuclein/metabolism , gamma-Synuclein/metabolism
12.
Biomolecules ; 12(1)2022 01 16.
Article in English | MEDLINE | ID: mdl-35053291

ABSTRACT

α-Synuclein (αS) is a small, unstructured, presynaptic protein expressed in the brain. Its aggregated form is a major component of Lewy bodies, the large proteinaceous deposits in Parkinson's disease. The closely related protein, ß-Synuclein (ßS), is co-expressed with αS. In vitro, ßS acts as a molecular chaperone to inhibit αS aggregation. As a result of this assignation, ßS has been largely understudied in comparison to αS. However, recent reports suggest that ßS promotes neurotoxicity, implying that ßS is involved in other cellular pathways with functions independent of αS. Here, we review the current literature pertaining to human ßS in order to understand better the role of ßS in homeostasis and pathology. Firstly, the structure of ßS is discussed. Secondly, the ability of ßS to (i) act as a molecular chaperone; (ii) regulate synaptic function, lipid binding, and the nigrostriatal dopaminergic system; (iii) mediate apoptosis; (iv) participate in protein degradation pathways; (v) modulate intracellular metal levels; and (vi) promote cellular toxicity and protein aggregation is explored. Thirdly, the P123H and V70M mutations of ßS, which are associated with dementia with Lewy bodies, are discussed. Finally, the importance of post-translational modifications on the structure and function of ßS is reviewed. Overall, it is concluded that ßS has both synergistic and antagonistic interactions with αS, but it may also possess important cellular functions independent of αS.


Subject(s)
Parkinson Disease , beta-Synuclein , Brain/metabolism , Humans , Lewy Bodies/metabolism , Parkinson Disease/metabolism , Protein Aggregates , alpha-Synuclein/metabolism , beta-Synuclein/genetics , beta-Synuclein/metabolism
13.
J Inorg Biochem ; 229: 111715, 2022 04.
Article in English | MEDLINE | ID: mdl-35074552

ABSTRACT

Amyloid aggregation of α-synuclein (AS) is one of the hallmarks of Parkinson's disease (PD). Copper ions specifically bind at the N-terminus of AS, accelerating protein aggregation. Its protein homolog ß-synuclein (BS) is also a copper binding protein, but it inhibits AS aggregation. Here, a comparative spectroscopic study of the Cu2+ binding properties of AS and BS has been performed, using electronic absorption, circular dichroism (CD) and electronic paramagnetic resonance (EPR). Our comparative spectroscopic study reveals striking similarities between the Cu2+ binding features of the two proteins. The Cu2+ binding site at the N-terminal group of BS protein, modeled by the BS (1-15) fragment is identical to that of AS; however, its rate of reduction is three times faster as compared to the AS site, consistent with BS having an additional Met residue in its Met1-Xn-Met5-Xn-Met10 motif. The latter is also evident in the cyclic voltammetry studies of the Cu-BS complex. On the other hand, the Cu2+ binding features of the His site in both proteins, as modeled by AS(45-55) and BS(60-70), are identical, indicating that the shift in the His position does not affect its coordination features. Finally, replacement of Glu46 by Ala does not alter Cu2+ binding to the His site, suggesting that the familial PD E46K mutation would not impact copper-induced aggregation. While further studies of the redox activity of copper bound to His50 in AS are required to understand the role of this site in metal-mediated aggregation, our study contributes to a better understanding of the bioinorganic chemistry of PD.


Subject(s)
Copper/metabolism , alpha-Synuclein/metabolism , beta-Synuclein/metabolism , Amino Acid Sequence , Binding Sites , Histidine/chemistry , Histidine/metabolism , Methionine/chemistry , Methionine/metabolism , Protein Binding , alpha-Synuclein/chemistry , beta-Synuclein/chemistry
14.
J Biol Chem ; 297(6): 101375, 2021 12.
Article in English | MEDLINE | ID: mdl-34736896

ABSTRACT

Synucleins, a family of three proteins highly expressed in neurons, are predominantly known for the direct involvement of α-synuclein in the etiology and pathogenesis of Parkinson's and certain other neurodegenerative diseases, but their precise physiological functions are still not fully understood. Previous studies have demonstrated the importance of α-synuclein as a modulator of various mechanisms implicated in chemical neurotransmission, but information concerning the involvement of other synuclein family members, ß-synuclein and γ-synuclein, in molecular processes within presynaptic terminals is limited. Here, we demonstrated that the vesicular monoamine transporter 2-dependent dopamine uptake by synaptic vesicles isolated from the striatum of mice lacking ß-synuclein is significantly reduced. Reciprocally, reintroduction, either in vivo or in vitro, of ß-synuclein but not α-synuclein or γ-synuclein improves uptake by triple α/ß/γ-synuclein-deficient striatal vesicles. We also showed that the resistance of dopaminergic neurons of the substantia nigra pars compacta to subchronic administration of the Parkinson's disease-inducing prodrug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine depends on the presence of ß-synuclein but only when one or both other synucleins are absent. Furthermore, proteomic analysis of synuclein-deficient synaptic vesicles versus those containing only ß-synuclein revealed differences in their protein compositions. We suggest that the observed potentiation of dopamine uptake by ß-synuclein might be caused by different protein architecture of the synaptic vesicles. It is also feasible that such structural changes improve synaptic vesicle sequestration of 1-methyl-4-phenylpyridinium, a toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, which would explain why dopaminergic neurons expressing ß-synuclein and lacking α-synuclein and/or γ-synuclein are resistant to this neurotoxin.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Cell Death/drug effects , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Synaptic Vesicles/metabolism , beta-Synuclein/physiology , Animals , Mice , Mice, Knockout , beta-Synuclein/metabolism
15.
Biomolecules ; 11(8)2021 07 21.
Article in English | MEDLINE | ID: mdl-34439733

ABSTRACT

The 140 amino acid protein α-synuclein (αS) is an intrinsically disordered protein (IDP) with various roles and locations in healthy neurons that plays a key role in Parkinson's disease (PD). Contact with biomembranes can lead to α-helical conformations, but can also act as s seeding event for aggregation and a predominant ß-sheet conformation. In PD patients, αS is found to aggregate in various fibrillary structures, and the shift in aggregation and localization is associated with disease progression. Besides full-length αS, several related polypeptides are present in neurons. The role of many αS-related proteins in the aggregation of αS itself is not fully understood Two of these potential aggregation modifiers are the αS splicing variant αS Δexon3 (Δ3) and the paralog ß-synuclein (ßS). Here, polarized ATR-FTIR spectroscopy was used to study the membrane interaction of these proteins individually and in various combinations. The method allowed a continuous monitoring of both the lipid structure of biomimetic membranes and the aggregation state of αS and related proteins. The use of polarized light also revealed the orientation of secondary structure elements. While αS led to a destruction of the lipid membrane upon membrane-catalyzed aggregation, ßS and Δ3 aggregated significantly less, and they did not harm the membrane. Moreover, the latter proteins reduced the membrane damage triggered by αS. There were no major differences in the membrane interaction for the different synuclein variants. In combination, these observations suggest that the formation of particular protein aggregates is the major driving force for αS-driven membrane damage. The misbalance of αS, ßS, and Δ3 might therefore play a crucial role in neurodegenerative disease.


Subject(s)
Parkinson Disease/metabolism , alpha-Synuclein/metabolism , beta-Synuclein/metabolism , Amino Acid Sequence , Humans , Protein Aggregates , Protein Binding , Protein Conformation, alpha-Helical , Protein Structure, Secondary
16.
Hum Mol Genet ; 30(23): 2332-2346, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34254125

ABSTRACT

α-Synuclein (αS) has been well-documented to play a role in human synucleinopathies such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). First, the lesions found in PD/DLB brains-Lewy bodies and Lewy neurites-are rich in aggregated αS. Second, genetic evidence links missense mutations and increased αS expression to familial forms of PD/DLB. Third, toxicity and cellular stress can be caused by αS under certain experimental conditions. In contrast, the homologs ß-synuclein (ßS) and γ-synuclein (γS) are not typically found in Lewy bodies/neurites, have not been clearly linked to brain diseases and have been largely non-toxic in experimental settings. In αS, the so-called non-amyloid-ß component of plaques (NAC) domain, constituting amino acids 61-95, has been identified to be critical for aggregation in vitro. This domain is partially absent in ßS and only incompletely conserved in γS, which could explain why both homologs do not cause disease. However, αS in vitro aggregation and cellular toxicity have not been firmly linked experimentally, and it has been proposed that excess αS membrane binding is sufficient to induce neurotoxicity. Indeed, recent characterizations of Lewy bodies have highlighted the accumulation of lipids and membranous organelles, raising the possibility that ßS and γS could also become neurotoxic if they were more prone to membrane/lipid binding. Here, we increased ßS and γS membrane affinity by strategic point mutations and demonstrate that these proteins behave like membrane-associated monomers, are cytotoxic and form round cytoplasmic inclusions that can be prevented by inhibiting stearoyl-CoA desaturase.


Subject(s)
Cell Membrane/metabolism , Inclusion Bodies/metabolism , alpha-Synuclein/metabolism , beta-Synuclein/metabolism , gamma-Synuclein/metabolism , Amino Acid Sequence , Conserved Sequence , Humans , Mutagenesis , Protein Aggregation, Pathological , Protein Binding , Protein Interaction Domains and Motifs , Protein Multimerization , Solubility , alpha-Synuclein/chemistry , alpha-Synuclein/genetics , beta-Synuclein/chemistry , beta-Synuclein/genetics , gamma-Synuclein/chemistry , gamma-Synuclein/genetics
17.
Biomolecules ; 11(2)2021 02 15.
Article in English | MEDLINE | ID: mdl-33672048

ABSTRACT

Gaucher disease (GD), the most common lysosomal storage disorder (LSD), is caused by autosomal recessive mutations of the glucocerebrosidase gene, GBA1. In the majority of cases, GD has a non-neuropathic chronic form with adult onset (GD1), while other cases are more acute and severer neuropathic forms with early onset (GD2/3). Currently, no radical therapies are established for GD2/3. Notably, GD1, but not GD2/3, is associated with increased risk of Parkinson's disease (PD), the elucidation of which might provide a clue for novel therapeutic strategies. In this context, the objective of the present study is to discuss that the evolvability of α-synuclein (αS) might be differentially involved in GD subtypes. Hypothetically, aging-associated PD features with accumulation of αS, and the autophagy-lysosomal dysfunction might be an antagonistic pleiotropy phenomenon derived from αS evolvability in the development in GD1, without which neuropathies like GD2/3 might be manifested due to the autophagy-lysosomal dysfunction. Supposing that the increased severity of GD2/3 might be attributed to the decreased activity of αS evolvability, suppressing the expression of ß-synuclein (ßS), a potential buffer against αS evolvability, might be therapeutically efficient. Of interest, a similar view might be applicable to Niemann-Pick type C (NPC), another LSD, given that the adult type of NPC, which is comorbid with Alzheimer's disease, exhibits milder medical symptoms compared with those of infantile NPC. Thus, it is predicted that the evolvability of amyloid ß and tau, might be beneficial for the adult type of NPC. Collectively, a better understanding of amyloidogenic evolvability in the pathogenesis of LSD may inform rational therapy development.


Subject(s)
Gaucher Disease/metabolism , Gaucher Disease/therapy , alpha-Synuclein/metabolism , Amyloid/metabolism , Autophagy , Brain/metabolism , Gaucher Disease/genetics , Glucosylceramidase/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Lysosomes/metabolism , Models, Biological , Mutation , Niemann-Pick C1 Protein , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/therapy , Reactive Oxygen Species , Risk , Risk Factors , Treatment Outcome , beta-Synuclein/metabolism
18.
J Neurochem ; 156(5): 674-691, 2021 03.
Article in English | MEDLINE | ID: mdl-32730640

ABSTRACT

A contribution of α-Synuclein (α-Syn) to etiology of Parkinson´s disease (PD) and Dementia with Lewy bodies (DLB) is currently undisputed, while the impact of the closely related ß-Synuclein (ß-Syn) on these disorders remains enigmatic. ß-Syn has long been considered to be an attenuator of the neurotoxic effects of α-Syn, but in a rodent model of PD ß-Syn induced robust neurodegeneration in dopaminergic neurons of the substantia nigra. Given that dopaminergic nigral neurons are selectively vulnerable to neurodegeneration in PD, we now investigated if dopamine can promote the neurodegenerative potential of ß-Syn. We show that in cultured rodent and human neurons a dopaminergic neurotransmitter phenotype substantially enhanced ß-Syn-induced neurodegeneration, irrespective if dopamine is synthesized within neurons or up-taken from extracellular space. Nuclear magnetic resonance interaction and thioflavin-T incorporation studies demonstrated that dopamine and its oxidized metabolites 3,4-dihydroxyphenylacetaldehyde (DOPAL) and dopaminochrome (DCH) directly interact with ß-Syn, thereby enabling structural and functional modifications. Interaction of DCH with ß-Syn inhibits its aggregation, which might result in increased levels of neurotoxic oligomeric ß-Syn. Since protection of outer mitochondrial membrane integrity prevented the additive neurodegenerative effect of dopamine and ß-Syn, such oligomers might act at a mitochondrial level similar to what is suggested for α-Syn. In conclusion, our results suggest that ß-Syn can play a significant pathophysiological role in etiology of PD through its interaction with dopamine metabolites and thus should be re-considered as a disease-relevant factor, at least for those symptoms of PD that depend on degeneration of nigral dopaminergic neurons.


Subject(s)
Dopamine/metabolism , Dopaminergic Neurons/metabolism , Neurodegenerative Diseases/metabolism , beta-Synuclein/metabolism , beta-Synuclein/toxicity , Animals , Cells, Cultured , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Female , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Middle Aged , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/pathology , Pregnancy , Rats , Rats, Wistar
19.
Int J Mol Sci ; 21(8)2020 Apr 19.
Article in English | MEDLINE | ID: mdl-32325870

ABSTRACT

Dementia with Lewy bodies (DLB) is the second most prevalent neurodegenerative dementia after Alzheimer's disease, and is pathologically characterized by formation of intracellular inclusions called Lewy bodies, the major constituent of which is aggregated α-synuclein (αS). Currently, neither a mechanistic etiology nor an effective disease-modifying therapy for DLB has been established. Although two missense mutations of ß-synuclein (ßS), V70M and P123H, were identified in sporadic and familial DLB, respectively, the precise mechanisms through which ßS mutations promote DLB pathogenesis remain elusive. To further clarify such mechanisms, we investigated transgenic (Tg) mice expressing P123H ßS, which develop progressive neurodegeneration in the form of axonal swelling and non-motor behaviors, such as memory dysfunction and depression, which are more prominent than motor deficits. Furthermore, cross-breeding of P123H ßS Tg mice with αS Tg mice worsened the neurodegenerative phenotype presumably through the pathological cross-seeding of P123H ßS with αS. Collectively, we predict that ßS misfolding due to gene mutations might be pathogenic. In this paper, we will discuss the possible involvement of amyloidogenic evolvability in the pathogenesis of DLB based on our previous papers regarding the P123H ßS Tg mice. Given that stimulation of αS evolvability by P123H ßS may underlie neuropathology in our mouse model, more radical disease-modifying therapy might be derived from the evolvability mechanism. Additionally, provided that altered ßS were involved in the pathogenesis of sporadic DLB, the P123H ßS Tg mice could be used for investigating the mechanism and therapy of DLB.


Subject(s)
Amyloidogenic Proteins/genetics , Amyloidogenic Proteins/metabolism , Lewy Body Disease/etiology , Lewy Body Disease/metabolism , beta-Synuclein/genetics , beta-Synuclein/metabolism , Alleles , Amino Acid Substitution , Animals , Disease Management , Disease Models, Animal , Disease Susceptibility , Gene Expression , Humans , Lewy Body Disease/pathology , Lewy Body Disease/therapy , Mice , Mice, Transgenic , Mutation
20.
Acta Neuropsychiatr ; 32(6): 281-292, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32178745

ABSTRACT

OBJECTIVES: Lewy body dementia (LBD) is the second most prevalent neurodegenerative dementia and it causes more morbidity and mortality than Alzheimer's disease. Several genetic associations of LBD have been reported and their functional implications remain uncertain. Hence, we aimed to do a systematic review of all gene expression studies that investigated people with LBD for improving our understanding of LBD molecular pathology and for facilitating discovery of novel biomarkers and therapeutic targets for LBD. METHODS: We systematically reviewed five online databases (PROSPERO protocol: CRD42017080647) and assessed the functional implications of all reported differentially expressed genes (DEGs) using Ingenuity Pathway Analyses. RESULTS: We screened 3,809 articles and identified 31 eligible studies. In that, 1,242 statistically significant (p < 0.05) DEGs including 70 microRNAs have been reported in people with LBD. Expression levels of alternatively spliced transcripts of SNCA, SNCB, PRKN, APP, RELA, and ATXN2 significantly differ in LBD. Several mitochondrial genes and genes involved in ubiquitin proteasome system and autophagy-lysosomal pathway were significantly downregulated in LBD. Evidence supporting chronic neuroinflammation in LBD was inconsistent. Our functional analyses highlighted the importance of ribonucleic acid (RNA)-mediated gene silencing, neuregulin signalling, and neurotrophic factors in the molecular pathology of LBD. CONCLUSIONS: α-synuclein aggregation, mitochondrial dysfunction, defects in molecular networks clearing misfolded proteins, and RNA-mediated gene silencing contribute to neurodegeneration in LBD. Larger longitudinal transcriptomic studies investigating biological fluids of people living with LBD are needed for molecular subtyping and staging of LBD. Diagnostic biomarker potential and therapeutic promise of identified DEGs warrant further research.


Subject(s)
Alzheimer Disease/genetics , Brain/metabolism , Gene Expression/genetics , Lewy Body Disease/genetics , alpha-Synuclein/genetics , Aged , Aged, 80 and over , Alzheimer Disease/epidemiology , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/metabolism , Ataxin-2/metabolism , Autophagy/genetics , Biomarkers/metabolism , Databases, Factual , Down-Regulation , Genes, Mitochondrial/genetics , Humans , Lewy Body Disease/epidemiology , Lewy Body Disease/pathology , MicroRNAs/genetics , Proteasome Endopeptidase Complex/metabolism , Proteins/metabolism , Transcription Factor RelA/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , alpha-Synuclein/metabolism , beta-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...